Academic literature on the topic 'Quantum field theory][Gauge theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum field theory][Gauge theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum field theory][Gauge theory"

1

Gracey, J. A. "Large Nf quantum field theory." International Journal of Modern Physics A 33, no. 35 (December 20, 2018): 1830032. http://dx.doi.org/10.1142/s0217751x18300326.

Full text
Abstract:
We review the development of the large [Formula: see text] method, where [Formula: see text] indicates the number of flavours, used to study perturbative and nonperturbative properties of quantum field theories. The relevant historical background is summarized as a prelude to the introduction of the large [Formula: see text] critical point formalism. This is used to compute large [Formula: see text] corrections to [Formula: see text]-dimensional critical exponents of the universal quantum field theory present at the Wilson–Fisher fixed point. While pedagogical in part the application to gauge theories is also covered and the use of the large [Formula: see text] method to complement explicit high order perturbative computations in gauge theories is also highlighted. The usefulness of the technique in relation to other methods currently used to study quantum field theories in [Formula: see text]-dimensions is also summarized.
APA, Harvard, Vancouver, ISO, and other styles
2

Schreiber, Urs, and Michael Shulman. "Quantum Gauge Field Theory in Cohesive Homotopy Type Theory." Electronic Proceedings in Theoretical Computer Science 158 (July 29, 2014): 109–26. http://dx.doi.org/10.4204/eptcs.158.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Potvin, Jean, Harvey Gould, and Jan Tobochnik. "Computational Quantum Field Theory. Part II: Lattice Gauge Theory." Computers in Physics 8, no. 2 (1994): 170. http://dx.doi.org/10.1063/1.4823280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SCHLINGEMANN, DIRK. "FROM EUCLIDEAN FIELD THEORY TO QUANTUM FIELD THEORY." Reviews in Mathematical Physics 11, no. 09 (October 1999): 1151–78. http://dx.doi.org/10.1142/s0129055x99000362.

Full text
Abstract:
In order to construct examples for interacting quantum field theory models, the methods of Euclidean field theory turned out to be powerful tools since they make use of the techniques of classical statistical mechanics. Starting from an appropriate set of Euclidean n-point functions (Schwinger distributions), a Wightman theory can be reconstructed by an application of the famous Osterwalder–Schrader reconstruction theorem. This procedure (Wick rotation), which relates classical statistical mechanics and quantum field theory, is, however, somewhat subtle. It relies on the analytic properties of the Euclidean n-point functions. We shall present here a C*-algebraic version of the Osterwalder–Schrader reconstruction theorem. We shall see that, via our reconstruction scheme, a Haag–Kastler net of bounded operators can directly be reconstructed. Our considerations also include objects, like Wilson loop variables, which are not point-like localized objects like distributions. This point of view may also be helpful for constructing gauge theories.
APA, Harvard, Vancouver, ISO, and other styles
5

ACHARYA, R., and P. NARAYANA SWAMY. "SUPERCONDUCTIVITY: GAUGE FIELD THEORY FORMULATION." International Journal of Modern Physics A 08, no. 01 (January 10, 1993): 59–77. http://dx.doi.org/10.1142/s0217751x93000035.

Full text
Abstract:
The nonrelativistic BCS theory of superconductivity is studied in the framework which allows an application of field-theoretic methods. The gauge technique of relativistic quantum electrodynamics is shown to be a suitable basis which makes it feasible to extend BCS theory beyond the original weak coupling approximation. We derive a relation between the superconducting transition temperature, the Debye temperature, the effective coupling constant and the effective electron mass. In addition to the BCS type solution, we establish an interesting new solution which corresponds to a high transition temperature.
APA, Harvard, Vancouver, ISO, and other styles
6

SZABO, RICHARD J. "DISCRETE NONCOMMUTATIVE GAUGE THEORY." Modern Physics Letters A 16, no. 04n06 (February 28, 2001): 367–86. http://dx.doi.org/10.1142/s0217732301003474.

