Academic literature on the topic 'Quantum Field Theory in curved space-time'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Field Theory in curved space-time.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum Field Theory in curved space-time"
Keller, Ole, and Lee M. Hively. "Electrodynamics in curved space-time: Free-space longitudinal wave propagation." Physics Essays 32, no. 3 (September 11, 2019): 282–91. http://dx.doi.org/10.4006/0836-1398-32.3.282.
Full textFolacci, A. "Quantum field theory ofp‐forms in curved space‐time." Journal of Mathematical Physics 32, no. 10 (October 1991): 2813–27. http://dx.doi.org/10.1063/1.529072.
Full textAudretsch, J�rgen. "Optical theorem in curved space-time quantum field theory." International Journal of Theoretical Physics 28, no. 9 (September 1989): 957–66. http://dx.doi.org/10.1007/bf00670341.
Full textKALINOWSKI, M. W., and W. PIECHOCKI. "GEOMETRIC QUANTIZATION OF FIELD THEORY ON CURVED SPACE–TIME." International Journal of Modern Physics A 14, no. 07 (March 20, 1999): 1087–110. http://dx.doi.org/10.1142/s0217751x99000543.
Full textLaciana, Carlos E. "Quantum field theory in curved space-time as thermo field dynamics." General Relativity and Gravitation 26, no. 4 (April 1994): 363–78. http://dx.doi.org/10.1007/bf02105227.
Full textBREVIK, IVER H., HERNÁN OCAMPO, and SERGEI ODINTSOV. "ε-EXPANSION IN QUANTUM FIELD THEORY IN CURVED SPACE–TIME." International Journal of Modern Physics A 13, no. 16 (June 30, 1998): 2857–74. http://dx.doi.org/10.1142/s0217751x98001451.
Full textIpek, Selman, Mohammad Abedi, and Ariel Caticha. "Entropic dynamics: reconstructing quantum field theory in curved space-time." Classical and Quantum Gravity 36, no. 20 (September 27, 2019): 205013. http://dx.doi.org/10.1088/1361-6382/ab436c.
Full textGass, Richard, and Max Dresden. "Puzzling Aspect of Quantum Field Theory in Curved Space-Time." Physical Review Letters 54, no. 21 (May 27, 1985): 2281–84. http://dx.doi.org/10.1103/physrevlett.54.2281.
Full textGass, Richard, and Max Dresden. "Puzzling Aspect of Quantum Field Theory in Curved Space-Time." Physical Review Letters 56, no. 12 (March 24, 1986): 1316. http://dx.doi.org/10.1103/physrevlett.56.1316.
Full textHOLLANDS, STEFAN, and ROBERT M. WALD. "QUANTUM FIELD THEORY IN CURVED SPACE–TIME, THE OPERATOR PRODUCT EXPANSION, AND DARK ENERGY." International Journal of Modern Physics D 17, no. 13n14 (December 2008): 2607–15. http://dx.doi.org/10.1142/s021827180801414x.
Full textDissertations / Theses on the topic "Quantum Field Theory in curved space-time"
Stanley, Ross James. "Quantum propagation and initial value problems in curved space." Thesis, Swansea University, 2012. https://cronfa.swan.ac.uk/Record/cronfa42356.
Full textCant, John Fraser. "Particle detectors in the theory of quantum fields on curved spacetimes." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28635.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Walker, W. R. "Particle and energy creation in curved space ?quantum field theory." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354407.
Full textHuish, Gary John. "Renormalization of interacting quantum field theory in three dimensional curved space." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240852.
Full textDang, Nguyen Viet. "Renormalization of quantum field theory on curved space-times, a causal approach." Paris 7, 2013. http://www.theses.fr/2013PA077188.
