Academic literature on the topic 'Quantum mechanical'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum mechanical.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum mechanical"
Shuang Xu, Shuang Xu, Liyun Hu Liyun Hu, and Jiehui Huang Jiehui Huang. "New fractional entangling transform and its quantum mechanical correspondence." Chinese Optics Letters 13, no. 3 (2015): 030801–30804. http://dx.doi.org/10.3788/col201513.030801.
Full textMaranganti, R., and P. Sharma. "Revisiting quantum notions of stress." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2119 (February 15, 2010): 2097–116. http://dx.doi.org/10.1098/rspa.2009.0636.
Full textBohm, A., S. Maxson, Mark Loewe, and M. Gadella. "Quantum mechanical irrebersibility." Physica A: Statistical Mechanics and its Applications 236, no. 3-4 (March 1997): 485–549. http://dx.doi.org/10.1016/s0378-4371(96)00284-1.
Full textRoy, D. K. "Quantum mechanical tunnelling." Pramana 25, no. 4 (October 1985): 431–38. http://dx.doi.org/10.1007/bf02846768.
Full textFeynman, Richard P. "Quantum Mechanical Computers." Optics News 11, no. 2 (February 1, 1985): 11. http://dx.doi.org/10.1364/on.11.2.000011.
Full textLloyd, Seth. "Quantum-Mechanical Computers." Scientific American 273, no. 4 (October 1995): 140–45. http://dx.doi.org/10.1038/scientificamerican1095-140.
Full textFedorovich, G. V. "Quantum-mechanical screening." Physics Letters A 164, no. 2 (April 1992): 149–54. http://dx.doi.org/10.1016/0375-9601(92)90694-h.
Full textFeynman, Richard P. "Quantum mechanical computers." Foundations of Physics 16, no. 6 (June 1986): 507–31. http://dx.doi.org/10.1007/bf01886518.
Full textZaspa, Yu, and A. Dykha. "Quantum-mechanical approaches in evaluating the contact interaction of tribosystems." Problems of Tribology 25, no. 1 (March 26, 2020): 63–68. http://dx.doi.org/10.31891/2079-1372-2020-95-1-63-68.
Full textAGLIARI, ELENA, OLIVER MÜLKEN, and ALEXANDER BLUMEN. "CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING." International Journal of Bifurcation and Chaos 20, no. 02 (February 2010): 271–79. http://dx.doi.org/10.1142/s0218127410025715.
Full textDissertations / Theses on the topic "Quantum mechanical"
Porro, Cristina Shino. "Quantum mechanical/molecular mechanics studies of Cytochrome P450BM3." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/quantum-mechanical--molecular-mechanics-studies-of-cytochrome-p450bm3(ad4255e7-b779-47a2-a2c5-8dbf6b603ca5).html.
Full textVanini, Paolo. "A mixed quantum mechanical problem /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10912.
Full textGrummt, Robert. "On quantum mechanical decay processes." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-166215.
Full textGegenstand dieser Arbeit ist die mathematische Beschreibung von quantenmechanischen Zerfallsprozessen. Im ersten von drei Teilen, werden wir die durch Laser induzierte Ionisation von Atomen untersuchen, die üblicherweise mit Hilfe der sogenannten Dipolapproximation beschrieben wird. Bei dieser Approximation wird das Vektorpotential $\vec A(\vec r,t)$ des Lasers im Hamiltonoperator durch $\vec A(0, t)$ ersetzt, was oft dadurch gerechtfertigt ist, dass sich das Vektorpotential des Lasers auf atomaren Längenskalen in $\vec r$ kaum verändert. Ausgehend von dieser Heuristik werden wir die Dipolapproximation in dem Limes beweisen, in dem die Wellenlänge des Lasers im Verhältnis zur atomaren Längenskala unendlich groß wird. Unsere Resultate sind auf $N$-Teilchen Systeme anwendbar. Im zweiten Teil wenden wir uns dem Alphazerfallsmodell von Skibsted (Comm. Math. Phys. 104, 1986) zu und beweisen, dass es eine Energie-Zeit Unschärfe erfüllt. Da kein selbstadjungierter Zeitoperator existiert, kann die Energie-Zeit Unschärfe nicht auf gleiche Weise wie die Orts-Impuls Unschärfe bewiesen werden. Um ohne einen selbstadjungierten Zeitoperator Zugriff auf die Zeitvarianz zu bekommen, werden wir mit Hilfe des quantenmechanischen Wahrscheinlichkeitsstroms eine Ankunftszeitverteilung definieren. Der Beweis der Energie-Zeit Unschärfe folgt dann aus einem Resultat von Skibsted und aus den quantitativen Streuabschätzungen, die im dritten Teil der Dissertation bewiesen