Academic literature on the topic 'Quantum machine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum machine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum machine"
Chiara, Maria Luisa Dalla, Roberto Giuntini, Giuseppe Sergioli, and Roberto Leporini. "Abstract quantum computing machines and quantum computational logics." International Journal of Quantum Information 14, no. 04 (June 2016): 1640019. http://dx.doi.org/10.1142/s0219749916400190.
Full textShaik, Riyaaz Uddien, Aiswarya Unni, and Weiping Zeng. "Quantum Based Pseudo-Labelling for Hyperspectral Imagery: A Simple and Efficient Semi-Supervised Learning Method for Machine Learning Classifiers." Remote Sensing 14, no. 22 (November 16, 2022): 5774. http://dx.doi.org/10.3390/rs14225774.
Full textTARASOV, VASILY E. "QUANTUM NANOTECHNOLOGY." International Journal of Nanoscience 08, no. 04n05 (August 2009): 337–44. http://dx.doi.org/10.1142/s0219581x09005517.
Full textPeleshenko, Vitaly A. "QUANTUM MACHINE LEARNING." SOFT MEASUREMENTS AND COMPUTING 11, no. 60 (2022): 82–107. http://dx.doi.org/10.36871/2618-9976.2022.11.008.
Full textYU, YANG, and LIU YE. "PROPOSAL FOR A GENERAL QUANTUM CLONING MACHINE VIA DISTANT QUBITS IN A QUANTUM NETWORK." International Journal of Modern Physics B 27, no. 23 (August 21, 2013): 1350154. http://dx.doi.org/10.1142/s0217979213501543.
Full textCASTAGNOLI, GIUSEPPE. "QUANTUM STEADY COMPUTATION." International Journal of Modern Physics B 05, no. 13 (August 10, 1991): 2253–69. http://dx.doi.org/10.1142/s0217979291000870.
Full textBiamonte, Jacob, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. "Quantum machine learning." Nature 549, no. 7671 (September 2017): 195–202. http://dx.doi.org/10.1038/nature23474.
Full textAcampora, Giovanni. "Quantum machine intelligence." Quantum Machine Intelligence 1, no. 1-2 (May 15, 2019): 1–3. http://dx.doi.org/10.1007/s42484-019-00006-5.
Full textAllcock, Jonathan, and Shengyu Zhang. "Quantum machine learning." National Science Review 6, no. 1 (November 30, 2018): 26–28. http://dx.doi.org/10.1093/nsr/nwy149.
Full textMolina, Abel, and John Watrous. "Revisiting the simulation of quantum Turing machines by quantum circuits." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2226 (June 2019): 20180767. http://dx.doi.org/10.1098/rspa.2018.0767.
Full textDissertations / Theses on the topic "Quantum machine"
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Full textLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Müller, Markus. "Quantum Kolmogorov complexity and the quantum turing machine." [S.l.] : [s.n.], 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1655.
Full textDe, Bonis Gianluca. "Rassegna su Quantum Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.
Full textVicente, Nieto Irene. "Towards Machine Translation with Quantum Computers." Thesis, Stockholms universitet, Fysikum, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-196602.
Full textDu, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.
Full textTACCHINO, FRANCESCO. "Digital quantum simulations and machine learning on near-term quantum processors." Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1317093.
Full textQuantum mechanics is the gateway towards novel and potentially disruptive approaches to scientific and technical computing. In this thesis we explore, from a number of different perspectives, the effects of such strong relationship between the physical nature of information and the informational side of physical processes, with a focus on the digital quantum computing paradigm. After an extensive introduction to the theory of universal quantum simulation techniques, we review the main achievements in the field and, in parallel, we outline the state of the art of near-term architectures for quantum information processing. We then move on to present novel and scalable procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum processors. Through an innovative combination of quantum algorithms with classical post-processing and error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-spin dynamical correlation functions, reporting experimental results obtained on superconducting cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproducing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron scattering, a common tool employed in the analysis of molecular magnetic clusters. The central part of the thesis is dedicated to the exploration of perspective hardware solutions for quantum computing. As it is not yet clear whether the currently dominant platforms, namely trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-fledged architecture for general-purpose quantum information processing, the search for alternative technologies is at least as urgent as the improvement of existing ones or the development of new algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we introduce quantum electromechanics as a promising candidate platform for future realizations of digital quantum simulators and we predict competitive performances for an elementary building block featuring nanomechanical qubits integrated within superconducting circuitry. In the final part, we extend the reach of quantum information protocols beyond its traditional areas of application, and we account for the birth and rapid development of Quantum Machine Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions brought about by quantum computing and artificial intelligence. In particular, we describe an original procedure for implementing, on a quantum architecture, the behavior of binary-valued artificial neurons. Formally exact and platform-independent, our data encoding and processing scheme guarantees in principle an exponential memory advantage over classical counterparts and is particularly well suited for pattern and image recognition purposes. We test our algorithm on IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the largest quantum neural network computation reported to date on real quantum hardware.
