Dissertations / Theses on the topic 'Quantum magnetism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Quantum magnetism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Henderson, John. "SPIN QUANTUM DYNAMICS IN MOLECULAR MAGNETS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3535.
Full textPh.D.
Department of Physics
Sciences
Physics PhD
Rezakhanlou, Karen. "Orbital magnetism and quantum chaos /." [S.l.] : [s.n.], 1995. http://library.epfl.ch/theses/?nr=1312.
Full textBrambleby, Jamie. "Quantum magnetism in coordination polymers." Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/111284/.
Full textRadovanovic, Pavle V. "Synthesis, spectroscopy, and magnetism of diluted magnetic semiconductor nanocrystals /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8494.
Full textSteele, Andrew J. "Quantum magnetism probed with muon-spin relaxation." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:030d7e91-f38e-433f-9539-652b0f4996cc.
Full textMorris, Richard. "Studies towards quantum magnonics." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:89784b64-de31-457f-b9b2-54125c862632.
Full textFiore, Mosca Dario. "Quantum magnetism in relativistic osmates from first principles." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17982/.
Full textBühler, Adam [Verfasser]. "Quantum Simulator for Spin-Orbital Magnetism / Adam Bühler." München : Verlag Dr. Hut, 2016. http://d-nb.info/1097818373/34.
Full textHill, Richard John Allan. "Tunnelling into InAs quantum dots." Thesis, University of Nottingham, 2003. http://eprints.nottingham.ac.uk/10002/.
Full textManmana, Salvatore Rosario [Verfasser], and Thomas [Akademischer Betreuer] Pruschke. "Quantum Magnetism, Nonequilibrium Dynamics and Quantum Simulation of Correlated Quantum Systems / Salvatore Rosario Manmana ; Betreuer: Thomas Pruschke." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://d-nb.info/1132336805/34.
Full textJiang, Kun. "Strong Correlation, Topology in Unconventional Superconductors and Quantum Magnetism." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:107984.
Full textThe discovery of high-Tc superconductivity in cuprates, quantum Hall effect greatly challenge the single-electron understanding of condensed matter physics. In contrast to phonon-mediated BCS mechanism, the unconventional high-Tc superconductivity is widely believed to come from strongly electronic correlation. Strong electron-electron repulsion leads to the interplay among spin, charge, orbital and lattice degrees of freedom, resulting in high-temperature superconductivity, charge or spin density wave, Mott insulator, orbital order, nematicity etc. On the other hand, quantum Hall effect brings us the realization of the mathematical concept of topology in condensed matter. Topology has been widely explored in the topological insulator, topological superconductors, symmetry protected topological order etc. In this dissertation, we study theoretically the physics of electronic correlation and topology in various systems, including superconductivity in single layer CuO₂, electronic nematicity in FeSe, chiral spin density wave in honeycomb lattice and antiferromagnetic Chern insulator in 2D non-centrosymmetric systems
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Joshi, Darshan Gajanan. "Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnets." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-198634.
Full textShevchenko, Pavel Physics Faculty of Science UNSW. "Quantum Phenomena in Strongly Correlated Electrons Systems." Awarded by:University of New South Wales. Physics, 1999. http://handle.unsw.edu.au/1959.4/32669.
Full textHaines, Charles Robert Sebastian. "Pressure tuned magnetism in d- and f-electron materials." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/282990.
Full textCoak, Matthew. "Quantum tuning and emergent phases in charge and spin ordered materials." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/280284.
Full textMarshall, Robin Alexander. "Critical behaviour and quantum properties in (Ga,Mn)As." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13114/.
Full textArredondo, Melissa Gayle. "Zero-Dimensional Magnetite." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14151.
Full textBrown, Adam L. "Transport and optical effects in self-assembled quantum dot devices." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10898/.
Full textMoroni, Dennis. "Unconventional magnetism and quantum criticality in the hexagonal Laves phase NbFeâ‚‚." Thesis, Royal Holloway, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430434.
