To see the other types of publications on this topic, follow the link: Quantum Hall regime.

Journal articles on the topic 'Quantum Hall regime'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum Hall regime.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Asano, Kenichi, and Tsuneya Ando. "Photoluminescence in quantum Hall regime:." Physica B: Condensed Matter 249-251 (June 1998): 549–52. http://dx.doi.org/10.1016/s0921-4526(98)00183-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BUHMANN, HARTMUT. "SPIN HALL EFFECTS IN HgTe QUANTUM WELL STRUCTURES." International Journal of Modern Physics B 23, no. 12n13 (2009): 2551–55. http://dx.doi.org/10.1142/s0217979209061974.

Full text
Abstract:
Due to a strong spin orbit interaction HgTe quantum well structures exhibit an unusual subband structure ordering which leads to some remarkable transport properties depending on the actual carrier density. Especially for quantum wells with an inverted band structure ordering, a strong Rashba-type spin orbit splitting gives rise to a strong spin Hall effect in the metallic regime and in the bulk insulating regime spin polarized edge channel transport leads to the formation of the quantum spin Hall effect. Gated quantum well structures have been used to explore these, the metallic and insulatin
APA, Harvard, Vancouver, ISO, and other styles
3

He, Mengyun, Yu Huang, Huimin Sun, et al. "Quantum anomalous Hall interferometer." Journal of Applied Physics 133, no. 8 (2023): 084401. http://dx.doi.org/10.1063/5.0140086.

Full text
Abstract:
Electronic interferometries in integer and fractional quantum Hall regimes have unfolded the coherence, correlation, and statistical properties of interfering constituents. This is addressed by investigating the roles played by the Aharonov–Bohm effect and Coulomb interactions on the oscillations of transmission/reflection. Here, we construct magnetic interferometers using Cr-doped (Bi,Sb)2Te3 films and demonstrate the electronic interferometry using chiral edge states in the quantum anomalous Hall regime. By controlling the extent of edge coupling and the amount of threading magnetic flux, di
APA, Harvard, Vancouver, ISO, and other styles
4

Suzuki, Kenji, and Yoshiyuki Ono. "Orbital Magnetization in Quantum Hall Regime." Journal of the Physical Society of Japan 66, no. 11 (1997): 3536–42. http://dx.doi.org/10.1143/jpsj.66.3536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amet, F., C. T. Ke, I. V. Borzenets, et al. "Supercurrent in the quantum Hall regime." Science 352, no. 6288 (2016): 966–69. http://dx.doi.org/10.1126/science.aad6203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kramer, Bernhard, Stefan Kettemann, and Tomi Ohtsuki. "Localization in the quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 20, no. 1-2 (2003): 172–87. http://dx.doi.org/10.1016/j.physe.2003.09.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aoki, Hideo. "Localisation in the quantum hall regime." Surface Science 196, no. 1-3 (1988): 107–19. http://dx.doi.org/10.1016/0039-6028(88)90672-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pruisken, A. M. M. "Delocalization in the quantum Hall regime." Physics Reports 184, no. 2-4 (1989): 213–17. http://dx.doi.org/10.1016/0370-1573(89)90040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shikin, V. B. "Inhomogeneous Hall-geometry sample in the quantum Hall regime." Journal of Experimental and Theoretical Physics Letters 73, no. 5 (2001): 246–49. http://dx.doi.org/10.1134/1.1371063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ISHIKAWA, K., T. AOYAMA, Y. ISHIZUKA, and N. MAEDA. "FIELD THEORY OF ANISOTROPIC QUANTUM HALL GAS: METROLOGY AND A NOVEL QUANTUM HALL REGIME." International Journal of Modern Physics B 17, no. 27 (2003): 4765–818. http://dx.doi.org/10.1142/s0217979203023112.