Full textThe subject of the thesis is the construction of a perturbative quantum theory of interacting fields on a curved space-time, following a point of view pioneered by Stueckelberg and Bogoliubov and developed by Epstein-Glaser on the flat Minkowski space-time. In 2000 a breakthrough was done by Brunetti and Fredenhagen who were able to extend the Epstein-Glaser theory by exploiting the point of view developed by Radzikowski to define quantum states on a curved space-time in terms of wave-front sets. These results were further extended by Fredenhagen, Brunetti, Hollands, Wald, Rejzner, etc. To Yang-Mills fields and the gravitation. However, even for theories without gauge invariance, many mathematical details were left unexplored and unquestioned. The task of Viet was precisely to derive fully rigorously this theory in the case there is no gauge invariance. In my work, I propose a complete review of the result, solving numerous questions, adding many new results around this program and, eventually, giving more precise details on the counterterms and ambiguities in the renormalization process, and a deeper understanding of the geometry of the wave front set of the n-point functions. All this thesis uses various mathematical techniques: differential and pseudo Riemannian geometry, microlocal analysis and the symplectic geometry of wavefront sets, functional analysis, fine results from the theory of distributions, Hopf algebras, etc
Uhlemann, Christoph Frank [Verfasser], and Thorsten [Akademischer Betreuer] Ohl. "Holographic Description of Curved-Space Quantum Field Theory and Gravity / Christoph Frank Uhlemann. Betreuer: Thorsten Ohl." Würzburg : Universitätsbibliothek der Universität Würzburg, 2012. http://d-nb.info/1029426376/34.
Full textVassura, Edoardo. "Path integrals on curved space and the worldline formalism." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13448/.
Full textSousa, Mikael Souto Maior de. "Flutuações quânticas fermiônicas induzidas por um tubo magnético no espaço-tempo de uma corda cósmica." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9501.
Full textMade available in DSpace on 2017-09-12T12:08:23Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3631858 bytes, checksum: 8e326a8bf5b797bf3b1919d031583614 (MD5) Previous issue date: 2017-07-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a, (ii) a magnetic field proportional to 1/r and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze vacuum expected values (VEVs) of the current density, jP, fermionic condensate (FC) e and the VEV of the fermionic energy-momentum tensor, Ti". In order to do that, we explicitly construct the complete set of normalized wave-functions for each configuration of magnetic field. We show that in the region outside the tube, the current density, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: the first ones correspond to the zero-thickness magnetic flux contributions, and the seconds are induced by the non-trivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal, obeys the conservation condition and its trace is expressed in terms of the fermionic condensate.
Nesta Tese, consideramos urn campo fermiônico massivo e carregado no espaço-tempo de uma corda cósmica ideal na presença de um campo magnético confinado em um tubo cilindrico de raio finito a. Levamos em conta três configurações para o campo magnético: (i) uma casca cilindrica de raio a, (ii) um campo magnetico proporcional a 1/r e (iii) urn campo magnetico constante. Nos três casos, o eixo de simetria da corda cósmica coincide corn o eixo de simetria do tubo cilindrico de campo magnetico, dispostos ao longo do eixo z. Nossos principais objetivos nesta Tese sao analisar os valores esperados no yam° (VEV) da densidade de corrente, ji", do condensado fermionico (FC) e o VEV do tensor energia-momento (TEM), Ti". Para isto, construfmos urn conjunto completo de fungoes de onda de Dirac normalizadas para cada configuragao de campo magnetic° e mostramos que na regiao fora do tubo, a densidade de corrente, o CF e o VEV do TEM sao decompostos como a soma de duas partes. A primeira corresponde a contribuigao da linha de fluxo magnetic° que corre ao longo da corda cOsmica ideal, e a segunda contribuigao é induzida devido a estrutura nao trivial de campo magnetic°. Mostramos tambem que o VEV do tensor energia-momento é diagonal, obedece a condigao de conservagao e que seu trago é expresso ern termos do condensado fermionico.
Kotecha, Vinay. "Solitons on lattices and curved space-time." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3845/.
Full textCavalcante, Everton. "Aspectos geométricos da molécula de fulereno em referenciais não-inerciais." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9557.