Sjöstrand, Joachim. "Engineering superconducting qubits : towards a quantum machine." Doctoral thesis, Stockholm University, Department of Physics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-818.
Full textA quantum computer is an information processing machine, much like an ordinary classical computer, but its function is based on quantum mechanical principles. To be able to construct such a machine would be a fantastic accomplishment---to have total control over a quantum system is a dream for both physicists and science-fiction enthusiasts. The basic information unit in a quantum computer is the quantum bit, or qubit for short. A quantum computer consists of many coupled qubits. To get a single qubit to work properly, would be a major step towards building this machine.
Here we study two different qubit ideas. The central element in both setups is the superconducting tunnel junction---the Josephson junction. By connecting the Josephson junctions to standard electronics in a clever way, a qubit can be realised. With these constructions it is in principle very easy to manipulate and read out the quantum probabilities, by varying voltages and currents in time. However, this ease of manipulation has a cost: strong interactions with uncontrolled degrees of freedom of the environment transfer information from the qubit. For superconducting qubits this decoherence is typically very fast.
There are ways to deal with the decoherence. One way is to tune the circuit parameters so that the decoherence becomes minimal. Another way is to engineer the qubits so fast so that the effect of decoherence becomes small. In this thesis, we will apply both these strategies. Specifically, the measurement speed of the second qubit we study, turns out to be very sensitive to the topology of the phase space of the detector variables.
Sjöstrand, Joachim. "Engineering superconducting qubits : towards a quantum machine /." Stockholm : Department of Physics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-818.
Full textMacaluso, Antonio <1990>. "A Novel Framework for Quantum Machine Learning." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9791/2/Antonio_Macaluso_tesi.pdf.
Full textOrazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Full textBooks on the topic "Quantum machine"
Pattanayak, Santanu. Quantum Machine Learning with Python. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2.
Full textSchuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4.
Full textSchütt, Kristof T., Stefan Chmiela, O. Anatole von Lilienfeld, Alexandre Tkatchenko, Koji Tsuda, and Klaus-Robert Müller, eds. Machine Learning Meets Quantum Physics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40245-7.
Full textGanguly, Santanu. Quantum Machine Learning: An Applied Approach. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7098-1.
Full textPastorello, Davide. Concise Guide to Quantum Machine Learning. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6897-6.
Full textOdaibo, Stephen G. Quantum mechanics and the MRI machine. Arlington, VA, U.S.A: Symmetry Seed Books, 2012.
Find full text1958-, Shen A., and Vyalyi M. N. 1961-, eds. Classical and quantum computation. Providence, R.I: American Mathematical Society, 2002.
Find full textKitaev, A. Yu. Classical and quantum computation. Providence, R.I: American Mathematical Society, 2002.
Find full text1958-, Shen A., and Vyalyi M. N. 1961-, eds. Classical and quantum computation. Providence, R.I: American Mathematical Society, 2002.
Find full textVos, Alexis de. Reversible computing: Fundamentals, quantum computing, and applications. Weinheim: Wiley-VCH, 2010.
Find full textBook chapters on the topic "Quantum machine"
Pattanayak, Santanu. "Quantum Machine Learning." In Quantum Machine Learning with Python, 221–79. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6522-2_5.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining, 1–10. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_913-1.
Full textSchuld, Maria, and Francesco Petruccione. "Quantum Machine Learning." In Encyclopedia of Machine Learning and Data Mining, 1034–43. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_913.
Full textSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 21–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_2.
Full textSchuld, Maria, and Francesco Petruccione. "Machine Learning." In Quantum Science and Technology, 23–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83098-4_2.
Full textMoret-Bonillo, Vicente. "Feynman’s Quantum Computer Machine." In Adventures in Computer Science, 119–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64807-1_6.