Full text
Abstract:
The von Neumann lattice representation is a convenient representation for studying several intriguing physics of quantum Hall systems. In this formalism, electrons are mapped to lattice fermions. A topological invariant expression of the Hall conductance is derived and is used for the proof of the integer quantum Hall effect in the realistic situation. Anisotropic quantum Hall gas is investigated based on the Hartree–Fock approximation in the same formalism. Thermodynamic properties, transport properties, and unusual response under external modulations are found. Implications for the integer q
APA, Harvard, Vancouver, ISO, and other styles
11

Nicopoulos, V. Nikos, and S. A. Trugman. "Complex quantum dynamics in the integer quantum Hall regime." Physical Review B 45, no. 19 (1992): 11004–15. http://dx.doi.org/10.1103/physrevb.45.11004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kinaret, Jari M. "A quantum dot in the fractional quantum Hall regime." Physica B: Condensed Matter 189, no. 1-4 (1993): 142–46. http://dx.doi.org/10.1016/0921-4526(93)90155-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aoki, Hideo. "Double quantum dots in the fractional quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 1, no. 1-4 (1997): 198–203. http://dx.doi.org/10.1016/s1386-9477(97)00043-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kasner, Marcus. "Electronic correlation in the quantum Hall regime." Annalen der Physik 514, no. 3 (2002): 175–252. http://dx.doi.org/10.1002/andp.20025140301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MacDonald, A. H., E. H. Rezayi, and David Keller. "Photoluminescence in the fractional quantum Hall regime." Physical Review Letters 68, no. 12 (1992): 1939–42. http://dx.doi.org/10.1103/physrevlett.68.1939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Schüller, C., K. B. Broocks, P. Schröter, et al. "Charged Excitons in the Quantum Hall Regime." Acta Physica Polonica A 106, no. 3 (2004): 341–53. http://dx.doi.org/10.12693/aphyspola.106.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MacDonald, A. H. "Spin Bottlenecks in the Quantum Hall Regime." Physical Review Letters 83, no. 16 (1999): 3262–65. http://dx.doi.org/10.1103/physrevlett.83.3262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fromer, N. A., C. Schüller, D. S. Chemla, et al. "Electronic Dephasing in the Quantum Hall Regime." Physical Review Letters 83, no. 22 (1999): 4646–49. http://dx.doi.org/10.1103/physrevlett.83.4646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Okulov, V. I., E. A. Pamyatnykh, and A. T. Lonchakov. "Thermodynamic anomalous Hall effect: The quantum regime." Low Temperature Physics 40, no. 11 (2014): 1032–34. http://dx.doi.org/10.1063/1.4901991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Main, P. C., A. K. Geim, H. A. Carmona, et al. "Resistance fluctuations in the quantum Hall regime." Physical Review B 50, no. 7 (1994): 4450–55. http://dx.doi.org/10.1103/physrevb.50.4450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jain, J. K. "Composite Fermions in the Quantum Hall Regime." Science 266, no. 5188 (1994): 1199–202. http://dx.doi.org/10.1126/science.266.5188.1199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Russell, P. A., F. F. Ouali, N. P. Hewett, and L. J. Challis. "Power dissipation in the quantum Hall regime." Surface Science 229, no. 1-3 (1990): 54–56. http://dx.doi.org/10.1016/0039-6028(90)90831-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zheng, H. Z., K. K. Choi, D. C. Tsui, and G. Weimann. "Size effect in the quantum Hall regime." Surface Science Letters 170, no. 1-2 (1986): A229. http://dx.doi.org/10.1016/0167-2584(86)90553-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nielsen, Hans. "Magnetoresistance oscillations in the quantum Hall regime." Physica B: Condensed Matter 175, no. 1-3 (1991): 231–34. http://dx.doi.org/10.1016/0921-4526(91)90718-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bhatt, R. N., and Wan Xin. "Mesoscopic effects in the quantum Hall regime." Pramana 58, no. 2 (2002): 271–83. http://dx.doi.org/10.1007/s12043-002-0013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ma, M., and A. Yu Zyuzin. "Josephson Effect in the Quantum Hall Regime." Europhysics Letters (EPL) 21, no. 9 (1993): 941–45. http://dx.doi.org/10.1209/0295-5075/21/9/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zheng, H. Z., K. K. Choi, D. C. Tsui, and G. Weimann. "Size effect in the quantum Hall regime." Surface Science 170, no. 1-2 (1986): 209–13. http://dx.doi.org/10.1016/0039-6028(86)90963-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yusa, G., H. Shtrikman, and I. Bar-Joseph. "Photoluminescence in the fractional quantum Hall regime." Physica E: Low-dimensional Systems and Nanostructures 12, no. 1-4 (2002): 49–54. http://dx.doi.org/10.1016/s1386-9477(01)00259-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ando, Tsuneya. "Local Current Distribution in Quantum Hall Regime." Journal of the Physical Society of Japan 58, no. 10 (1989): 3711–17. http://dx.doi.org/10.1143/jpsj.58.3711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nurmikko, Arto, and Aron Pinczuk. "Optical Probes in the Quantum Hall Regime." Physics Today 46, no. 6 (1993): 24–32. http://dx.doi.org/10.1063/1.881352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Grunwald, A., and J. Hajdu. "Thermoelectric effects in the quantum Hall regime." Solid State Communications 63, no. 4 (1987): 289–92. http://dx.doi.org/10.1016/0038-1098(87)90910-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Łydżba, Patrycja, and Janusz Jacak. "Identifying Particle Correlations in Quantum Hall Regime." Annalen der Physik 530, no. 3 (2017): 1700221. http://dx.doi.org/10.1002/andp.201700221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Page, D. A., and E. Brown. "Nonadiabatic Effects in the Quantum Hall Regime." Annals of Physics 223, no. 1 (1993): 75–128. http://dx.doi.org/10.1006/aphy.1993.1027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kasner, Marcus. "Electronic correlation in the quantum Hall regime." Annalen der Physik 11, no. 3 (2002): 175–252. http://dx.doi.org/10.1002/1521-3889(200203)11:3<175::aid-andp175>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, Yu, Yu Fu, Peng Zhang, Kang L. Wang, and Qing Lin He. "Inducing superconductivity in quantum anomalous Hall regime." Journal of Physics: Condensed Matter 36, no. 37 (2024): 37LT01. http://dx.doi.org/10.1088/1361-648x/ad550a.