Full textMade available in DSpace on 2017-09-18T14:40:44Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5994670 bytes, checksum: 2dd7a3577c0cc6ee44dd8eb7435dfaaf (MD5) Previous issue date: 2015-02-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this thesis we study the dynamics of charge carriers, and the electronic properties, of the C60 fullerene molecule. Characterizing it by a geometric bias. In inertial reference systems and when we have your material under rotation content. Initially we discussed the scientific advent of carbon allotropes, and the importance of modelling its derivates at low energies. We show that at low energies, the graphene - the two-dimensional carbon allotrope form - can be described for a non-massive theory of free fermions. At a second moment, we extended the nonmassive free fermions theory for the C60 molecule. Assuming the hexagonal graphene network can be entered in fullerene when we introduce topological defects. A brief study of topological defects in condensed matter was done. And soon after, we made a description these defects via a non-Euclidean geometry. Showing how the charge carriers in the network see the defects like gauge fields. Then we began to expose the results of this thesis. First we assume the fullerene by a two-dimensional spherical metric with defects, containing a fictitious t’Hooft-Polyakov monopole in its center. TheC60 is still subjected to the action of an Aharonov-Bohm flux arising of a magnetic wire running through its poles. So we get the spectrum, and the prediction of a persistent current in the molecule. Finally we return to the analysis of the molecule, now with your content of matter under rotation. For this, we studied a metric Gödel-type with spherical symmetry. We discussed the problem of causality and obtain the spectrum and the persistent current in terms of the vorticity (W) of spacetime.
Nesta tese estudamos a dinâmica de portadores de carga, e as propriedades eletrônicas, na molécula de fulerenoC60. Caracterizando-a por um viés geométrico. Tanto em sistemas de referência inercial, como quando temos seu conteúdo de matéria sob rotação. Inicialmente abordamos o advento científico das formas alotrópicas do carbono e a importância da modelagem a baixas energias dos seus derivados. Onde mostramos que no limite de baixas energias, o grafeno - que trata-se da forma alótropica bidimensional do carbono - pode ser descrito por uma teoria de férmions livres sem massa. Num segundo momento estendemos a teoria de férmions não massivos para a molécula de C60. Assumindo que a rede hexagonal do grafeno pode inscrever o C60 ao introduzirmos alguns defeitos topológicos. Um breve estudo sobre os defeitos topológicos na matéria condensada foi feito. Onde, logo em seguida, partimos para uma descrição de tais defeitos via uma geometria não-euclidiana. Mostrando como os portadores de carga no meio enxergam os defeitos como campos de gauge. Em seguida começamos a expor os resultados desta tese. Primeiramente assumimos tratar o fulereno por uma métrica de uma esfera bidimensional com defeitos, e contendo um monopolo de t’Hooft-Polyakov fictício em seu centro. O C60 é ainda submetido a ação de um fluxo de Aharonov-Bohm advindo de uma corda magnética quiral transpassando seus polos. Obtemos assim o espectro e a predição de uma corrente persistente na molécula. Por fim retomamos a análise da molécula, agora com seu conteúdo de matéria sob rotação. Para isso assumimos tratar o fulereno por uma métrica do tipo Gödel com simetria esférica. Discutimos o problema da causalidade e obtemos espectro e corrente persistente em termos da vorticidade (W) do espaço-tempo.
Books on the topic "Quantum Field Theory in curved space-time"
NATO Advanced Research Workshop on Quantum Mechanics in Curved Space-Time (1989 Erice, Italy). Quantum mechanics in curved space-time. New York: Plenum Press, 1990.
Find full textAspects of quantum field theory in curved space-time. Cambridge: Cambridge University Press, 1989.
Find full textQuantum field theory on curved spacetimes: Concepts and mathematical foundations. Dordrecht: Springer, 2009.
Find full textParker, Leonard Emanuel. Quantum field theory in curved spacetime: Quantized fields and gravity. Cambridge: Cambridge University Press, 2009.
Find full textBuchbinder, I. L. Renormalization group approach to quantum field theory in curved space-time. Bologna: Editrice Compositori, 1989.
Find full textWald, Robert M. Quantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press, 1994.
Find full textQuantum field theory in curved spacetime and black hole thermodynamics. Chicago: University of Chicago Press, 1994.
Find full textTocaci, Emil. Field theory, space and energy. București: Editura Științifică și Enciclopedică, 1986.
