Academic literature on the topic 'Quantum Machine Learning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Machine Learning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Quantum Machine Learning"

1

Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.

Full text
Abstract:
Research at the intersection of machine learning (ML) and quantum physics is a recent growing field due to the enormous expectations and the success of both fields. ML is arguably one of the most promising technologies that has and will continue to disrupt many aspects of our lives. The way we do research is almost certainly no exception and ML, with its unprecedented ability to find hidden patterns in data, will be assisting future scientific discoveries. Quantum physics on the other side, even though it is sometimes not entirely intuitive, is one of the most successful physical theories and we are on the verge of adopting some quantum technologies in our daily life. Quantum many-body physics is a subfield of quantum physics where we study the collective behavior of particles or atoms and the emergence of phenomena that are due to this collective behavior, such as phases of matter. The study of phase transitions of these systems often requires some intuition of how we can quantify the order parameter of a phase. ML algorithms can imitate something similar to intuition by inferring knowledge from example data. They can, therefore, discover patterns that are invisible to the human eye, which makes them excellent candidates to study phase transitions. At the same time, quantum devices are known to be able to perform some computational task exponentially faster than classical computers and they are able to produce data patterns that are hard to simulate on classical computers. Therefore, there is the hope that ML algorithms run on quantum devices show an advantage over their classical analog. This thesis is devoted to study two different paths along the front lines of ML and quantum physics. On one side, we study the use of neural networks (NN) to classify phases of mater in many-body quantum systems. On the other side, we study ML algorithms that run on quantum computers. The connection between ML for quantum physics and quantum physics for ML in this thesis is an emerging subfield in ML, the interpretability of learning algorithms. A crucial ingredient in the study of phase transitions with NNs is a better understanding of the predictions of the NN, to eventually infer a model of the quantum system and interpretability can assist us in this endeavor. The interpretability method that we study analyzes the influence of the training points on a test prediction and it depends on the curvature of the NN loss landscape. This further inspired an in-depth study of the loss of quantum machine learning (QML) applications which we as well will discuss. In this thesis, we give answers to the questions of how we can leverage NNs to classify phases of matter and we use a method that allows to do domain adaptation to transfer the learned "intuition" from systems without noise onto systems with noise. To map the phase diagram of quantum many-body systems in a fully unsupervised manner, we study a method known from anomaly detection that allows us to reduce the human input to a mini mum. We will as well use interpretability methods to study NNs that are trained to distinguish phases of matter to understand if the NNs are learning something similar to an order parameter and if their way of learning can be made more accessible to humans. And finally, inspired by the interpretability of classical NNs, we develop tools to study the loss landscapes of variational quantum circuits to identify possible differences between classical and quantum ML algorithms that might be leveraged for a quantum advantage.<br>La investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
APA, Harvard, Vancouver, ISO, and other styles
2

De, Bonis Gianluca. "Rassegna su Quantum Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.

Full text
Abstract:
Il Quantum Computing (QC) e il Machine Learning (ML) sono due dei settori più promettenti dell’informatica al giorno d’oggi. Il primo riguarda l’utilizzo di proprietà fisiche di sistemi quantistici per realizzare computazioni, mentre il secondo algoritmi di apprendimento automatizzati capaci di riconoscere pattern nei dati. In questo elaborato vengono esposti alcuni dei principali algoritmi di Quantum Machine Learning (QML), ovvero versioni quantistiche dei classici algoritmi di ML. Il tutto è strutturato come un’introduzione all’argomento: inizialmente viene introdotto il QC spiegandone le proprietà più rilevanti, successivamente vengono descritti gli algoritmi di QML confrontandoli con le loro controparti classiche e infine vengono discusse le principali tecnologie attuali, mostrando alcune implementazioni degli algoritmi precedentemente discussi.
APA, Harvard, Vancouver, ISO, and other styles
3

Du, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.