Full text
Abstract:
A review of the relationships between matrix models and noncommutative gauge theory is presented. A lattice version of noncommutative Yang–Mills theory is constructed and used to examine some generic properties of noncommutative quantum field theory, such as uv/ir mixing and the appearance of gauge-invariant open Wilson line operators. Morita equivalence in this class of models is derived and used to establish the generic relation between noncommutative gauge theory and twisted reduced models. Finite-dimensional representations of the quotient conditions for toroidal compactification of matrix models are thereby exhibited. The coupling of noncommutative gauge fields to fundamental matter fields is considered and a large mass expansion is used to study the properties of gauge-invariant observables. Morita equivalence with fundamental matter is also presented and used to prove the equivalence between the planar loop renormalizations in commutative and noncommutative quantum chromodynamics.
APA, Harvard, Vancouver, ISO, and other styles
7

Celeghini, E., E. Graziano, K. Nakamura, and G. Vitiello. "Finite temperature quantum field theory and gauge field." Physics Letters B 285, no. 1-2 (July 1992): 98–102. http://dx.doi.org/10.1016/0370-2693(92)91306-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pázmándi, F., G. T. Zimányi, and R. T. Scalettar. "Mean-field theory for quantum gauge glasses." Europhysics Letters (EPL) 38, no. 4 (May 1, 1997): 255–60. http://dx.doi.org/10.1209/epl/i1997-00234-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dick, Rainer. "Complex Structures in Quantum Field Theory." International Journal of Modern Physics A 12, no. 01 (January 10, 1997): 159–64. http://dx.doi.org/10.1142/s0217751x97000219.

Full text
Abstract:
We point out that Ward identities imply a notion of reproducing kernel in the set of classical solutions of any quantum field theory, and discuss an application of low-dimensional complex structures in four-dimensional gauge theory.
APA, Harvard, Vancouver, ISO, and other styles
10

Edwards, James P., and Olindo Corradini. "Worldline colour fields and non-Abelian quantum field theory." EPJ Web of Conferences 182 (2018): 02038. http://dx.doi.org/10.1051/epjconf/201818202038.

Full text
Abstract:
In the worldline approach to non-Abelian field theory the colour degrees of freedom of the coupling to the gauge potential can be incorporated using worldline “colour” fields. The colour fields generate Wilson loop interactions whilst Chern-Simons terms project onto an irreducible representation of the gauge group. We analyse this augmented worldline theory in phase space focusing on its supersymmetry and constraint algebra, arriving at a locally supersymmetric theory in superspace. We demonstrate canonical quantisation and the path integral on S1 for simple representations of SU(N).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum field theory][Gauge theory"

1

Hahn, Atle. "Chern-Simons theory on R³ in axial gauge." Bonn : Rheinische Friedrich-Wilhelms-Universität, Mathematisches Institut, 2001. http://catalog.hathitrust.org/api/volumes/oclc/52314497.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mackman, Stephen William. "Gauge fields and quantum theory." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5183/.

Full text
Abstract:
This thesis investigates the problems within quantum mechanics for the Bohm model caused by Lorentz invariance and the existence of photons. A model describing the electromagnetic interactions of fermions is produced which does not use photons and avoids these problems. It is then shown how these techniques can be extended to linearised gravitational interactions. Finally semi-classical gravity and the possibility of gravitationally induced collapse are considered. In the first part of the thesis two modifications to the Bohm model are proposed. One takes account of Lorentz invariance, and the other is capable of describing photons. The main part of the thesis is devoted to describing interactions in a way which does not need extra gauge particles, and so is in the same spirit as the Bohm model. Electromagnetic interactions are formed using a 4-potential operator which is calculated directly, without imposing commutation relations on the 4-potential. This leads to an expression for the 4-potential in terms of the Dirac field, and results in there being no photon states. There are various ways of constructing the theory and the scattering matrix of standard QED is compared to the scattering matrix of the version which appears to be most similar. Considering only the matrix elements between fermion states, they are found to be in agreement at the order e(^2), but disagree at the order e(^4). It follows that this model, which otherwise appears to be a self consistent theory of QED, cannot agree with experiment. The same techniques can be used to quantise General Relativity when it is linearised about the Minkowski metric. The metric operator is calculated in terms of the Dirac field. The interaction is similar to that of electrodynamics, being of order 4 in the Dirac field. Finally issues relating to gravitational collapse are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Andreassen, Anders Johan. "Gauge Dependence of the Quantum Field Theory Effective Potential." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23120.

