Dissertations / Theses on the topic 'Quantum machine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Quantum machine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Full textLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Müller, Markus. "Quantum Kolmogorov complexity and the quantum turing machine." [S.l.] : [s.n.], 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1655.
Full textDe, Bonis Gianluca. "Rassegna su Quantum Machine Learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.
Full textVicente, Nieto Irene. "Towards Machine Translation with Quantum Computers." Thesis, Stockholms universitet, Fysikum, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-196602.
Full textDu, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.
Full textTACCHINO, FRANCESCO. "Digital quantum simulations and machine learning on near-term quantum processors." Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1317093.
Full textQuantum mechanics is the gateway towards novel and potentially disruptive approaches to scientific and technical computing. In this thesis we explore, from a number of different perspectives, the effects of such strong relationship between the physical nature of information and the informational side of physical processes, with a focus on the digital quantum computing paradigm. After an extensive introduction to the theory of universal quantum simulation techniques, we review the main achievements in the field and, in parallel, we outline the state of the art of near-term architectures for quantum information processing. We then move on to present novel and scalable procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum processors. Through an innovative combination of quantum algorithms with classical post-processing and error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-spin dynamical correlation functions, reporting experimental results obtained on superconducting cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproducing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron scattering, a common tool employed in the analysis of molecular magnetic clusters. The central part of the thesis is dedicated to the exploration of perspective hardware solutions for quantum computing. As it is not yet clear whether the currently dominant platforms, namely trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-fledged architecture for general-purpose quantum information processing, the search for alternative technologies is at least as urgent as the improvement of existing ones or the development of new algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we introduce quantum electromechanics as a promising candidate platform for future realizations of digital quantum simulators and we predict competitive performances for an elementary building block featuring nanomechanical qubits integrated within superconducting circuitry. In the final part, we extend the reach of quantum information protocols beyond its traditional areas of application, and we account for the birth and rapid development of Quantum Machine Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions brought about by quantum computing and artificial intelligence. In particular, we describe an original procedure for implementing, on a quantum architecture, the behavior of binary-valued artificial neurons. Formally exact and platform-independent, our data encoding and processing scheme guarantees in principle an exponential memory advantage over classical counterparts and is particularly well suited for pattern and image recognition purposes. We test our algorithm on IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the largest quantum neural network computation reported to date on real quantum hardware.
Sjöstrand, Joachim. "Engineering superconducting qubits : towards a quantum machine." Doctoral thesis, Stockholm University, Department of Physics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-818.
Full textA quantum computer is an information processing machine, much like an ordinary classical computer, but its function is based on quantum mechanical principles. To be able to construct such a machine would be a fantastic accomplishment---to have total control over a quantum system is a dream for both physicists and science-fiction enthusiasts. The basic information unit in a quantum computer is the quantum bit, or qubit for short. A quantum computer consists of many coupled qubits. To get a single qubit to work properly, would be a major step towards building this machine.
Here we study two different qubit ideas. The central element in both setups is the superconducting tunnel junction---the Josephson junction. By connecting the Josephson junctions to standard electronics in a clever way, a qubit can be realised. With these constructions it is in principle very easy to manipulate and read out the quantum probabilities, by varying voltages and currents in time. However, this ease of manipulation has a cost: strong interactions with uncontrolled degrees of freedom of the environment transfer information from the qubit. For superconducting qubits this decoherence is typically very fast.
There are ways to deal with the decoherence. One way is to tune the circuit parameters so that the decoherence becomes minimal. Another way is to engineer the qubits so fast so that the effect of decoherence becomes small. In this thesis, we will apply both these strategies. Specifically, the measurement speed of the second qubit we study, turns out to be very sensitive to the topology of the phase space of the detector variables.
Sjöstrand, Joachim. "Engineering superconducting qubits : towards a quantum machine /." Stockholm : Department of Physics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-818.
Full textMacaluso, Antonio <1990>. "A Novel Framework for Quantum Machine Learning." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9791/2/Antonio_Macaluso_tesi.pdf.
Full textOrazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Full textLukac, Martin. "Quantum Inductive Learning and Quantum Logic Synthesis." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/2319.
Full textColledan, Andrea. "Abstract Machine Semantics for Quipper." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22835/.
Full textERDMAN, Paolo Andrea. "Quantum Thermal Machines." Doctoral thesis, Scuola Normale Superiore, 2020. http://hdl.handle.net/11384/95512.
Full textCangini, Nicolò. "Quantum Supervised Learning: Algoritmi e implementazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17694/.
Full textGupta, Riddhi Swaroop. "Robotic control and machine learning for the characterization and control of qubits." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23519.
Full textStreed, Erik William. "⁸⁷Rubidium Bose-Einstein condensates : machine construction and quantum Zeno experiments." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34400.
Full textIncludes bibliographical references (p. 121-130).
This thesis details construction of a new apparatus for the production of 87Rb Bose-Einstein condensates and a subsequent quantum Zeno effect experiment. An experimental apparatus for producing large Bose-Einstein condensates of 87Rb is described in detail. A high flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transfered into a cloverleaf style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio frequency induced forced evaporation. Condensates containing up to 20 million atoms can be produced every few minutes. The quantum Zeno effect is the suppression of transitions between quantum states by frequent measurement. Oscillation between two ground hyperfine states of a magnetically trapped 87Rb Bose-Einstein condensate, externally driven at a transition rate WR, was substantially suppressed by destructively measuring one of the levels with resonant optical scattering. While an ideal continuous measurement will stop the transition, any real measurement method will occur at a finite rate. The suppression of the transition rate in the two level system was quantified for pulsed measurements with a time between pulses t and weak continuous measurements with a scattering rate y. We observe that the weak continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when ySt = 3.60(0.43). This is in agreement with the previously predicted value of 4. Increasing the measurement frequency suppressed the transition rate to 0.005WR.
by Erik William Streed.
Ph.D.
Rodriguez, Fernandez Carlos Gustavo. "Machine learning quantum error correction codes : learning the toric code /." São Paulo, 2018. http://hdl.handle.net/11449/180319.
Full textBanca:Alexandre Reily Rocha
Banca: Juan Felipe Carrasquilla
Resumo: Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.
Abstract: We use supervised learning methods to study the error decoding in toric codes ofdifferent sizes. We study multiple error models, and obtain figures of the decoding efficacyas a function of the single qubit error rate. We also comment on how the size of thedecoding neural networks and their training time scales with the size of the toric code
Mestre
Tingley, Michael Alan. "Towards the Quantum Machine: Using Scalable Machine Learning Methods to Predict Photovoltaic Efficacy of Organic Molecules." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12553271.
Full textHarrysson, Patrik. "Memory Cost of Quantum Contextuality." Thesis, Linköpings universitet, Informationskodning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131007.
Full textSriarunothai, Theeraphot [Verfasser]. "Multi-qubit gates and quantum-enhanced deliberation for machine learning using a trapped-ion quantum processor / Theeraphot Sriarunothai." Siegen : Universitätsbibliothek der Universität Siegen, 2019. http://d-nb.info/1177366320/34.
Full textRossini, Davide. "Quantum information processing and Quantum spin systems." Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85856.
Full textMazza, Francesco. "Multi-terminal thermoeletric machines in nanoscale systems." Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/86204.
Full textMills, Matthew. "A multipolar polarisable force field method from quantum chemical topology and machine learning." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/a-multipolar-polarisable-force-field-method-from-quantum-chemical-topology-and-machine-learning(3fb1e55c-0d4c-4d11-932b-71706bdbeb8b).html.
Full textPang, Bo. "Handwriting Chinese character recognition based on quantum particle swarm optimization support vector machine." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950620.
Full textPérez, Salinas Adrián. "Algorithmic strategies for seizing quantum computing." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/673255.
Full textLa computación cuántica es una tecnología emergente con potencial para resolver problemas hoy impracticables. Para ello son necesarios ordenadores capaces de mantener sistemas cuánticos y controlarlos con precisión. Sin embargo, construir estos ordenadores es complejo y a corto plazo solo habrá ordenadores pequeños afectados por el ruido y sujetos a ruido (NISQ). Para aprovechar los ordenadores NISQ se exploran algoritmos que requieran pocos recursos cuánticos mientras proporcionan soluciones aproximadas a los problemas que enfrentan. En esta tesis se estudian dos propuestas para algoritmos NISQ: re-uploading y unary. Cada estrategia busca tomar ventaja de diferentes características de la computación cuántica para superar diferentes obstáculos. Ambas estrategias son generales y aplicables en diversos escenarios. En primer lugar, re-uploading está diseñado como un puente entre la computación cuántica y el aprendizaje automático (Machine Learning). Aunque no es el primer intento de aplicar la cuántica al aprendizaje automático, re-uploading tiene ciertas características que lo distinguen de otros métodos. En concreto, re-uploading consiste en introducir datos en un algoritmo cuántico en diferentes puntos a lo largo del proceso. Junto a los datos se utilizan también parámetros optimizables clásicamente que permiten al circuito aprender cualquier comportamiento. Los resultados mejoran cuantas más veces se introducen los datos. El re-uploading cuenta con teoremas matemáticos que sustentan sus capacidades, y ha sido comprobado con éxito en diferentes situaciones tanto simuladas como experimentales. La segunda estrategia algorítmica es unary. Consiste en describir los problemas utilizando solo parte del espacio de computación disponible dentro del ordenador. Así, las capacidades computacionales del ordenador no son óptimas, pero a cambio las operaciones necesarias para una cierta tarea se simplifican. Los resultados obtenidos son resistentes al ruido, y mantienen su significado, y se produce una compensación entre eficiencia y resistencia a errores. Los ordenadores NISQ se ven beneficiados de esta situación para problemas pequeños. En esta tesis, unary se utiliza para resolver un problema tíıpico de finanzas, incluso obteniendo ventajas cuánticas en un problema aplicable al mundo real. Con esta tesis se espera contribuir al crecimiento de los algoritmos disponibles para ordenadores cuánticos NISQ y allanar el camino para las tecnologías venideras.
Wu, Jiaxin. "Topics in Cold Atoms Related to Quantum Information Processing and A Machine Learning Approach to Condensed Matter Physics." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156320039156199.
Full textEisenhart, Andrew. "Quantum Simulations of Specific Ion Effects in Organic Solvents." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1626356392775228.
Full textMori, Yuto. "Path optimization with neural network for sign problem in quantum field theories." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263466.
Full textZhang, Wei. "Many-Body Localization in Disordered Quantum Spin Chain and Finite-Temperature Gutzwiller Projection in Two-Dimensional Hubbard Model:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108695.
Full textThe transition between many-body localized states and the delocalized thermal states is an eigenstate phase transition at finite energy density outside the scope of conventional quantum statistical mechanics. We apply support vector machine (SVM) to study the phase transition between many-body localized and thermal phases in a disordered quantum Ising chain in a transverse external field. The many-body eigenstate energy E is bounded by a bandwidth W=Eₘₐₓ-Eₘᵢₙ. The transition takes place on a phase diagram spanned by the energy density ϵ=2(Eₘₐₓ-Eₘᵢₙ)/W and the disorder strength ẟJ of the spin interaction uniformly distributed within [-ẟJ, ẟJ], formally parallel to the mobility edge in Anderson localization. In our study we use the labeled probability density of eigenstate wavefunctions belonging to the deeply localized and thermal regimes at two different energy densities (ϵ's) as the training set, i.e., providing labeled data at four corners of the phase diagram. Then we employ the trained SVM to predict the whole phase diagram. The obtained phase boundary qualitatively agrees with previous work using entanglement entropy to characterize these two phases. We further analyze the decision function of the SVM to interpret its physical meaning and find that it is analogous to the inverse participation ratio in configuration space. Our findings demonstrate the ability of the SVM to capture potential quantities that may characterize the many-body localization phase transition. To further investigate the properties of the transition, we study the behavior of the entanglement entropy of a subsystem of size L_A in a system of size L > L_A near the critical regime of the many-body localization transition. The many-body eigenstates are obtained by exact diagonalization of a disordered quantum spin chain under twisted boundary conditions to reduce the finite-size effect. We present a scaling theory based on the assumption that the transition is continuous and use the subsystem size L_A/ξ as the scaling variable, where ξ is the correlation length. We show that this scaling theory provides an effective description of the critical behavior and that the entanglement entropy follows the thermal volume law at the transition point. We extract the critical exponent governing the divergence of ξ upon approaching the transition point. We again study the participation entropy in the spin-basis of the domain wall excitations and show that the transition point and the critical exponent agree with those obtained from finite size scaling of the entanglement entropy. Our findings suggest that the many-body localization transition in this model is continuous and describable as a localization transition in the many-body configuration space. Besides the many-body localization transition driven by disorder, We also study the Coulomb repulsion and temperature driving phase transitions. We apply a finite-temperature Gutzwiller projection to two-dimensional Hubbard model by constructing a "Gutzwiller-type" density matrix operator to approximate the real interacting density matrix, which provides the upper bound of free energy of the system. We firstly investigate half filled Hubbard model without magnetism and obtain the phase diagram. The transition line is of first order at finite temperature, ending at 2 second order points, which shares qualitative agreement with dynamic mean field results. We derive the analytic form of the free energy and therefor the equation of states, which benefits the understanding of the different phases. We later extend our approach to take anti-ferromagnetic order into account. We determine the Neel temperature and explore its interesting behavior when varying the Coulomb repulsion
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Bauer, Carsten [Verfasser], Simon [Gutachter] Trebst, and Achim [Gutachter] Rosch. "Simulating and machine learning quantum criticality in a nearly antiferromagnetic metal / Carsten Bauer ; Gutachter: Simon Trebst, Achim Rosch." Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1228071888/34.
Full textLi, Zhenwei. "On-the-fly machine learning of quantum mechanical forces and its potential applications for large scale molecular dynamics." Thesis, King's College London (University of London), 2014. http://kclpure.kcl.ac.uk/portal/en/theses/onthefly-machine-learning-of-quantum-mechanical-forces-and-its-potential-applications-for-large-scale-molecular-dynamics(2a2f33a6-fa0c-44e3-8689-f4cf3f1c9198).html.
Full textFiderer, Lukas J. [Verfasser], and Daniel [Akademischer Betreuer] Braun. "New Concepts in Quantum Metrology : Dynamics, Machine Learning, and Bounds on Measurement Precision / Lukas J. Fiderer ; Betreuer: Daniel Braun." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1212025334/34.
Full textMaxwell, Peter. "FFLUX : towards a force field based on interacting quantum atoms and kriging." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/fflux-towards-a-force-field-based-on-interacting-quantum-atoms-and-kriging(72a8462a-6907-4f3d-82da-4c182e5a644d).html.
Full textBarbarino, Simone. "Interaction effects in one-dimensional helical liquids." Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/86201.
Full textLinn, Hanna. "Detecting quantum speedup for random walks with artificial neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289347.
Full textSlumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
Österberg, Viktor. "Using Machine Learning to Develop a Quantum-Accurate Inter-Atomic Potential for Large Scale Molecular Dynamics Simulations of Iron under Earth’s Core Conditions." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298848.
Full textMätningar av järns smälttemperatur under påfrestningar jämförbara med desom tros gälla i jordens kärna överensstämmer ej. För att försöka bestämma stabiliteten av relevanta gitter krävs simulationer av enorma mängder partiklar. I denna tes tränas en maskininlärd modell att återge resultat från Täthetsfunktionalteori. Olika maskininlärningsmodeller jämförs. Den tränade modellen används sedan i Molekyldynamik-simulationer av relevanta gitter som är förstora för Täthetsfunktionalteori.
Zauleck, Julius Philipp Paul [Verfasser], and Regina de [Akademischer Betreuer] Vivie-Riedle. "Improving grid based quantum dynamics : from the inclusion of solvents to the utilization of machine learning / Julius Philipp Paul Zauleck ; Betreuer: Regina de Vivie-Riedle." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1151818461/34.
Full textGlasser, Ivan [Verfasser], Ignacio [Akademischer Betreuer] Cirac, Nora [Gutachter] Brambilla, and Ignacio [Gutachter] Cirac. "Tensor networks, conformal fields and machine learning: applications in the description of quantum many-body systems / Ivan Glasser ; Gutachter: Nora Brambilla, Ignacio Cirac ; Betreuer: Ignacio Cirac." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1173899057/34.
Full textPronobis, Wiktor Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] [Müller, Alexandre [Gutachter] Tkatchenko, and Manfred [Gutachter] Opper. "Towards more efficient and performant computations in quantum chemistry with machine learning / Wiktor Pronobis ; Gutachter: Klaus-Robert Müller, Alexandre Tkatchenko, Manfred Opper ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1208764470/34.
Full textPronobis, Wiktor [Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] Müller, Alexandre [Gutachter] Tkatchenko, and Manfred [Gutachter] Opper. "Towards more efficient and performant computations in quantum chemistry with machine learning / Wiktor Pronobis ; Gutachter: Klaus-Robert Müller, Alexandre Tkatchenko, Manfred Opper ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1208764470/34.
Full textFrennessen, Sebastian. "A comparison of peak trunk rotational power and club head speed in elite golf players." Thesis, Högskolan i Halmstad, Bio- och miljösystemforskning (BLESS), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-31039.
Full textGrilo, Alex Bredariol 1987. "Computação quântica e teoria de computação." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275508.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-25T06:09:05Z (GMT). No. of bitstreams: 1 Grilo_AlexBredariol_M.pdf: 1279418 bytes, checksum: 80f0b105ffcfb57f6e43c530b32cb7a9 (MD5) Previous issue date: 2014
Resumo: A Computação Quântica é um tópico relativamente recente e pouco conhecido, principalmente no meio da Computação. Seu estudo surgiu na tentativa de físicos simularem sistemas regidos pela Mecânica Quântica por computadores clássicos, o que se conjecturou inviável. Portanto, um novo modelo computacional que utiliza a estrutura quântica da matéria para computar foi teorizado para suprir estas deficiências. Este trabalho tem como objetivo principal estudar as influências da Computação Quântica na Teoria da Computação. Para atingir tal objetivo, primeiramente são expostos os conhecimentos básicos da Mecânica Quântica através de uma linguagem voltada para Teóricos de Computação sem conhecimento prévio na área, de forma a remover a barreira inicial sobre o tema. Em seguida, serão apresentadas inovações na área da Teoria de Computação oriundas da Computação Quântica. Começaremos com os principais Algoritmos Quânticos desenvolvidos até hoje, que foram os primeiros passos para demonstrar a possível superioridade computacional do novo modelo. Dentre estes algoritmos, apresentaremos o famoso Algoritmo de Shor, que fatora números em tempo polinomial. Adicionalmente, neste trabalho foram estudados tópicos mais avançados e atuais em Computabilidade e Complexidade Quânticas. Sobre Autômatos Quânticos, foram estudados aspectos de um modelo que mistura estados clássicos e quânticos, focando na comparação do poder computacional em relação aos Autômatos Finitos Clássicos. Do ponto de vista de Classes de Complexidade, será abordada a questão se em linguagens da classe QMA, o análogo quântico da classe NP, consegue-se atingir probabilidade de erro nulo na aceitação de instâncias positivas
Abstract: Quantum Computing is a relatively new area and it is not well known, mainly among Computer Scientists. It has emerged while physicists tried to simulate Quantum Systems with classical computers efficiently, which has been conjectured impossible. Then, a new computational model that uses the quantum structure of matter to perform computations has been theorized in order to perform these operations. We intend in this work to study the influences of Quantum Computing in Theoretical Computer Science. In order to achieve this goal, we start by presenting the basics of Quantum Computing to Theoretical Computer Science readers with no previous knowledge in this area, removing any initial barriers for a clean understanding of the topic. We will then follow by showing innovations in Theoretical Computer Science introduced by Quantum Computation. We start by showing the main Quantum Algorithms, that exemplify advantages of the new computational model. Among these algorithms, we will present the Shor Algorithm that factors numbers in polynomial time. We follow with more advanced topics in Quantum Computability and Complexity. We study Quantum Finite Automata Models that work with quantum and classical states, focusing on comparing their computational power with Deterministic Finite Automata. In Complexity Theory, we study the question if for languages in QMA, the quantum analogue of NP, zero probability error can be achieved in yes-instances
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
August, Moritz [Verfasser], Thomas [Akademischer Betreuer] Huckle, José Miguel [Gutachter] Hernández-Lobato, Steffen J. [Gutachter] Glaser, and Thomas [Gutachter] Huckle. "Tensor networks and machine learning for approximating and optimizing functions in quantum physics / Moritz August ; Gutachter: José Miguel Hernández-Lobato, Steffen J. Glaser, Thomas Huckle ; Betreuer: Thomas Huckle." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1175091804/34.
Full textCramer, Claes Richard. "Quantum aspects of time-machines." Thesis, University of York, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265661.
Full textPerea, Ospina Jose Dario [Verfasser], Salvador León [Akademischer Betreuer] Cabanillas, and Christoph J. [Gutachter] Brabec. "Solubility and Miscibility of Organic Semiconductors for Efficient and Stable Organic Solar Cells Investigated via Machine Learning and Quantum Chemistry Methods / Jose Dario Perea Ospina ; Gutachter: Christoph J. Brabec ; Betreuer: Salvador León Cabanillas." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1184575215/34.
Full textFrenzel, Max. "Autonomous machines and clocks in quantum thermodynamics." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/45286.
Full textMalabarba, Artur S. L. "Equilibration and thermal machines in quantum mechanics." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686239.
Full textThéveniaut, Hugo. "Méthodes d'apprentissage automatique et phases quantiques de la matière." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30228.
Full textMy PhD thesis presents three applications of machine learning to condensed matter theory. Firstly, I will explain how the problem of detecting phase transitions can be rephrased as an image classification task, paving the way to the automatic mapping of phase diagrams. I tested the reliability of this approach and showed its limits for models exhibiting a many-body localized phase in 1 and 2 dimensions. Secondly, I will introduce a variational representation of quantum many-body ground-states in the form of neural-networks and show our results on a constrained model of hardcore bosons in 2d using variational and projection methods. In particular, we confirmed the phase diagram obtained independently earlier and extends its validity to larger system sizes. Moreover we also established the ability of neural-network quantum states to approximate accurately solid and liquid bosonic phases of matter. Finally, I will present a new approach to quantum error correction based on the same techniques used to conceive the best Go game engine. We showed that efficient correction strategies can be uncovered with evolutionary optimization algorithms, competitive with gradient-based optimization techniques. In particular, we found that shallow neural-networks are competitive with deep neural-networks
Yang, Jiaying. "Support Vector Machines on Noisy Intermediate-Scale Quantum Computers." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266112.
Full textSupportvektormaskinalgoritmer anses nödvändiga för implementering av automatiseringi radionätet. De är kritiska när det gäller att säkerställa den upplevdaanvändarkvaliteten för strömmad video (quality of user experience) baseradpå enhets- och nätverksnivåmätningar. Kvantsupportvektormaskinsalgoritmen(QSVM) är en kvantanaloga version av den klassiska supportvektormaskinalgoritmen,som använder egenskaperna hos kvantdatorer för att exponentielltsnabba upp algoritmen. Denna avhandling tillhandahåller en implementeringav den QSVM klassificeringssystemet och dess grundläggande komponenter,kvant-Fourier-transform (QFT) och Harrow-Hassidim-Lloyd (HHL) -algoritmerna, med hjälp av open-source kvantmjukvara (SDK), IBMs Qiskitoch Rigettis pyQuil och riktiga kvantdatorer som kan nås via en offentlig molntjänst.Dessutom implementeras QSVM-klassificeringssystemet på en supraledandekvantdator, IBMQX2, som visar potentialen för denna kvantalgoritmatt kunna exekveras på den brusiga medelstora kvantdatorer (NISQ).
Wiedmann, Michael [Verfasser]. "Non-Markovian open quantum dynamics from dissipative few-level systems to quantum thermal machines / Michael Wiedmann." Ulm : Universität Ulm, 2020. http://d-nb.info/1204481180/34.
Full text