Find full textAuyang, Sunny Y. How is quantum field theory possible? New York: Oxford University Press, 1995.
Find full textBook chapters on the topic "Quantum Field Theory in curved space-time"
Reyes Lega, Andrés F. "Quantum Field Theory in Curved Space-Time." In Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, 197–220. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65427-0_5.
Full textLüst, Dieter, and Ward Vleeshouwers. "Quantum Field Theory in Curved Space-Time Backgrounds." In SpringerBriefs in Physics, 55–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10919-6_15.
Full textSmith, Alexander R. H. "Quantum Field Theory on Curved Spacetimes." In Detectors, Reference Frames, and Time, 9–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11000-0_2.
Full textAudretsch, Jürgen. "Mutually interacting quantum fields in curved space-times." In Field Theory, Quantum Gravity and Strings II, 68–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17925-9_30.
Full textFradkin, E. S. "Quantum Field Theory for Dynamical Systems with Curved Phase Space." In String Gravity and Physics at the Planck Energy Scale, 521. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0237-4_23.
Full textBain, Jonathan. "Relativity and Quantum Field Theory." In Space, Time, and Spacetime, 129–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13538-5_5.
Full textFinster, Felix. "From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives." In Quantum Field Theory, 235–59. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-7643-8736-5_14.
Full textEpstein, Henri. "Remarks on the Anti-de Sitter Space-Time." In Rigorous Quantum Field Theory, 79–93. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7434-1_7.
Full textRoberts, J. E. "The Cohomology and Homology of Quantum Field Theory." In Quantum Fields and Quantum Space Time, 357–68. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1801-7_17.
Full textNamsrai, Khavtgain. "Electromagnetic Interactions in Stochastic Space-Time." In Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics, 104–33. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4518-0_3.
Full textConference papers on the topic "Quantum Field Theory in curved space-time"
Camp, Paul J., and John L. Safko. "ON THE NATURE OF THE TRANSITION IN QUANTUM FIELD THEORY FROM FLAT TO CURVED SPACE-TIME." In Proceedings of the International Conference on Fundamental Aspects of Quantum Theory — to Celebrate 30 Years of the Aharonov-Bohm-Effect. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439251_0023.
Full textBODMANN, B. E. J., S. MITTMANN DOS SANTOS, and TH A. J. Maris. "ON NON-ZERO MASS SOLUTIONS IN MASSLESS QUANTUM FIELD THEORY WITH CURVED MOMENTUM SPACE." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811653_0055.
Full textKamath, Gopinath. "A calculation of the zeta-function in a quantum field theory in curved space." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0496.
Full textKrekora, P., Q. Su, and R. Grobe. "Space-time resolved quantum field theory." In Frontiers in Optics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/fio.2004.ftuh3.
Full textYau, Hou-Ying. "Emerged quantum field of a deterministic system with vibrations in space and time." In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773175.
Full textGazeau, Jean Pierre. "An Introduction to Quantum Field Theory in de Sitter space-time." In COSMOLOGY AND GRAVITATION: XIIth Brazilian School of Cosmololy and Gravitation. AIP, 2007. http://dx.doi.org/10.1063/1.2752481.
Full textChaichian, M. "Quantum field theory on noncommutative space-time and its implication on spin-statistics theorem." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337731.
Full textChang, H., M. R. Wang, J. Wei, and Z. Wei. "Development of a High-Performance Fluid Infrared Temperature Measurement System." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86647.
Full textGuimarães, Antonio, Diego Aranha, and Edson Borin. "Secure and efficient software implementation of QC-MDPC code-based cryptography." In XX Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/wscad_estendido.2019.8710.
Full textPandey, Vijitashwa. "Quantum Mechanical Perspectives in Reliability Engineering and System Design." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98028.
Full textReports on the topic "Quantum Field Theory in curved space-time"
Boulware, D. G. Quantum field theory in spaces with closed time-like curves. [Gott space]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6872973.
Full textBoulware, D. G. Quantum field theory in spaces with closed time-like curves. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10140432.
Full text