Full text
Abstract:
Using the absolute stability requirement of the Standard Model vacuum, we compute the Higgs mass bound for the 1-loop Standard Model effective potential with gauge dependence in the $R_\xi$ gauges together with 3-loop beta functions, 3-loop anomalous dimension and 2-loop threshold corrections. We find that the bound changes by +0.1GeV when we change the gauge parameter $\xi$ from 0 to 50. We also report that the Higgs bound plateaus as we increase $\xi$ beyond 100.
APA, Harvard, Vancouver, ISO, and other styles
4

Kizilersü, Ayşe. "Gauge theory constraints on the fermion-boson vertex." Thesis, Durham University, 1995. http://etheses.dur.ac.uk/4886/.

Full text
Abstract:
In this thesis we investigate the role played by fundamental properties of QED in determining the non-perturbative fermion-boson vertex. These key features are gauge invariance and multiplicative renormalisability. We use the Schwinger-Dyson equations as the non- perturbative tool to study the general structure of the fermion-boson vertex in QED. These equations, being an infinite set, have to be truncated if they are to be solved. Such a truncation is made possible by choosing a suitable non-perturbative ansatz for the fermion-boson vertex. This choice must satisfy these key properties of gauge invariance and multiplicative renormalisability. In this thesis we develop the constraints, in the case of massless unquenched QED, that have to be fulfilled to ensure that both the fermion and photon propagators are multiplicatively renormalisable-at least as far as leading and subleading logarithms are concerned. To this end, the Schwinger-Dyson equations are solved perturbatively for the fermion and photon wave-function renormalisations. We then deduce the conditions imposed by multiplicative renormalisability for these renormalisation functions. As a last step we compare the two results coming from the solution of the Schwinger-Dyson equations and multiplicative renormalisability in order to derive the necessary constraints on the vertex function. These constitute the main results of this part of the thesis. In the weak coupling limit the solution of the Schwinger-Dyson equations must agree with perturbation theory. Consequently, we can find additional constraints on the 3- point vertex by perturbative calculation. Hence, the one loop vertex in QED is then calculated in arbitrary covariant gauges as an analytic function of its momenta. The vertex is decomposed into a longitudinal part, that is fully responsible for ensuring the Ward and Ward-Takahashi identities are satisfied, and a transverse part. The transverse part is decomposed into 8 independent components each being separately free of kinematic singularities in any covariant gauge in a basis that modifies that proposed by Ball and Chiu. Analytic expressions for all 11 components of the O(a) vertex are given explicitly in terms of elementary functions and one Spence function. These results greatly simplify in particular kinematic regimes. These are the new results of the second part of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Troost, Jan. "Strings, links between conformal field theory, gauge theory and gravity." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00410720.

Full text
Abstract:
La théorie de cordes unifie de façon naturelle les théories de jauge, qui décrivent les interactions entre les particules élémentaires, avec une théorie quantique de la gravitation. Ces dernières années ont apporté de grands progrès dans la compréhension des états non-perturbatifs de la théorie, ses aspects holographiques, ainsi que la construction de modèles proches du Modèle Standard. Néanmoins, il reste des défis pour la théorie de cordes, qui incluent une définition non-perturbative, une meilleure compréhension de l'holographie, et le problème de la constante cosmologique. Ma recherche s'est concentrée sur des aspects formels des théories de gravitation quantique, qui incluent les trous noirs, la dépendance du temps, et l'holographie. Gr^ace à de nouveaux résultats dans le domaine de la théorie conforme avec spectre continu, mes collaborateurs et moi-m^eme avons avancé dans la compréhension de l'holographie dans des fonds avec dilaton linéaire, ainsi que dans le plongement de théories de jauge supersymétriques dans la théorie de cordes. En particulier, on a étudié des théories conformes supersymétriques avec spectre continu que l'on utilise pour construire des fonds de théories de cordes non-compacts et courbés. Les résultats obtenus nous ont permis de décrire des exemples explicites de symétrie miroir pour des fonds non-compacts. En introduisant des bords dans les théories conformes, on a analysé des états non-perturbatifs de la théorie de cordes, les D-branes. A basse énergie, les degrés de liberté sur les D-branes interagissent par des interactions de jauge. Avec ces outils, on a réussi à plonger une dualité infrarouge de théorie de jauge supersymétrique dans la théorie de cordes, et on a montré que la dualité correspond à une monodromie pour les états de bord dans l'espace de modules de la théorie conforme.