Full textNeumann, Niels M. P., and Robert S. Wezeman. "Distributed Quantum Machine Learning." In Innovations for Community Services, 281–93. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06668-9_20.
Full textLeider, Avery, Gio Abou Jaoude, Abigail E. Strobel, and Pauline Mosley. "Quantum Machine Learning Classifier." In Lecture Notes in Networks and Systems, 459–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98012-2_34.
Full textTandon, Prateek, Stanley Lam, Ben Shih, Tanay Mehta, Alex Mitev, and Zhiyang Ong. "Machine Learning Mechanisms for Quantum Robotics." In Quantum Robotics, 47–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-02520-4_5.
Full textPastorello, Davide. "Quantum Classification." In Concise Guide to Quantum Machine Learning, 69–87. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6897-6_7.
Full textConference papers on the topic "Quantum machine"
AHARONOV, YAKIR, Jeeva ANANDAN, and Lev VAIDMAN. "QUANTUM TIME MACHINE." In Proceedings of the International Conference on Fundamental Aspects of Quantum Theory — to Celebrate 30 Years of the Aharonov-Bohm-Effect. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439251_0029.
Full textKudyshev, Zhaxylyk, Simeon Bogdanov, Theodor Isacsson, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev. "Machine Learning Assisted Quantum Photonics." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qm6b.3.
Full textIsberg, Thomas A., and G. Michael Morris. "Invariant Pattern Recognition Using Quantum-Limited Images." In Machine Vision. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/mv.1987.thc3.
Full textNguyen, Tuyen, Incheon Paik, Hiroyuki Sagawa, and Truong Cong Thang. "Quantum Machine Learning with Quantum Image Representations." In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00142.
Full textQuiroga, David, Prasanna Date, and Raphael Pooser. "Discriminating Quantum States with Quantum Machine Learning." In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00088.
Full textQuiroga, David, Prasanna Date, and Raphael Pooser. "Discriminating Quantum States with Quantum Machine Learning." In 2021 International Conference on Rebooting Computing (ICRC). IEEE, 2021. http://dx.doi.org/10.1109/icrc53822.2021.00018.
Full textMalov, Dmitrii. "Quantum Algebraic Machine Learning." In 2020 IEEE 10th International Conference on Intelligent Systems (IS). IEEE, 2020. http://dx.doi.org/10.1109/is48319.2020.9199982.
Full textPerrier, Elija. "Quantum Fair Machine Learning." In AIES '21: AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3461702.3462611.
Full textYong Liu, Junjie Wu, and Xun Yi. "Quantum Boson-Sampling Machine." In The 2015 11th International Conference on Natural Computation. IEEE, 2015. http://dx.doi.org/10.1109/icnc.2015.7378023.
Full textSatuluri, V. K. R. Rajeswari, and Vijayakumar Ponnusamy. "Quantum-Enhanced Machine Learning." In 2021 Smart Technologies, Communication and Robotics (STCR). IEEE, 2021. http://dx.doi.org/10.1109/stcr51658.2021.9589016.
Full textReports on the topic "Quantum machine"
Zahorodk, Pavlo V., Yevhenii O. Modlo, Olga O. Kalinichenko, Tetiana V. Selivanova, and Serhiy O. Semerikov. Quantum enhanced machine learning: An overview. CEUR Workshop Proceedings, March 2021. http://dx.doi.org/10.31812/123456789/4357.
Full textTretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.
Full textLiu, Minzhao, Ge Dong, Kyle Felker, Matthew Otten, Prasanna Balaprakash, William Tang, and Yuri Alexeev. Exploration of Quantum Machine Learning and AI Accelerators for Fusion Science. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1840522.
Full textBillari, Francesco C., Johannes Fürnkranz, and Alexia Prskawetz. Timing, sequencing and quantum of life course events: a machine learning approach. Rostock: Max Planck Institute for Demographic Research, October 2000. http://dx.doi.org/10.4054/mpidr-wp-2000-010.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Full textTamulis, Arvydas, and Jelena Tamuliene. Ab Initio Quantum Chemical Design of Single Supermolecule Photoactive Machines and Molecular Logical Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada388289.
Full textKirchhoff, Helmut, and Ziv Reich. Protection of the photosynthetic apparatus during desiccation in resurrection plants. United States Department of Agriculture, February 2014. http://dx.doi.org/10.32747/2014.7699861.bard.
Full textLockheed Martin Quantum Machine Learning. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1826570.
Full text