Full textRahn, Marein. "Magnetism in quantum materials probed by X-ray and neutron scattering." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:a20ff25c-bc04-44a2-8a29-d5236a06bd83.
Full textNotbohm, Susanne. "Spin dynamics of quantum spin-ladders and chains." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/403.
Full textHolmström, Erik. "Magnetism and Structure in Metallic Multilayers." Doctoral thesis, Uppsala University, Department of Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3556.
Full textThe interplay between magnetism and structure has been studied in magnetic multilayers by electronic structure calculations based on density functional theory and analyzed in terms of models. The main ideas behind the Korringa-Kohn-Rostocker Green’s function method are described and the implementation of the coherent potential approximation is outlined.
A simple model for the bilinear magnetic interlayer coupling in metallic multilayers is derived that elucidates the main characteristics of the effect such as coupling period and origin of damping. An analysis of two exotic effects on the magnetic interlayer coupling, Fermi surface nesting and magnetic enhancement is also performed. The Fermi surface nesting in CuPd for the (110) direction is shown to induce a sharp peak in the magnetic interlayer coupling amplitude for a Fe/CuPd/Fe system when the Cu concentration is 60% in the CuPd alloy. The high magnetic susceptibility in Pd is shown to have strong influence on the magnetic interlayer coupling in a Fe/Pd/Fe (100) system where it changes the amplitude, phase and induces an offset.
The relation between surface structure and magnetic properties in metallic multilayers is investigated in terms of a theory that is based on a symbiosis between experiment and theory. By calculating the total magnetic moment of a sample for a large range of possible interface structures and comparing to experimental results for equivalent samples a parameter that describes the interface structure is determined. This parameter is then shown to be universal for the particular combination of elements in the structure both as regards the calculated total magnetic moment as well as the magnetic interlayer coupling and the critical temperatures.
Chaggar, Amrik Richard. "Tunneling injection and recombination of carriers in self-assembled quantum dots." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10757/.
Full textAlbring, Morten. "Towards quantum information processing with Cr3+ based heterometallic clusters." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/towards-quantum-information-processing-with-cr3-based-heterometallic-clusters(6ff7e303-ca75-4632-986d-48bea42d96e3).html.
Full textBharadwaj, Sripoorna Paniyadi Krishna. "Theoretical Study of Spin-wave Effects in Quantum Ferromagnets." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22640.
Full textBabkevich, Peter. "Quantum materials explored by neutron scattering." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:5f6ef05d-e846-47e1-b59f-864ea4fa2f3f.
Full textHennequin, Barbara. "Aqueous near infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/11071/.
Full textRodríguez, Karen [Verfasser]. "Non-equilibrium dynamics and quantum magnetism in 1D optical lattices / Karen Rodríguez." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2011. http://d-nb.info/1011397145/34.
Full textBühler, Adam [Verfasser], and Hans Peter [Akademischer Betreuer] Büchler. "Quantum simulator for spin-orbital magnetism / Adam Bühler ; Betreuer: Hans Peter Büchler." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2016. http://d-nb.info/1118368312/34.
Full textMurmann, Simon [Verfasser], and Selim [Akademischer Betreuer] Jochim. "Few-particle quantum magnetism with ultracold atoms / Simon Murmann ; Betreuer: Selim Jochim." Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://d-nb.info/118060864X/34.
Full textJo, Gyu-Boong. "Quantum coherence and magnetism in bosonic and fermionic gases of ultracold atoms." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63010.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 168-185).