Full text
Abstract:
Machine learning (ML) has revolutionized the world in recent years. Despite the success, the huge computational overhead required by ML models makes them approach the limits of Moore’s law. Quantum machine learning (QML) is a promising way to conquer this issue, empowered by Google's demonstration of quantum computational supremacy. Meanwhile, another cornerstone in QML is validating that quantum neural networks (QNNs) implemented on the noisy intermediate-scale quantum (NISQ) chips can accomplish classification and image generation tasks. Despite the experimental progress, little is known about the theoretical advances of QNNs. In this thesis, we explore the power of QNNs to fill this knowledge gap. First, we consider the potential advantages of QNNs in generative learning. We demonstrate that QNNs possess a stronger expressive power than that of classical neural networks in the measure of computational complexity and entanglement entropy. Moreover, we employ QNNs to tackle synthetic generation tasks with state-of-the-art performance. Next, we propose a Grover-search based quantum classifier, which can tackle specific classification tasks with quadratic runtime speedups. Furthermore, we exhibit that the proposed scheme allows batch gradient descent optimization, which is different from previous studies. This property is crucial to train large-scale datasets. Then, we study the capabilities and limitations of QNNs in the view of optimization theory and learning theory. The achieved results imply that a large system noise can destroy the trainability of QNNs. Meanwhile, we show that QNNs can tackle parity learning and juntas learning with provable advantages. Last, we devise a quantum auto-ML scheme to enhance the trainability QNNs under the NISQ setting. The achieved results indicate that our proposal effectively mitigates system noise and alleviates barren plateaus for both conventional machine learning and quantum chemistry tasks.
APA, Harvard, Vancouver, ISO, and other styles
4

Macaluso, Antonio <1990&gt. "A Novel Framework for Quantum Machine Learning." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9791/2/Antonio_Macaluso_tesi.pdf.

Full text
Abstract:
Quantum computation is an emerging computing paradigm with the potential to revolutionise the world of information technology. It leverages the laws of quantum mechanics to endow quantum machines with tremendous computing power, thus enabling the solution of problems impossible to address with classical devices. For this reason, the field is attracting ever-increasing attention from both academic and private sectors, and its full potential is still to be understood. This dissertation investigates how classical machine learning can benefit from quantum computing and provides several contributions to the emerging field of Quantum Machine Learning. The idea is to provide a universal and efficient framework that can reproduce the output of a plethora of classical machine learning algorithms exploiting quantum computation’s advantages. The proposed framework is named Multiple Aggregator Quantum Algorithm (MAQA) due to its capability to combine multiple functions to solve typical supervised learning tasks. Thanks to this property, in its general formulation MAQA can be potentially adopted as the quantum counterpart of all those models falling into the scheme of aggregation of multiple functions. The theoretical design of the quantum algorithm and the corresponding circuit’s implementation are presented. As a second meaningful addition, two practical applications are illustrated: the quantum version of ensemble methods and neural networks. The final contribution addresses the restriction to linear operations imposed by quantum mechanics. The idea is to exploit a quantum transposition of classical Splines to approximate non-linear functions, thus overcoming this limitation and introducing significant advantages in terms of computational complexity theory.
APA, Harvard, Vancouver, ISO, and other styles
5

Rodriguez, Fernandez Carlos Gustavo. "Machine learning quantum error correction codes : learning the toric code /." São Paulo, 2018. http://hdl.handle.net/11449/180319.

Full text
Abstract:
Orientador: Mario Leandro Aolita<br>Banca:Alexandre Reily Rocha<br>Banca: Juan Felipe Carrasquilla<br>Resumo: Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.<br>Abstract: We use supervised learning methods to study the error decoding in toric codes ofdifferent sizes. We study multiple error models, and obtain figures of the decoding efficacyas a function of the single qubit error rate. We also comment on how the size of thedecoding neural networks and their training time scales with the size of the toric code<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
6

TACCHINO, FRANCESCO. "Digital quantum simulations and machine learning on near-term quantum processors." Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1317093.