Dans cette thèse, on discute de nombreux autres liens entre la théorie conforme, la théorie de jauge et la gravitation. La plupart des contributions décrites étaient motivées par la théorie de cordes. Des exemples sont l'analyse d'états qui préservent la supersymétrie et leur lien avec les algèbres affines, la dépendance du temps et le dictionnaire holographique, l'analyse directe de la quantification de la gravité en présence d'un trou noir, la réalisation du scenario sans-bord pour la fonction d'onde de l'univers en théorie de cordes, une formule de Verlinde pour les théories conformes non-rationnelles et la construction de solutions non-géometriques à la supergravité. Dans d'autres travaux, je me suis concentré sur des théories qui quantifient la gravité plus directement, mais qui pourraient avoir moins de succès dans le problème de l'unification des forces en quatre dimensions. Ces théories ont quand-m^eme le potentiel de nous apprendre des aspects communs à toute théorie de gravitation quantique. Par exemple, on a analysé les degrés de liberté responsables de l'entropie d'un trou noir en trois dimensions, et nous avons argumenté sur la difficulté de reconcilier l'invariance modulaire avec l'unitarité en dehors de la théorie de cordes. On a aussi discuté la diffusion de ces trous noirs. D'autres contributions à la théorie de jauge non-commutative, la théorie de jauge supersymétrique, la production de paires dans un espace courbe, et cetera, sont aussi relativement indépendantes du cadre de la théorie de cordes.

Il me semble qu'il reste intéressant d'étudier des questions difficiles sur la théorie de jauge et la gravitation quantique, dans la cadre de la théorie de cordes, et en dehors de ce cadre, et d'^etre guidé par des problèmes ouverts durs qui doivent mener à un progrès concret par incréments ou par sauts.
APA, Harvard, Vancouver, ISO, and other styles
6

Gatti, Antonio. "A gauge invariant flow equation." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burgess, Mark. "Gauge vacua on multiply connected spacetimes." Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rondelli, Andrea. "Functional methods in quantum field theory." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15839/.

Full text
Abstract:
Iniziamo introducendo l'integrazione su manifold di Hilbert, tramite l'approssimazione dello spazio tangente alla varietà. Passiamo poi a descrivere due tecniche per regolarizzare integrali funzionali o di cammino quadratici (che presentano un laplaciano nell'azione): la regolarizzazione e rinormalizzazione tramite zeta function e il cutoff nel tempo proprio. Cerchiamo di confrontare i due diversi risultati (finiti) così ottenuti. Sussessivamente applichiamo l'integrazione funzionale agli integrali di cammino usando il formalismo della quantizzazione in qp-simboli ottenendo così un'ampiezza di probabilità. Infine iniziamo a sviluppare questi argomenti per le teorie di gauge. In particolare ci soffermeremo su vari aspetti geometrici dei campi di gauge, quali la connessione e la curvatura (usando il formalismo dei fibrati). In ultimo introduciamo l'integrazione funzionale per le teorie di gauge.
APA, Harvard, Vancouver, ISO, and other styles
9

Flachi, Antonino. "Quantum field theory on brane backgrounds." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clark, Adam Benjamin. "Applications of conformal perturbation theory to novel geometries in the gauge/gravity correspondence /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum field theory][Gauge theory"

1

Zeidler, Eberhard. Quantum Field Theory III: Gauge Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22421-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faddeev, L. D. Gauge fields, introduction to quantum theory. 2nd ed. Reading, Mass: Addison-Wesley Pub., Advanced Book Program, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peskin, Michael Edward. An introduction to quantum field theory. Reading, Mass: Addison-Wesley Pub. Co., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Quantum field theory: A modern introduction. New York: Oxford University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Conformal field theory with gauge symmetry. Providence, R.I: American Mathematical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Finite temperature field theory. Singapore: World Scientific, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pokorski, Stefan. Gauge field theories. Cambridge: Cambridge University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

author, Mertens Tom, and Veken, Frederik F. Van der, author, eds. Wilson lines in quantum field theory. Berlin: De Gruyter, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Relativistic quantum mechanics and field theory. New York: Wiley, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sengupta, Ambar. Gauge theory on compact surfaces. Providence, R.I: American Mathematical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum field theory][Gauge theory"