In this thesis, two sets of experimental studies in bosonic and fermionic gases are described. In the first part of the thesis, itinerant ferromagnetism was studied in a strongly interacting Fermi gas of ultracold atoms. The observation of nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions provides strong evidence for a phase transition to a ferromagnetic state. Our observations imply that itinerant ferromagnetism of delocalized fermions is possible without lattice and band structure, and our data validate the most basic model for ferromagnetism introduced by Stoner. In the second part of the thesis, the coherence properties of a Bose-Einstein condensate (BEC) was studied in a radio frequency induced double-well potential implemented on a microfabricated atom chip. We observed phase coherence between the separated condensates for times up to 200 ms after splitting, a factor of 10 longer than the phase diffusion time expected for a coherent state for our experimental conditions. The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. Furthermore, the effect of phase fluctuations on an atom interferometer was studied in an elongated BEC. We demonstrated that the atom interferometer using the condensates is robust against phase fluctuations; i.e., the relative phase of the split condensates is reproducible despite axial phase fluctuations. Finally, phase-sensitive recombination of two BECs was demonstrated on an atom chip. The recombination was shown to result in heating, caused by the dissipation of dark solitons, which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms and provides a robust way to read out the phase.
by Gyu-Boong Jo.
Ph.D.
Chisnell, Robin Michael Daub. "Neutron scattering and thermodynamic studies of quantum magnetism on the kagomé lattice." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95868.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 191-198).
The geometry of the kagome lattice leads to exciting novel magnetic behavior in both ferromagnetic and antiferromagnetic systems. The collective spin dynamics were investigated in a variety of magnetic materials featuring spin-1/2 and spin-1 moments on kagome lattices using neutron scattering and thermodynamic probes. Both ferromagnetic and antiferromagnetic systems were studied. Cu(1,3-bdc) is an organometallic material, where the Cu2+ ions form a ferromagnetic S = 1/2. kagomé system. Synthesis techniques were developed to produce -mg-sized deuterated single crystals, and ~2,000 crystals were partially coaligned to create a sample for neutron scattering measurements. Elastic neutron scattering measurements show the existence of long range magnetic ordering below T = 1.77 K. Integrated Bragg peak intensities were analyzed to determine the structure of ordered magnetic moments. Inelastic neutron scattering measurements show the magnon dispersion spectrum, which consists of a flat high energy band and two dispersive, lower energy bands. The application of a magnetic field perpendicular to the kagome plane opens gaps between these three bands and distorts the flatness of the highest energy band. The system was modelled as a nearest-neighbor Heisenberg ferromagnet with Dzyaloshinskii-Moriya(DM) interaction. The model dispersion and scattering structure factor were calculated and fit to the data to precisely determine the strengths of the nearest-neighbor coupling and DM interaction. The observed manon band structure is a bosonic analog to the band structure of the topological insulator systems. Antiferromagnetic kagome systems can exhibit novel magnetic ground states such as quantum spin liquids and spin nematics. Thermodynamic measurements were performed on the antiferromagnetic kagome materials MgxCu₄-x(OH)₆ Cl₂ , featuring S = 1/2 moments. These measurements reveal magnetic ordering at low values of x that is suppressed with increasing x. At x = 0.75, this ordering is not fully suppressed, but susceptibility and specific heat measurements reveal behavior similar to that of the quantum spin liquid candidate herbertsmithite. Thermodynamic and neutron scattering measurements were performed on the kagome lattice material BaNi₃(OH)₂(VO₄)₂, which features S = 1 moments. These measurements reveal competing interactions, which result in a spin glass ordering transition.
by Robin Michael Daub Chisnell.
Ph. D.
Sandoildo, Freitas Tenório Antônio. "Phase transitions and thermodynamics of quasione- dimensional quantum rotor and spin systems." Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/6664.
Full textSandoildo Freitas Tenório, Antônio; Domingues Coutinho Filho, Maurício. Phase transitions and thermodynamics of quasione- dimensional quantum rotor and spin systems. 2009. Tese (Doutorado). Programa de Pós-Graduação em Física, Universidade Federal de Pernambuco, Recife, 2009.
Aguilà, Avilés David. "Design, synthesis and study of coordination complexes for quantum computing." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/123544.
