Journal articles on the topic 'Quantum field theory; Curved spacetime'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quantum field theory; Curved spacetime.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Freitas, Gabriel, and Marc Casals. "A novel method for renormalization in quantum-field theory in curved spacetime." International Journal of Modern Physics D 27, no. 11 (August 2018): 1843001. http://dx.doi.org/10.1142/s0218271818430010.
Full textGUIDO, D., R. LONGO, J. E. ROBERTS, and R. VERCH. "CHARGED SECTORS, SPIN AND STATISTICS IN QUANTUM FIELD THEORY ON CURVED SPACETIMES." Reviews in Mathematical Physics 13, no. 02 (February 2001): 125–98. http://dx.doi.org/10.1142/s0129055x01000557.
Full textKAY, BERNARD S. "THE PRINCIPLE OF LOCALITY AND QUANTUM FIELD THEORY ON (NON GLOBALLY HYPERBOLIC) CURVED SPACETIMES." Reviews in Mathematical Physics 04, spec01 (December 1992): 167–95. http://dx.doi.org/10.1142/s0129055x92000194.
Full textKRÓL, JERZY. "TOPOS THEORY AND SPACETIME STRUCTURE." International Journal of Geometric Methods in Modern Physics 04, no. 02 (March 2007): 297–303. http://dx.doi.org/10.1142/s0219887807002028.
Full textde Medeiros, Paul, and Stefan Hollands. "Superconformal quantum field theory in curved spacetime." Classical and Quantum Gravity 30, no. 17 (August 21, 2013): 175015. http://dx.doi.org/10.1088/0264-9381/30/17/175015.
Full textHollands, Stefan, and Robert M. Wald. "Axiomatic Quantum Field Theory in Curved Spacetime." Communications in Mathematical Physics 293, no. 1 (September 1, 2009): 85–125. http://dx.doi.org/10.1007/s00220-009-0880-7.
Full textBernar, Rafael P., Luís C. B. Crispino, and Atsushi Higuchi. "Circular geodesic radiation in Schwarzschild spacetime: A semiclassical approach." International Journal of Modern Physics D 27, no. 11 (August 2018): 1843002. http://dx.doi.org/10.1142/s0218271818430022.
Full textSorkin, Rafael D. "From Green function to quantum field." International Journal of Geometric Methods in Modern Physics 14, no. 08 (May 11, 2017): 1740007. http://dx.doi.org/10.1142/s0219887817400072.
Full textDiel, Hans H. "A Model of Spacetime Dynamics with Embedded Quantum Objects." Reports in Advances of Physical Sciences 01, no. 03 (September 2017): 1750010. http://dx.doi.org/10.1142/s2424942417500104.
Full textToms, D. J. "Functional measure for quantum field theory in curved spacetime." Physical Review D 35, no. 12 (June 15, 1987): 3796–803. http://dx.doi.org/10.1103/physrevd.35.3796.
Full textHOLLANDS, STEFAN. "RENORMALIZED QUANTUM YANG–MILLS FIELDS IN CURVED SPACETIME." Reviews in Mathematical Physics 20, no. 09 (October 2008): 1033–172. http://dx.doi.org/10.1142/s0129055x08003420.
Full textSanchez, N. G. "Advances in String Theory in Curved Backgrounds: A Synthesis Report." International Journal of Modern Physics A 18, no. 12 (May 10, 2003): 2011–22. http://dx.doi.org/10.1142/s0217751x0301543x.
Full textAvetisyan, Zhirayr, and Matteo Capoferri. "Partial Differential Equations and Quantum States in Curved Spacetimes." Mathematics 9, no. 16 (August 13, 2021): 1936. http://dx.doi.org/10.3390/math9161936.
Full textColosi, Daniele. "On Unitary Evolution in Quantum Field Theory in Curved Spacetime." Open Nuclear & Particle Physics Journal 4, no. 1 (August 19, 2011): 13–20. http://dx.doi.org/10.2174/1874415x01104010013.
Full textHOLLANDS, STEFAN, and ROBERT M. WALD. "CONSERVATION OF THE STRESS TENSOR IN PERTURBATIVE INTERACTING QUANTUM FIELD THEORY IN CURVED SPACETIMES." Reviews in Mathematical Physics 17, no. 03 (April 2005): 227–311. http://dx.doi.org/10.1142/s0129055x05002340.
Full textMandal, Susobhan. "Classification of quantum states based on the null energy condition." Modern Physics Letters A 36, no. 25 (August 20, 2021): 2150183. http://dx.doi.org/10.1142/s0217732321501832.
Full textHu, B. L., R. Critchley, and Aris Stylianopoulos. "Finite-temperature quantum field theory in curved spacetime: Quasilocal effective Lagrangians." Physical Review D 35, no. 2 (January 15, 1987): 510–27. http://dx.doi.org/10.1103/physrevd.35.510.