Full text
Abstract:
Abstract Interfacing the quantum anomalous Hall insulator with a conventional superconductor is known to be a promising manner for realizing a topological superconductor, which has been continuously pursued for years. Such a proximity route depends to a great extent on the control of the delicate interfacial coupling of the two constituents. However, a recent experiment reported the failure to reproduce such a topological superconductor, which is ascribed to the negligence of the electrical short by the superconductor in the theoretical proposal. Here, we reproduce this topological superconduc
APA, Harvard, Vancouver, ISO, and other styles
36

CHENAUD, B., C. CHAUBET, B. JOUAULT, et al. "ARE AHARONOV–BOHM EFFECT AND QUANTIZED HALL REGIME COMPATIBLE?" International Journal of Nanoscience 02, no. 06 (2003): 535–41. http://dx.doi.org/10.1142/s0219581x03001656.

Full text
Abstract:
We present calculations of the quantum oscillations appearing in the transmission of a mesoscopic GaAs / GaAlAs ring isolated by quantum point contacts. We show that the device acts as an electronic Fabry–Perot spectrometer in the quantum Hall effect regime, and discuss the effect of the coherence length of edge states.
APA, Harvard, Vancouver, ISO, and other styles
37

GIESBERS, A. J. M., U. ZEITLER, J. C. MAAN, D. REUTER, and A. D. WIECK. "AHARONOV-BOHM EFFECT IN THE QUANTUM HALL REGIME." International Journal of Modern Physics B 21, no. 08n09 (2007): 1404–8. http://dx.doi.org/10.1142/s0217979207042902.

Full text
Abstract:
We have fabricated quantum rings in a GaAs/GaAlAs heterostructure 2DEG by local anodic oxidation with an atomic force microscope. In low magnetic fields we observe Aharonov-Bohm oscillations with a period of 60 mT corresponding to an effective ring diameter of 300 nm. In the high field regime, between filling factors ν = 2/3 and ν = 3, we observe Aharonov-Bohm oscillations of quantum Hall edge channels with a surprisingly large period, Δ B = 163 mT , corresponding to an edge channel around the inner diameter of the ring.
APA, Harvard, Vancouver, ISO, and other styles
38

PELED, E., D. SHAHAR, Y. CHEN, E. DIEZ, D. L. SIVCO, and A. Y. CHO. "QUANTUM HALL TRANSITIONS IN MESOSCOPIC SAMPLES." International Journal of Modern Physics B 18, no. 27n29 (2004): 3575–80. http://dx.doi.org/10.1142/s0217979204027049.

Full text
Abstract:
We present an experimental study of four-terminal resistance fluctuations of mesoscopic samples in the quantum Hall regime. We show that in the vicinity of integer quantum Hall transitions there exist two kinds of correlations between the longitudinal and Hall resistances of the samples, one on either side of the transition region.
APA, Harvard, Vancouver, ISO, and other styles
39

GRANGER, GHISLAIN, J. P. EISENSTEIN, and J. L. RENO. "EDGE HEAT TRANSPORT IN THE QUANTUM HALL REGIME." International Journal of Modern Physics B 23, no. 12n13 (2009): 2616–17. http://dx.doi.org/10.1142/s0217979209062074.