Full textEl trabajo realizado en esta tesis doctoral se basa en el diseño, la síntesis y el estudio de complejos de coordinación, centrándose en la comprensión de sus propiedades magnéticas y la posibilidad de su aplicación en la computación cuántica. Para el diseño de estos materiales moleculares, tres diferentes propuestas han sido llevadas a cabo. En primer lugar, se han desarrollado ligandos capaces de agregar metales paramagnéticos en dos grupos diferentes, definiendo de esta manera los dos posibles bits cuánticos de una puerta lógica. Complejos de coordinación homo- y heterometálicos con NiII, CoII y CuII han sido sintetizados y caracterizados para tal efecto. La segunda estrategia seguida ha estado centrada en el diseño de complejos de coordinación lineales para su posterior ensamblaje en parejas de compuestos. Se han desarrollado ligandos que favorezcan la complejación de este tipo de topología, obteniéndose un compuesto de CoII con las propiedades estructurales idóneas para su ensamblaje. Utilizando el ligando bifuncional 4.4’-bipiridina, se ha podido unir dos entidades [Co4] obteniendo así otro prototipo de “parejas moleculares”. La tercera estrategia se ha centrado en el diseño de moléculas asimétricas para facilitar la definición de cada bit cuántico dentro de la entidad molecular. Para ello, se ha sintetizado un ligando no simétrico, que ha sido utilizado para obtener complejos dinucleares homo- y heterometálicos de iones lantánido. Se ha obtenido compuestos con todos los elementos de la serie de los lantánidos. Su estudio magnético y estructural ha mostrado que los dos centros metálicos de estas entidades moleculares son distintos, lo que ha permitido definir el espín de cada ion lantánido como un bit cuántico. El estudio magnético a muy bajas temperaturas de un compuesto de dos átomos de terbio(III), por ejemplo, ha permitido definir dos puertas lógicas: la CNOT y la √SWAP. Utilizando el espectro de energías de los estados magnéticos de la molécula, se han observado las transiciones entre dichos estados en relación a las dos operaciones lógicas.
Wheeler, Elisa Maria da Silva. "Neutron scattering from low-dimensional quantum magnets." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:a8411774-4a3e-4fc3-80a1-d7e8612cba71.
Full textGarlatti, E. "QUANTUM EFFECTS IN MOLECULAR NANOMAGNETS: FROM THEORY TO APPLICATIONS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/231098.
Full textDickinson, Laurie Alan. "Studies of magneto-tunneling into donor states and of the breakdown of the quantum Hall effect." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/14393/.
Full textLorenz, Wolfram. "On the Spin-Dynamics of the Quasi-One-Dimensional, Frustrated Quantum Magnet Li2CuO2." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71010.
Full textThe magnetic properties of Li2CuO2 have attracted interest since more than two decades, both in theory and experiment. Despite these efforts, the precise nature of the magnetic interactions in this insulator remained an issue of controversial debate. From theoretical studies, the compound was understood as a quasi-one-dimensional magnet with strong ferromagnetic interactions along the chain, while in contrast, experimentally studies suggested dominant three-dimensional inter-chain interactions. In this thesis, the leading magnetic exchange interactions of Li2CuO2 are determined on the basis of a detailed inelastic neutron scattering study of the magnetic excitation spectrum, analyzed within spin-wave theory. It is unequivocally shown, that the material represents a quasi-one-dimensional spin-chain compound. In particular, the competition of ferro- and antiferromagnetic interactions in the chain has been evidenced. The applicability of a spin-wave model for analysis of this low-dimensional spin-1=2 system is shown. The magnetic phase diagram of Li2CuO2 is studied by specific heat, thermal expansion and magnetostriction measurements as well as magnetization measurements in both static and pulsed magnetic fifields. The phase diagram is discussed with respect to the exchange interactions. With its simple crystallographic and magnetic structure, Li2CuO2 may serve as a worthwhile model system in the class of spin-chain compounds with competing ferromagnetic and antiferromagnetic interactions
Hooley, Chris. "The Kagome antiferromagnet and related models : studies in low-dimensional geometrically frustrated quantum magnetism." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301860.