1

Folland, Gerald. "Gauge field theories." In Quantum Field Theory, 291–315. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/149/09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Narlikar, Jayant V., and T. Padmanabhan. "Quantum Field Theory." In Gravity, Gauge Theories and Quantum Cosmology, 64–106. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4508-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stora, Raymond. "Semi Classical Aspects of Gauge Theories." In Quantum Field Theory, 192–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44482-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lüscher, M., and P. Weisz. "On-shell Improved Lattice Gauge Theories." In Quantum Field Theory, 59–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70307-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manoukian, Edouard B. "Abelian Gauge Theories." In Quantum Field Theory I, 223–368. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30939-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

van Suijlekom, Walter D. "Renormalization of Gauge Fields using Hopf Algebras." In Quantum Field Theory, 137–54. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-7643-8736-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balaban, T. "Constructive Gauge Theory II." In Constructive Quantum Field Theory II, 55–68. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5838-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manoukian, Edouard B. "Non-Abelian Gauge Theories." In Quantum Field Theory I, 369–511. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30939-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rejzner, Kasia. "Gauge Theories." In Perturbative Algebraic Quantum Field Theory, 137–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25901-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boulatov, Dimitri. "3D Gravity and Gauge Theories." In Quantum Field Theory and String Theory, 39–57. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1819-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum field theory][Gauge theory"

1

Lechner, Kurt. "A Quantum field theory of dyons." In Quantum aspects of gauge theories, supersymmetry and unification. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.004.0030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brower, Richard C., David Berenstein, and Hiroki Kawai. "Lattice Gauge Theory for a Quantum Computer." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schröder, York. "3-loop coupling for hot gauge theory." In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.303.0048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van der schaar, Jan-pieter. "P-branes and the field theory limit." In Quantum aspects of gauge theories, supersymmetry and unification. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.004.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Catterall, Simon, Judah Unmuth Yockey, and Muhammad Asaduzzaman. "Lattice Gauge Theory and Two Dimensional Quantum Gravity." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kißler, Henry. "On the gauge dependence of Quantum Electrodynamics." In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.303.0032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stryker, Jesse, and Indrakshi Raychowdhury. "Tailoring Non-Abelian Gauge Theory for Digital Quantum Simulation." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Slavnov, Andrei. "Quantum theory of nonabelian gauge fields beyond perturbation theory." In From quarks and gluons to hadronic matter: A bridge too far? Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.193.0041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Catterall, Simon. "Gauge-gravity duality -- super Yang-Mills quantum mechanics." In The XXV International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Magnea, Lorenzo. "Progress on the infrared structure of multi-particle gauge theory amplitudes." In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.211.0073.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum field theory][Gauge theory"

1

Schraml, Stefan L. Non-Abelian gauge theory on q-Quantum spaces. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/803865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jaffe, Arthur M. "Quantum Field Theory and QCD". Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/891184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Caldi, D. G. Studies in quantum field theory. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10165764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bern, Z. Continuum regularization of quantum field theory. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/7104107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carena, Marcella, and et al. QIS for Applied Quantum Field Theory. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1606412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hirshfeld, Allen. Deformation Quantization in Quantum Mechanics and Quantum Field Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-11-41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rammsdonk, Mark van. Quantum Hall Physics Equals Noncommutive Field Theory. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/787180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alford, Mark G., Carl M. Bender, Claude W. Bernard, James H. Buckley, Francesc Ferrer, Henric S. Krawczynski, and Michael C. Ogilvie. Studies in Quantum Field Theory and Astroparticle Physics. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1135921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goldin, Gerald A., and David H. Sharp. Diffeomorphism Group Representations in Relativistic Quantum Field Theory. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manes, J. L. Anomalies in quantum field theory and differential geometry. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/6982663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography