Academic literature on the topic 'Quantum many body'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum many body.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum many body"

1

Hainzl, Christian, Benjamin Schlein, Robert Seiringer, and Simone Warzel. "Many-Body Quantum Systems." Oberwolfach Reports 16, no. 3 (2020): 2541–603. http://dx.doi.org/10.4171/owr/2019/41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wimberger, Sandro. "Many Body Quantum Chaos." Condensed Matter 5, no. 2 (2020): 41. http://dx.doi.org/10.3390/condmat5020041.

Full text
Abstract:
This editorial remembers Shmuel Fishman, one of the founding fathers of the research field “quantum chaos”, and puts into context his contributions to the scientific community with respect to the twelve papers that form the special issue.
APA, Harvard, Vancouver, ISO, and other styles
3

Wall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (2016): 25–29. http://dx.doi.org/10.1145/2983537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mukherjee, Victor, and Uma Divakaran. "Many-body quantum thermal machines." Journal of Physics: Condensed Matter 33, no. 45 (2021): 454001. http://dx.doi.org/10.1088/1361-648x/ac1b60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Palev, T. D., and N. I. Stoilova. "Many-body Wigner quantum systems." Journal of Mathematical Physics 38, no. 5 (1997): 2506–23. http://dx.doi.org/10.1063/1.531991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (2005): 395–403. http://dx.doi.org/10.1139/p05-012.

Full text
Abstract:
A new method for bound-state quantum electrodynamics (QED) calculations on many-electron systems is presented that is a combination of the non-QED many-body technique for quasi-degenerate systems and the newly developed covariant-evolution-operator technique for QED calculations. The latter technique has been successfully applied to the fine structure of excited states of medium-heavy heliumlike ions, and it is expected that the new method should be applicable also to light elements, hopefully down to neutral helium. PACS Nos.: 31.30.Jv, 31.15.Md, 31.25.Jf, 33.15.Pw
APA, Harvard, Vancouver, ISO, and other styles
7

Vojta, Thomas. "Disorder in Quantum Many-Body Systems." Annual Review of Condensed Matter Physics 10, no. 1 (2019): 233–52. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013433.

Full text
Abstract:
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent interesting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single-particle wave functions, many-body localization i
APA, Harvard, Vancouver, ISO, and other styles
8

Daley, Andrew J. "Quantum trajectories and open many-body quantum systems." Advances in Physics 63, no. 2 (2014): 77–149. http://dx.doi.org/10.1080/00018732.2014.933502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monras, A., and O. Romero-Isart. "Quantum information processing with quantum zeno many-body dynamics." Quantum Information and Computation 10, no. 3&4 (2010): 201–22. http://dx.doi.org/10.26421/qic10.3-4-3.

Full text
Abstract:
We show how the quantum Zeno effect can be exploited to control quantum many-body dynamics for quantum information and computation purposes. In particular, we consider a one dimensional array of three level systems interacting via a nearest-neighbour interaction. By encoding the qubit on two levels and using simple projective frequent measurements yielding the quantum Zeno effect, we demonstrate how to implement a well defined quantum register, quantum state transfer on demand, universal two-qubit gates and two-qubit parity measurements. Thus, we argue that the main ingredients for universal q
APA, Harvard, Vancouver, ISO, and other styles
10

Gómez-Ullate, D., A. González-López, and M. A. Rodríguez. "New algebraic quantum many-body problems." Journal of Physics A: Mathematical and General 33, no. 41 (2000): 7305–35. http://dx.doi.org/10.1088/0305-4470/33/41/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum many body"

1

Bausch, Johannes Karl Richard. "Quantum stochastic processes and quantum many-body physics." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269857.

Full text
Abstract:
This dissertation investigates the theory of quantum stochastic processes and its applications in quantum many-body physics. The main goal is to analyse complexity-theoretic aspects of both static and dynamic properties of physical systems modelled by quantum stochastic processes. The thesis consists of two parts: the first one addresses the computational complexity of certain quantum and classical divisibility questions, whereas the second one addresses the topic of Hamiltonian complexity theory. In the divisibility part, we discuss the question whether one can efficiently sub-divide a map de
APA, Harvard, Vancouver, ISO, and other styles
2

Riera, Graells Arnau. "Entanglement in Many Body Quantum Systems." Doctoral thesis, Universitat de Barcelona, 2010. http://hdl.handle.net/10803/1600.

Full text
Abstract:
THESIS SUMMARY<br/><br/>TEXT:<br/><br/>This thesis is made of two parts. In the first one, the issue of entanglement in many body systems is addressed. The concept of entanglement and some of the recent progress on the study of entropy of entanglement in many body quantum systems are reviewed. Emphasis is placed on the scaling properties of entropy for one-dimensional models at quantum phase transitions. <br/><br/>Then, we focus on the area-law scaling of the entanglement entropy. An explicit computation in arbitrary dimensions of the entanglement entropy of the ground state of a discretized s
APA, Harvard, Vancouver, ISO, and other styles
3

Graham, Abi Claire. "Many-body interactions in quantum wires." Thesis, University of Cambridge, 2004. https://www.repository.cam.ac.uk/handle/1810/284031.

Full text
Abstract:
The first part of this thesis describes transport measurements of long quantum wires, which are affected by disorder. The resulting additional features in the conductance are characterised, and the results are discussed in the context of the Luttinger liquid model. Realistic strategies for controlling disorder in long wires are suggested, which should eliminate many of the problems associated with experimental studies of Luttinger liquids. Disorder effects are further investigated using a new lithography technique called Erasable Electrostatic Lithography (EEL). A scanning probe tip at a fixed
APA, Harvard, Vancouver, ISO, and other styles
4

Jia, Ningyuan. "Quantum Many-Body Physics with Photons." Thesis, The University of Chicago, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928150.

Full text
Abstract:
<p> Understanding and manipulating quantum materials is a long-sought goal in both the condensed matter and cold atom communities. Photons have recently emerged as a good candidate for studying quantum many-body states due to their fast dynamics and convenient manipulation. Tremendous efforts have been made to engineer single particle Hamiltonian with non-trivial topology. Having individual photons to strongly collide with each other and form an entangled many-body state remained as a challenge in optical domain. </p><p> In this thesis, I will first demonstrate how to engineer artificial mag
APA, Harvard, Vancouver, ISO, and other styles
5

Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.

Full text
Abstract:
Ma thèse de doctorat était consacrée à l'étude des systèmes quantiques à plusieurs corps dissipatifs et pilotés. Ces systèmes représentent des plateformes naturelles pour explorer des questions fondamentales sur la matière dans des conditions de non-équilibre, tout en ayant un impact potentiel sur les technologies quantiques émergentes. Dans cette thèse, nous discutons d'une décomposition spectrale de fonctions de Green de systèmes ouverts markoviens, que nous appliquons à un modèle d'oscillateur quantique de van der Pol. Nous soulignons qu’une propriété de signe des fonctions spectrales des s
APA, Harvard, Vancouver, ISO, and other styles
6

Wesslén, Carl-Johan. "Many-Body effects in Semiconductor Nanostructures." Licentiate thesis, Stockholms universitet, Fysikum, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102344.

Full text
Abstract:
Low dimensional semiconductor structures are modeled using techniques from the field of many-body atomic physics. B-splines are used to create a one-particle basis, used to solve the more complex many-body problems. Details on methods such as the Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC) are discussed. Results from the CC singles and doubles method are compared to other high-precision methods for the circular harmonic oscillator quantum dot. The results show a good agreement for the energy of many-body states of up to 12 electrons. Properties
APA, Harvard, Vancouver, ISO, and other styles
7

Mur, Petit Jordi. "Many-body studies on atomic quantum systems." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1587.

Full text
Abstract:
En aquesta tesi presentem un conjunt d'estudis sobre sistemes atòmics on els efectes quàntics són especialment destacats. Aquests estudis s'han dut a terme aplicant diverses tècniques de la física teòrica de molts cossos.<br/><br/>En primer lloc hem estudiat la possible existència d'una transició de fase superfluida en un gas ultrafred d'àtoms fermiònics, mitjançant una generalització de la teoria BCS de la superconductivitat que dóna especial rellevància al paper jugat per l'asimetria de densitat entre les dues espècies, i permet que l'estat fonamental presenti un trencament espontani de sime
APA, Harvard, Vancouver, ISO, and other styles
8

Heyl, Markus Philip Ludwig. "Nonequilibrium phenomena in many-body quantum systems." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-145838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Young, Carolyn 1979. "Many-body cotunneling in coupled quantum dots." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101692.

Full text
Abstract:
The zero-temperature equilibrium conductance of mesoscopic devices due to single-particle resonant tunneling was first described by Landauer [1]. The Landauer formula was later extended to the multi-channel case by Fisher and Lee [2], who reduced the problem of calculating electronic transport properties to the problem of solving for the Green's function for a given system geometry.<br>In this work, the single-particle formalism is extended to the study of higher-order two-particle cotunneling processes by considering many-body Green's functions. The effect of attaching leads to the system is
APA, Harvard, Vancouver, ISO, and other styles
10

Brell, Courtney Gordon Gray. "Many-body models for topological quantum information." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13539.

Full text
Abstract:
We develop and investigate several quantum many-body spin models of use for topological quantum information processing and storage. These models fall into two categories: those that are designed to be more realistic than alternative models with similar phenomenology, and those that are designed to have richer phenomenology than related models. In the first category, we present a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the perturbative low-energy limits of entirely two-body Hamiltonians. This construction reproduces the target models' behavior
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum many body"

1

Rivasseau, Vincent, Robert Seiringer, Jan Philip Solovej, and Thomas Spencer. Quantum Many Body Systems. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29511-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuramoto, Yoshio. Quantum Many-Body Physics. Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55393-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marie, Ericsson, and Montangero Simone, eds. Quantum information and many body quantum systems: Proceedings. Edizioni Della Normale, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marie, Ericsson, and Montangero Simone, eds. Quantum information and many body quantum systems: Proceedings. Edizioni Della Normale, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaldor, U., ed. Many-Body Methods in Quantum Chemistry. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93424-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zagoskin, Alexandre M. Quantum Theory of Many-Body Systems. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0595-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zagoskin, Alexandre. Quantum Theory of Many-Body Systems. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07049-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quantum scaling in many-body systems. World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, Philippe A., and François Rothen. Many-Body Problems and Quantum Field Theory. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Philippe A., and François Rothen. Many-Body Problems and Quantum Field Theory. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum many body"

1

Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hecht, K. T. "Many-Body Formalism." In Quantum Mechanics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salam, Akbar. "Many-Body Forces." In Molecular Quantum Electrodynamics. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470535462.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Flügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ceperley, D. M., and M. H. Kalos. "Quantum Many-Body Problems." In Monte Carlo Methods in Statistical Physics. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kotecha, Isha. "Many-Body Quantum Spacetime." In On Generalised Statistical Equilibrium and Discrete Quantum Gravity. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90969-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kam, Chon-Fai, Wei-Min Zhang, and Da-Hsuan Feng. "Quantum Many-Body Systems." In Coherent States. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20766-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05179-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52998-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum many body"

1

Lindgren, Ingvar. "Many-body theory." In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GUERLIN, C., K. BAUMANN, F. BRENNECKE, et al. "SYNTHETIC QUANTUM MANY-BODY SYSTEMS." In Proceedings of the XIX International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814282345_0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kelly, Hugh P. "Many-body calculations of photoionization cross sections." In Computational quantum physics. AIP, 1992. http://dx.doi.org/10.1063/1.42617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gustafson, Erik, Andy Li, Abid Khan, et al. "Preparing quantum many-body scar states on quantum computers." In Preparing quantum many-body scar states on quantum computers. US DOE, 2023. http://dx.doi.org/10.2172/1969682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

VERSTRAETE, FRANK. "ENTANGLEMENT IN MANY-BODY QUANTUM PHYSICS." In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khatiwada, Pawan, and Imran Mirza. "Entanglement in many-body quantum systems." In Frontiers in Optics. OSA, 2020. http://dx.doi.org/10.1364/fio.2020.jm6a.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kira, Mackillo (Mack). "Quantum Optics with Many-Body States." In Conference on Coherence and Quantum Optics. OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.m4b.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Van Isacker, P., Kurt B. Wolf, Luis Benet, Juan Mauricio Torres, and Peter O. Hess. "Seniority in quantum many-body systems." In SYMMETRIES IN NATURE: SYMPOSIUM IN MEMORIAM MARCOS MOSHINSKY. AIP, 2010. http://dx.doi.org/10.1063/1.3537842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mekhov, Igor B. "Merging quantum optics and quantum many-body atomic systems." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5942918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beau, Mathieu, Aurelia Chenu, Jianshu Cao, and Adolfo del Campo. "Quantum Simulation and Quantum Metrology of Many-Body Decoherence." In Quantum Information and Measurement. OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf5b.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum many body"

1

Scalapino, Douglas J. Sugar, Robert L. Numerical Simulations of Quantum Many-body Systems. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/842398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scalapino, D. J. Numerical simulation of quantum many-body systems. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6652913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scalapino, D. J. Numerical simulation of quantum many-body systems. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10127187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Jianxin, and Benedikt Fauseweh. Digital quantum simulation of non-equilibrium quantum many-body systems. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1868210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Joshua. Quantum many-body equilibration of neutrino flavor oscillations. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2217479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lukin, Mikhail, and Eugene Demler. Quantum Simulations of Many-Body Systems with Ultra-Cold Atoms. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada496260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scully, Marlan O. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada558091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DeMille, David, and Karyn LeHur. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1108018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scalapino, D. J., and R. L. Sugar. Numerical simulation of quantum many-body systems. Progress report for March 1, 1991--September 1, 1993. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10133898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paesani, Francesco. Final Report: Chemical Reactivity Through Adaptive Quantum Mechanics/Many-Body Representations: Theoretical Development, Software Implementation, and Applications. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2203697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!