Full textBaez, Maria Laura [Verfasser]. "Numerical methods for frustrated magnetism : from quantum to classical spin systems / Maria Laura Baez." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1170876846/34.
Full textVougalter, Vitali. "Diamagnetic behavior of sums of Dirichlet eigenvalues." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/28034.
Full textWoolfson, Robert. "Spins in rings : new chemistry and physics with molecular wheels." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/spins-in-rings-new-chemistry-and-physics-with-molecular-wheels(1cce143a-105e-4f8c-ac19-388f793fddc4).html.
Full textSchossler, Matheus de Oliveira. "Dinâmica de operadores de dois spins no modelo XX." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-15092017-090718/.
Full textDynamical properties of quantum many body systems is a major topic of interest in condensed matter physics. These properties tell us about the propagation of elementary excitation and mechanisms of relaxation in interacting systems. In this context correlation functions have became even more relevant due the experiments in systems of cold atoms and trapped ions that measure real time dependence directly out to relatively long times. However, most studies in quantum spins chains so far have focused on correlations of single spins. Using the one dimensional XX spin chain, we study exact methods to calculate the correlation functions of the components of the tensor operator involving two spins, Tabi,j = SaiSbj. This operator appear, for example, as a response of inelastic x-ray scattering cross section. Based on Wick\'s theorem, we show that some correlation functions of local components of the tensor operator of two pairs of neighbor sites, in the fermion space, can be written as a combination of Greens functions of a single particle. We have used Feynman diagrams to organize this combination and calculate the correlation functions. Then, considering these propagators for long times and large distances along the light cone, we found the behavior of these correlation functions as a oscillatory and power law decay on time. A direct application of correlation functions is to study conserved and non-conserved quantities, and such analysis has been made. We also considered other two-spin operators which are not local in the fermionic representation. In this case the calculation is more challenging, but the time-dependent correlation functions can be expressed in terms of Fredholm determinants.
Tlemsani, Idris. "Magnetic coordination complexes for quantum information." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF043.
Full textThe exponential growth in information processing and the demand for solving new challenges have led to the development of new paradigms, such as quantum information, which uses quantum computers based on quantum bits (qubits). Magnetic molecules, are attractive candidates to encode spin qubits. Among the challenges in the molecular magnet as qubit research we found obtaining long phase memory relaxation times and coupling qubit among them. A spin qubit is a system of two non-degenerated quantum levels that can be put into superposition long enough to allow measurements to be made. This can be achieved with molecules having an unpaired electron (such as an organic radical) with a ½ spin or by designing molecules with an integer spin (S=1 for Ni(II) complexes) to lift degeneracy without a magnetic field (ZFS). The transition between these levels, known as the clock transition (CT), is protected from magnetic fluctuations, lengthening the T₂ relaxation time. In these projects we studied various nickel compounds and tried to predict the sign of the axial anisotropy from their structure. We measured the EPR spectra of these compounds to access the ZFS parameters and rationalised the results by calculation. The modulation of the coordination sphere by steric, electronic and packing effects of Ni(II) complexes has resulted in compounds with accessible clock transitions. The pulsed EPR study of these complexes has pointed out a strategy to increase the T₁ and demonstrated the robustness of a CT against. magnetic fluctuactions. We also switch our focus on the study of complexes with an S = 1/2 spin value, which have relatively long relaxation times and are not dependent on ZFS. This guarantees the possibility of obtaining an EPR signal so that a detailed study could be carried out. For Cu(II) complexes, the relatively long relaxation times (T₂ = 1µs and T₁ (7.5K) = 1.8 ms) found in the monomeric unit remain unchanged in the binuclear complex. We tried to prepare several binuclear Cu(II) complexes with different Cu-Cu distances. We also measured the coherence time of the nuclear spins of a proton and a nitrogen coupled via superhyperfine interaction to the Cu(II) electronic spin and found a T₂ value of more than 500 µs, demonstrating the ability of a single magnetic molecule to bear several ressources to perform quantum gates that are required for quantum computation
Choi, Sungkyun. "Neutron and X-ray scattering studies of honeycomb iridates." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:d47c4e67-14c6-43ea-a8ba-47b9201b5002.
Full textJohnsen, Sebastian. "Low-dimensional Magnetism in Novel 2D Honeycomb Materials." Thesis, KTH, Tillämpad fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300902.
Full textEn Kitaev kvantspinvätska är en fas av materia som har förespåtts kunna husera exciterade tillstånd som kan användas for att konstruera en kvantdator. Även om de teoretiska rönen är väl underbyggda, har ett förverkligande av en sådan fas i verkliga material varit svår att åstadkomma. Nya rön har pekat ut bikakematerial bestående av 3d övergångsmetaller som potentiella kandidater. Därav fokuserar denna avhandling på ett sådant material, K2Ni2–xCoxTeO6. Det är en del av en familj av liknande material bestående av tvådimensionella lager av bikakeformade övergångsmetaller mellan lager av alkaliska joner. En karaktärisering av de magnetiska egenskaperna av K2Ni2–xCoxTeO6 har utförts genom att analysera data från myon spin rotation/dämpning/resonans samt magnetiserings mätningar som funktion av materialets kemiska samansättning. Ytterligare mätningar av den atomära strukturen och spinordning påbörjades också med hjälp av neutronspridningstekniker. I denna avhandling presenteras och diskuteras resultaten av dessa karaktäriseringar.
Corre, Vincent. "Magnetism in spin-1 Bose-Einstein condensates with antiferromagnetic interactions." Thesis, Paris, Ecole normale supérieure, 2014. http://www.theses.fr/2014ENSU0020/document.
Full textIn this thesis we study experimentally the magnetic properties of spin-1 Bose-Einstein condensate of Sodium at equilibrium. In this system the atoms can occupy any of the three Zeeman states characterized by their spin projection on the quantization axis m=+1,0,-1. We measure the many-body spin state of the system as a function of the applied magnetic field and of the magnetization (difference between the populations of the spin states m=+1 and m=-1) of the atomic sample. We find that our measurements reproduce very well the mean-field prediction, and we identify two magnetic phases expressing the competition between the antiferromagnetic inter-particle interactions and the effect of the magnetic field. We describe these phases in terms of a spin nematic order characterizing the symmetry of the many-body spin state. In a second part we focus on the properties of condensates of very low magnetization under a weak magnetic field. In these conditions, the symmetry of the system manifests itself in huge spin fluctuations. This phenomenon is not explainable by a naive mean-field theory and we develop a more elaborate statistical approach to describe the spin state of the condensate. We measure the spin fluctuations and are able from their analysis to infer the temperature characterizing the spin degree of freedom of the condensate. We find that this temperature differs from the temperature of the thermal fraction surrounding the condensate. We interpret this difference as a consequence of the weak coupling between these two systems
Moreno, Pineda Eufemio. "New f-block and mixed d,f-block molecular nanomagnets." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/new-fblock-and-mixed-dfblock-molecular-nanomagnets(2f53085a-081b-4b27-a866-28f37f1fd633).html.
Full textMishra, Shantanu, Doreen Beyer, Reinhard Berger, Junzhi Liu, Oliver Gröning, José I. Urgel, Klaus Müllen, Pascal Ruffieux, Xinliang Feng, and Roman Fasel. "Topological defect-induced magnetism in a nanographene." American Chemical Society, 2019. https://tud.qucosa.de/id/qucosa%3A73172.
Full textBruin, Jan Adrianus Nathan. "Transport studies of the itinerant metamagnet Sr₃Ru₂O₇ near its quantum critical point." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3656.
Full text