Full textMaybee, Ben, Daniel Hodgson, Almut Beige, and Robert Purdy. "A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes." Entropy 21, no. 9 (August 30, 2019): 844. http://dx.doi.org/10.3390/e21090844.
Full textCastro, Carlos. "A gauge theory of gravity in curved phase-spaces." International Journal of Geometric Methods in Modern Physics 13, no. 07 (July 25, 2016): 1650097. http://dx.doi.org/10.1142/s0219887816500973.
Full textAgulló, Iván, Adrián del Río, and José Navarro-Salas. "On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation." Symmetry 10, no. 12 (December 17, 2018): 763. http://dx.doi.org/10.3390/sym10120763.
Full textGuillen Gomez, Alfonso Leon. "Is Gravity, The Curvature of Spacetime or A Quantum Phenomenon?" JOURNAL OF ADVANCES IN PHYSICS 4, no. 1 (March 22, 2014): 449–59. http://dx.doi.org/10.24297/jap.v4i1.2046.
Full textDE BERREDO-PEIXOTO, G. "ON THE 1-LOOP CALCULATIONS OF SOFTLY BROKEN FERMION-TORSION THEORY IN CURVED SPACE USING THE STÜCKELBERG PROCEDURE." International Journal of Modern Physics A 24, no. 08n09 (April 10, 2009): 1570–73. http://dx.doi.org/10.1142/s0217751x09045017.
Full textSummers, Stephen J., and Rainer Verch. "Modular inclusion, the Hawking temperature, and quantum field theory in curved spacetime." Letters in Mathematical Physics 37, no. 2 (June 1996): 145–58. http://dx.doi.org/10.1007/bf00416017.
Full textHollands, Stefan. "The Operator Product Expansion for Perturbative Quantum Field Theory in Curved Spacetime." Communications in Mathematical Physics 273, no. 1 (April 28, 2007): 1–36. http://dx.doi.org/10.1007/s00220-007-0230-6.
Full textAlekseev, D. V., and I. L. Shapiro. "Group-renormalization approach in quantum field theory in curved spacetime with torsion." Soviet Physics Journal 33, no. 10 (October 1990): 840–43. http://dx.doi.org/10.1007/bf00897305.
Full textOdintsov, S. D. "Vilkovisky-de Witt effective action in quantum field theory in curved spacetime." Soviet Physics Journal 34, no. 4 (April 1991): 370–73. http://dx.doi.org/10.1007/bf00898106.
Full textFewster, Christopher J., and Rainer Verch. "Quantum Fields and Local Measurements." Communications in Mathematical Physics 378, no. 2 (July 27, 2020): 851–89. http://dx.doi.org/10.1007/s00220-020-03800-6.
Full textSAHLMANN, HANNO, and RAINER VERCH. "MICROLOCAL SPECTRUM CONDITION AND HADAMARD FORM FOR VECTOR-VALUED QUANTUM FIELDS IN CURVED SPACETIME." Reviews in Mathematical Physics 13, no. 10 (October 2001): 1203–46. http://dx.doi.org/10.1142/s0129055x01001010.
Full textJUNKER, WOLFGANG. "HADAMARD STATES, ADIABATIC VACUA AND THE CONSTRUCTION OF PHYSICAL STATES FOR SCALAR QUANTUM FIELDS ON CURVED SPACETIME." Reviews in Mathematical Physics 08, no. 08 (November 1996): 1091–159. http://dx.doi.org/10.1142/s0129055x9600041x.
Full textCosta, H. A. S., and P. R. S. Carvalho. "NLO critical exponents of O(N) λ ϕ4 scalar field theories in curved spacetime." International Journal of Modern Physics D 28, no. 01 (January 2019): 1950024. http://dx.doi.org/10.1142/s021827181950024x.
Full textARZANO, MICHELE. "QUANTUM FIELDS ON CURVED MOMENTUM SPACE." International Journal of Geometric Methods in Modern Physics 09, no. 06 (August 3, 2012): 1261002. http://dx.doi.org/10.1142/s0219887812610026.
Full textFewster, Christopher J. "The art of the state." International Journal of Modern Physics D 27, no. 11 (August 2018): 1843007. http://dx.doi.org/10.1142/s0218271818430071.
Full textHollands, Stefan, and Robert M. Wald. "Quantum field theory in curved spacetime, the operator product expansion, and dark energy." General Relativity and Gravitation 40, no. 10 (August 1, 2008): 2051–59. http://dx.doi.org/10.1007/s10714-008-0672-y.
Full textLewis, Adam G. M., and Guifré Vidal. "Classical Simulations of Quantum Field Theory in Curved Spacetime I: Fermionic Hawking-Hartle Vacua from a Staggered Lattice Scheme." Quantum 4 (October 28, 2020): 351. http://dx.doi.org/10.22331/q-2020-10-28-351.
Full textVERCH, RAINER, and REINHARD F. WERNER. "DISTILLABILITY AND POSITIVITY OF PARTIAL TRANSPOSES IN GENERAL QUANTUM FIELD SYSTEMS." Reviews in Mathematical Physics 17, no. 05 (June 2005): 545–76. http://dx.doi.org/10.1142/s0129055x05002364.
Full textFewster, Christopher J. "Locally covariant quantum field theory and the spin–statistics connection." International Journal of Modern Physics D 25, no. 06 (May 2016): 1630015. http://dx.doi.org/10.1142/s0218271816300159.
Full textBARCELÓ, CARLOS, and LUIS J. GARAY. "WORMHOLE EFFECTIVE INTERACTIONS IN ANTI-DE SITTER SPACETIME." International Journal of Modern Physics D 07, no. 04 (August 1998): 623–45. http://dx.doi.org/10.1142/s0218271898000425.
Full textArrighi, Pablo, and Stefno Facchini. "Quantum walking in curved spacetime: (3+1) dimensions, and beyond." Quantum Information and Computation 17, no. 9&10 (August 2017): 810–24. http://dx.doi.org/10.26421/qic17.9-10-4.
Full textCalzetta, E., S. Habib, and B. L. Hu. "Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations." Physical Review D 37, no. 10 (May 15, 1988): 2901–19. http://dx.doi.org/10.1103/physrevd.37.2901.
Full textGalstian, Anahit, and Karen Yagdjian. "Finite lifespan of solutions of the semilinear wave equation in the Einstein–de Sitter spacetime." Reviews in Mathematical Physics 32, no. 07 (December 20, 2019): 2050018. http://dx.doi.org/10.1142/s0129055x2050018x.
Full textLawrie, Ian D. "Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, by L. Parker and D. Toms." Contemporary Physics 52, no. 2 (March 2011): 158–59. http://dx.doi.org/10.1080/00107514.2010.534183.
Full textODINTSOV, S., and R. PERCACCI. "YANG–MILLS VACUUM STRUCTURE AND QUANTUM GRAVITY." Modern Physics Letters A 11, no. 22 (July 20, 1996): 1807–14. http://dx.doi.org/10.1142/s021773239600179x.
Full textBilic, Neven, and Dijana Tolic. "Analogue cosmology in a hadronic fluid." Facta universitatis - series: Physics, Chemistry and Technology 12, no. 2 (2014): 77–83. http://dx.doi.org/10.2298/fupct1402077b.
Full textFredenhagen, Klaus, and Kasia Rejzner. "Quantum field theory on curved spacetimes: Axiomatic framework and examples." Journal of Mathematical Physics 57, no. 3 (March 2016): 031101. http://dx.doi.org/10.1063/1.4939955.
Full textMAZZITELLI, FRANCISCO DIEGO. "QUANTUM FIELDS WITH MODIFIED DISPERSION RELATIONS IN CURVED SPACES." International Journal of Modern Physics D 20, no. 05 (May 20, 2011): 745–56. http://dx.doi.org/10.1142/s0218271811019086.
Full textTAKOOK, MOHAMMAD VAHID. "A NATURAL RENORMALIZATION OF THE ONE-LOOP EFFECTIVE ACTION FOR SCALAR FIELD IN CURVED SPACETIME." International Journal of Modern Physics E 14, no. 02 (March 2005): 219–23. http://dx.doi.org/10.1142/s0218301305002953.
Full textIorio, Alfredo. "Curved spacetimes and curved graphene: A status report of the Weyl symmetry approach." International Journal of Modern Physics D 24, no. 05 (March 18, 2015): 1530013. http://dx.doi.org/10.1142/s021827181530013x.
Full textHollands, S., and W. Ruan. "The State Space of Perturbative Quantum Field Theory in Curved Spacetimes." Annales Henri Poincaré 3, no. 4 (August 2002): 635–57. http://dx.doi.org/10.1007/s00023-002-8629-2.
Full textLIBERATI, STEFANO, TONY ROTHMAN, and SEBASTIANO SONEGO. "EXTREMAL BLACK HOLES AND THE LIMITS OF THE THIRD LAW." International Journal of Modern Physics D 10, no. 01 (February 2001): 33–39. http://dx.doi.org/10.1142/s0218271801000937.
Full textYang, Shu-Zheng, Kai Lin, Jin Li, and Qing-Quan Jiang. "Lorentz Invariance Violation and Modified Hawking Fermions Tunneling Radiation." Advances in High Energy Physics 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7058764.
Full text