Full text
Abstract:
Quantum mechanics is the gateway towards novel and potentially disruptive approaches to scientific and technical computing. In this thesis we explore, from a number of different perspectives, the effects of such strong relationship between the physical nature of information and the informational side of physical processes, with a focus on the digital quantum computing paradigm. After an extensive introduction to the theory of universal quantum simulation techniques, we review the main achievements in the field and, in parallel, we outline the state of the art of near-term architectures for quantum information processing. We then move on to present novel and scalable procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum processors. Through an innovative combination of quantum algorithms with classical post-processing and error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-spin dynamical correlation functions, reporting experimental results obtained on superconducting cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproducing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron scattering, a common tool employed in the analysis of molecular magnetic clusters. The central part of the thesis is dedicated to the exploration of perspective hardware solutions for quantum computing. As it is not yet clear whether the currently dominant platforms, namely trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-fledged architecture for general-purpose quantum information processing, the search for alternative technologies is at least as urgent as the improvement of existing ones or the development of new algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we introduce quantum electromechanics as a promising candidate platform for future realizations of digital quantum simulators and we predict competitive performances for an elementary building block featuring nanomechanical qubits integrated within superconducting circuitry. In the final part, we extend the reach of quantum information protocols beyond its traditional areas of application, and we account for the birth and rapid development of Quantum Machine Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions brought about by quantum computing and artificial intelligence. In particular, we describe an original procedure for implementing, on a quantum architecture, the behavior of binary-valued artificial neurons. Formally exact and platform-independent, our data encoding and processing scheme guarantees in principle an exponential memory advantage over classical counterparts and is particularly well suited for pattern and image recognition purposes. We test our algorithm on IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the largest quantum neural network computation reported to date on real quantum hardware.<br>Quantum mechanics is the gateway towards novel and potentially disruptive approaches to scientific and technical computing. In this thesis we explore, from a number of different perspectives, the effects of such strong relationship between the physical nature of information and the informational side of physical processes, with a focus on the digital quantum computing paradigm. After an extensive introduction to the theory of universal quantum simulation techniques, we review the main achievements in the field and, in parallel, we outline the state of the art of near-term architectures for quantum information processing. We then move on to present novel and scalable procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum processors. Through an innovative combination of quantum algorithms with classical post-processing and error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-spin dynamical correlation functions, reporting experimental results obtained on superconducting cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproducing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron scattering, a common tool employed in the analysis of molecular magnetic clusters. The central part of the thesis is dedicated to the exploration of perspective hardware solutions for quantum computing. As it is not yet clear whether the currently dominant platforms, namely trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-fledged architecture for general-purpose quantum information processing, the search for alternative technologies is at least as urgent as the improvement of existing ones or the development of new algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we introduce quantum electromechanics as a promising candidate platform for future realizations of digital quantum simulators and we predict competitive performances for an elementary building block featuring nanomechanical qubits integrated within superconducting circuitry. In the final part, we extend the reach of quantum information protocols beyond its traditional areas of application, and we account for the birth and rapid development of Quantum Machine Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions brought about by quantum computing and artificial intelligence. In particular, we describe an original procedure for implementing, on a quantum architecture, the behavior of binary-valued artificial neurons. Formally exact and platform-independent, our data encoding and processing scheme guarantees in principle an exponential memory advantage over classical counterparts and is particularly well suited for pattern and image recognition purposes. We test our algorithm on IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the largest quantum neural network computation reported to date on real quantum hardware.
APA, Harvard, Vancouver, ISO, and other styles
7

Lukac, Martin. "Quantum Inductive Learning and Quantum Logic Synthesis." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/2319.

Full text
Abstract:
Since Quantum Computer is almost realizable on large scale and Quantum Technology is one of the main solutions to the Moore Limit, Quantum Logic Synthesis (QLS) has become a required theory and tool for designing Quantum Logic Circuits. However, despite its growth, there is no any unified aproach to QLS as Quantum Computing is still being discovered and novel applications are being identified. The intent of this study is to experimentally explore principles of Quantum Logic Synthesis and its applications to Inductive Machine Learning. Based on algorithmic approach, I first design a Genetic Algorithm for Quantum Logic Synthesis that is used to prove and verify the methods proposed in this work. Based on results obtained from the evolutionary experimentation, I propose a fast, structure and cost based exhaustive search that is used for the design of a novel, least expensive universal family of quantum gates. The results form both the evolutionary and heuristic search are used to formulate an Inductive Learning Approach based on Quantum Logic Synthesis with the intended application being the humanoid behavioral robotics. The presented approach illustrates a successful algorithmic approach, where the search algorithm was able to invent/discover novel quantum circuits as well as novel principles in Quantum Logic Synthesis.
APA, Harvard, Vancouver, ISO, and other styles
8

Orazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.

Full text
Abstract:
Human society has always been shaped by its technology, so much that even ages and parts of our history are often named after the discoveries of that time. The growth of modern society is largely derived from the introduction of classical computers that brought us innovations like repeated tasks automatization and long-distance communication. However, this explosive technological advancement could be subjected to a heavy stop when computers reach physical limitations and the empirical law known as Moore Law comes to an end. Foreshadowing these limits and hoping for an even more powerful technology, forty years ago the branch of quantum computation was born. Quantum computation uses at its advantage the same quantum effects that could stop the progress of traditional computation and aim to deliver hardware and software capable of even greater computational power. In this context, this thesis presents the implementation of a quantum variational machine learning algorithm called quantum single-layer perceptron. We start by briefly explaining the foundation of quantum computing and machine learning, to later dive into the theoretical approach of the multiple aggregator quantum algorithms, and finally deliver a versatile implementation of the quantum counterparts of a single hidden layer perceptron. To conclude we train the model to perform binary classification using standard benchmark datasets, alongside three baseline quantum machine learning models taken from the literature. We then perform tests on both simulated quantum hardware and real devices to compare the performances of the various models.
APA, Harvard, Vancouver, ISO, and other styles
9

Cangini, Nicolò. "Quantum Supervised Learning: Algoritmi e implementazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17694/.

Full text
Abstract:
Il Quantum Computing non riguarda più soltanto la scienza della Fisica, negli ultimi anni infatti la ricerca in questo campo ha subito una notevole espansione dimostrando l'enorme potenziale di cui dispongono questi nuovi calcolatori che in un futuro prossimo potranno rivoluzionare il concetto di Computer Science così come lo conosciamo. Ad oggi, siamo già in grado di realizzare algoritmi su piccola scala eseguibili in un quantum device grazie ai quali è possibile sperimentare uno speed-up notevole (in alcuni casi esponenziale) su diversi task tipici della computazione classica. In questo elaborato vengono discusse le basi del Quantum Computing, con un focus particolare sulla possibilità di eseguire alcuni algoritmi supervisionati di Machine Learning in un quantum device per ottenere uno speed-up sostanziale nella fase di training. Oltre che una impostazione teorica del problema, vengono effettuati diversi esperimenti utilizzando le funzionalità dell'ambiente Qiskit, grazie al quale è possibile sia simulare il comportamento di un computer quantistico in un calcolatore classico, sia eseguirlo in cloud sui computer messi a disposizione da IBM.
APA, Harvard, Vancouver, ISO, and other styles
10

Felefly, Tony. "Quantum-classical machine learning for brain tumor imaging analysis." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ064.

Full text
Abstract:
La caractérisation des tumeurs cérébrales par des techniques non invasives est nécéssaire. L'objectif est d'utiliser l'apprentissage automatique et la technologie quantique sur des imageries pour caractériser les tumeurs cérébrales. Nous développons un Réseau Neuronal Quantique en utilisant la radiomique des IRM cérébrales pour différencier métastases et gliomes de haut grade. Nous sélectionnons les variables en se basant sur l'information mutuelle et nous utilisons D-Wave pour la solution. Nous entraînons le modèle sur un Simulateur Quantique. Nous utilisons les valeurs de Shapley pour expliquer les prédictions. Nous comparons les résultats á deux modèles classiques performants, DNN et XGB. Le modèle montre une performance comparable. Ensuite, nous développons un Réseau Neuronal Convolutif 3D en utilisant des TDM cérébrales non injectées pour identifier les patients ayant des métastases cérébrales. Nous avons construit deux cohortes de patients, une avec des métastases cérébrales, et une sans anomalies cérébrales. Le cerveau a été segmenté automatiquement. Nous entraînons plusieurs modèles, et le meilleur a montré une bonne performance<br>Brain tumor characterization using non-invasive techniques is eagerly needed. The objective of this thesis is to use advanced machine learning techniques and quantum technology on brain medical images to characterize brain tumors. First, we built a Quantum Neural Network using radiomic features from on brain MRI to differentiate between metastases and gliomas. We used a Mutual Information feature selection technique, and solved the resulting heuristic on D-Wave’s Quantum Annealer. We trained the model on a Quantum Simulator. We employed instance-wise Shapley values to explain the model predictions. We benchmarked the results against two state-of-the-art classical models, Dense Neural Network and Extreme Gradient Boosting. The model showed comparable performance.Second, we developed a 3D Convolutional Neural Network using non-enhanced brain CT scans to identify patients with brain metastases. For this purpose, we curated two cohorts of patients, one with brain metastases, and one without brain abnormalities. The brain was automatically segmented. We trained several versions of the model, and the best model showed an impressive performance
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!