Full text
Abstract:
We investigate the transport of heat in the integer quantized Hall regime. We make use of quantum point contacts (QPC's) positioned along the edge of a large quantum Hall droplet to both locally heat and locally detect temperature rises at the edge of the droplet. The detection scheme is thermoelectric, in essence identical to one introduced by Molenkamp, et al.1 in the early 1990's for heat transport experiments at zero magnetic field. At zero magnetic field we find that heat moves away from the heater QPC more or less isotropically. As expected from the Mott formula, we find a close connecti
APA, Harvard, Vancouver, ISO, and other styles
40

Maasilta, I. J., and V. J. Goldman. "Energetics of quantum antidot states in the quantum Hall regime." Physical Review B 57, no. 8 (1998): R4273—R4276. http://dx.doi.org/10.1103/physrevb.57.r4273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huber, M., M. Grayson, M. Rother, et al. "Tunneling in the quantum Hall regime between orthogonal quantum wells." Physica E: Low-dimensional Systems and Nanostructures 12, no. 1-4 (2002): 125–28. http://dx.doi.org/10.1016/s1386-9477(01)00283-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pashitskii, E. A. "New quantum states in the fractional quantum Hall effect regime." Low Temperature Physics 31, no. 2 (2005): 171–78. http://dx.doi.org/10.1063/1.1867312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kettemann, Stefan. "Persistent Hall voltage and current in the fractional quantum Hall regime." Physical Review B 55, no. 4 (1997): 2512–22. http://dx.doi.org/10.1103/physrevb.55.2512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

GOLDMAN, V. J., J. K. JAIN, and M. SHAYEGAN. "TRANSITIONS BETWEEN FRACTIONAL QUANTUM HALL STATES." Modern Physics Letters B 05, no. 07 (1991): 479–90. http://dx.doi.org/10.1142/s0217984991000563.

Full text
Abstract:
We have studied transitions between adjacent incompressible states by measuring the positions of the longitudinal resistance peaks in the fractional quantum Hall regime and comparing results with the theoretical predictions. We have found that the peak positions agree well with those predicted by theory in which quantum effects are crucial to the existence of extended states.
APA, Harvard, Vancouver, ISO, and other styles
45

Vankov, A. B. "The Migdal jump under the quantum Hall regime." Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, no. 2 (2024): 190–95. http://dx.doi.org/10.31857/s0367676524020048.

Full text
Abstract:
In two-dimensional electron systems at large values of the Wigner-Seits parameter rs and in the quantum Hall effect mode, the distribution function of particles over Landau levels was calculated. It turned out that at small filling factors, the tail of the distribution function and the magnitude of the Migdal jump are qualitatively different from the case of a Fermi liquid in a zero magnetic field. Due to the presence of the cyclotron energy gap, the Fermi-liquid distortion of the distribution function is significantly suppressed.
APA, Harvard, Vancouver, ISO, and other styles
46

Polyakov, D. G., and B. I. Shklovskii. "Conductivity-peak broadening in the quantum Hall regime." Physical Review B 48, no. 15 (1993): 11167–75. http://dx.doi.org/10.1103/physrevb.48.11167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Knüppel, Patrick, Sylvain Ravets, Martin Kroner, Stefan Fält, Werner Wegscheider, and Atac Imamoglu. "Nonlinear optics in the fractional quantum Hall regime." Nature 572, no. 7767 (2019): 91–94. http://dx.doi.org/10.1038/s41586-019-1356-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hohls, F., U. Zeitler, and R. J. Haug. "High Frequency Conductivity in the Quantum Hall Regime." Physical Review Letters 86, no. 22 (2001): 5124–27. http://dx.doi.org/10.1103/physrevlett.86.5124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pruisken, A. M. M., and M. A. Baranov. "Cracking Coulomb Interactions in the Quantum Hall Regime." Europhysics Letters (EPL) 31, no. 9 (1995): 543–48. http://dx.doi.org/10.1209/0295-5075/31/9/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

de C. Chamon, C., and X. G. Wen. "Resonant tunneling in the fractional quantum Hall regime." Physical Review Letters 70, no. 17 (1993): 2605–8. http://dx.doi.org/10.1103/physrevlett.70.2605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!