werden. Darüber hinaus werden wir zeigen, dass diese Unschärfe von der {\it linewidth-lifetime relation} zu unterscheiden ist. Hauptresultat des dritten Teils sind quantitative Streuabschätzungen, die als eigenständiges Resultat von Interesse sind. Für rotationssymmetrische Potentiale mit Träger in $[0,R_V]$ werden wir für alle $R\geq R_V$ die Abschätzung \begin{align}\nonumber \|\1_R e^{-iHt}\psi\|_2^2\leq c_1t^{-1}+c_2t^{-2}+c_3t^{-3}+c_4t^{-4} \end{align} beweisen und darüber hinaus, das ist das Novum, quantitative Schranken für die Konstanten $c_n$ angeben, die von den Resonanzen der $S$-Matrix abhängen. Um zu diesen Schranken zu gelangen, werden wir die analytische Struktur der $S$-Matrix studieren, indem wir die Beziehung der $S$-Matrix zur Jost-Funktion ausnutzen und die wiederum in ein Hadamard-Produkt zerlegen.
Lever, Greg. "Large scale quantum mechanical enzymology." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246261.
Full textGiannelli, Luigi [Verfasser]. "Quantum Opto-Mechanical Systems for Quantum Technologies / Luigi Giannelli." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1214640788/34.
Full textHayes, Anthony. "Quantum enhanced metrology : quantum mechanical correlations and uncertainty relations." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/78385/.
Full textSchöneboom, Jan Claasen Curd. "Combined quantum mechanical - molecular mechanical calculations on cytochrome P450cam." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968865267.
Full textLiu, Zi-Wen. "Quantum correlations, quantum resource theories and exclusion game." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100108.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 131-138).
This thesis addresses two topics in quantum information theory. The first topic is quantum correlations and quantum resource theory. The second is quantum communication theory. The first part summarizes an ongoing work about quantum correlations beyond entanglement and quantum resource theories. We systematically explain the concept quantum correlations beyond entanglement, and introduce a unified framework of measuring such correlations with entropic quantities. In particular, a new measure called Diagonal Discord (DD), which is simpler to compute than discord but still possesses several nice properties, is proposed. As an application to real physical scenarios, we study the scaling behaviors of quantum correlations in spin lattices with these measures. On its own, however, the theory of quantum correlations is not yet a satisfactory quantum resource theory. Some partial results towards this goal are introduced. Furthermore, a unified abstract structure of general quantum resource theories and its duality is formalized. The second part shows that there exist (one-way) communication tasks with an infinite gap between quantum communication complexity and quantum information complexity. We consider the exclusion game, recently introduced by Perry, Jain and Oppenheim [80], which exhibits the property that for appropriately chosen parameters of the game, there exists an winning quantum strategy that reveals vanishingly small amount of information as the size of the problem n increases, i.e., the quantum (internal) information cost vanishes in the large n limit. For those parameters, we prove the quantum communication cost (the size of quantum communication to succeed) is lower bounded by Q (log n), thereby proving an infinite gap between quantum information and communication costs. This infinite gap is further shown to be robust against sufficiently small error. Some other interesting features of the exclusion game are also discovered as byproducts.
by Zi-Wen Liu.
S.M.
Wang, Lihui. "Quantum Mechanical Effects on MOSFET Scaling." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07072006-111805/.
Full textPhilip First, Committee Member ; Ian F. Akyildiz, Committee Member ; Russell Dupuis, Committee Member ; James D. Meindl, Committee Chair ; Willianm R. Callen, Committee Member.
Bhutta, Imran Ahmed. "A quantum mechanical semiconductor device simulator." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06072006-124213/.
Full textBooks on the topic "Quantum mechanical"
Rimmer, A. D. Quantum mechanical investigations ofzeolitemodels. Manchester: UMIST, 1994.
Find full textGao, Jiali, and Mark A. Thompson, eds. Combined Quantum Mechanical and Molecular Mechanical Methods. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0712.
Full textQuantum mechanical irreversibility and measurement. Singapore: World Scientific, 1993.
Find full textLever, Greg. Large-Scale Quantum-Mechanical Enzymology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19351-9.
Full textThaller, Bernd. Visual quantum mechanics: Selected topics with computer-generated animations of quantum-mechanical phenomena. New York: Springer/TELOS, 2000.
Find full textQuantum mechanical tunnelling and its applications. Singapore: World Scientific, 1986.
Find full textCioslowski, Jerzy, ed. Quantum-Mechanical Prediction of Thermochemical Data. Dordrecht: Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/0-306-47632-0.
Full textBelkić, Dž. Quantum-mechanical signal processing and spectral analysis. Bristol: Institute of Physics, 2005.
Find full textI, Samoĭlenko I͡U︡, ed. Control of quantum-mechanical processes and systems. Dordrecht: Kluwer Academic Publishers, 1990.
Find full textButkovskiy, A. G., and Yu I. Samoilenko. Control of Quantum-Mechanical Processes and Systems. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1994-5.
Full textBook chapters on the topic "Quantum mechanical"
Pieper, Martin. "Quantum Mechanical Phenomena." In Quantum Mechanics, 3–11. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-32645-6_2.
Full textHummel, Rolf E. "Quantum Mechanical Considerations." In Electronic Properties of Materials, 302–11. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-4914-5_16.
Full textVesely, Franz J. "Quantum Mechanical Simulation." In Computational Physics, 207–28. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_7.
Full textWigner, E. P., and M. M. Yanase. "Quantum Mechanical Measurements." In Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics, 431. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-09203-3_44.
Full textVesely, Franz J. "Quantum Mechanical Simulation." In Computational Physics, 195–214. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1329-2_7.
Full textHummel, Rolf E. "Quantum Mechanical Considerations." In Electronic Properties of Materials, 373–83. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8164-6_16.
Full textHummel, Rolf E. "Quantum Mechanical Considerations." In Electronic Properties of Materials, 302–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02954-1_16.
Full textSutin, N. "Quantum-Mechanical Treatment." In Inorganic Reactions and Methods, 30–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145302.ch20.
Full textSutin, N. "Quantum-Mechanical Treatment." In Inorganic Reactions and Methods, 45–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145302.ch24.
Full textSchattschneider, Peter. "Quantum Mechanical Preliminaries." In Fundamentals of Inelastic Electron Scattering, 98–122. Vienna: Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-8866-8_6.
Full textConference papers on the topic "Quantum mechanical"
Aspelmeyer, Markus. "Quantum opto-mechanics: quantum optical control of massive mechanical resonators." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i125.
Full textAspelmeyer, Markus. "Quantum opto-mechanics: Quantum optical control of massive mechanical resonators." In 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. IEEE, 2011. http://dx.doi.org/10.1109/iqec-cleo.2011.6193639.
Full textCleland, A. N. "Mechanical quantum resonators." In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103895.
Full textBrasher, J. D. "Quantum mechanical computation." In Critical Review Collection. SPIE, 1994. http://dx.doi.org/10.1117/12.171197.
Full textKhare, Roopam, Steven Mielke, Jeffrey Paci, Sulin Zhang, George Schatz, and Ted Belytschko. "Two quantum mechanical/molecular mechanical coupling schemes appropriate for fracture mechanics studies." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2171.
Full textLyshevski, Sergey Edward. "Graphene: Quantum-mechanical outlook." In 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144381.
Full textDi Giuseppe, Giovanni, Nicola Malossi, Iman Moaddel Haghighi, Riccardo Natali, and David Vitali. "Interference-based multimode opto-electro-mechanical transducers." In Quantum Technologies, edited by Andrew J. Shields, Jürgen Stuhler, and Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2309286.
Full textBen-Aryeh, Yacob. "Squeezing Effects in Mechanical Oscillators." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.ifd3.
Full textUtami, Dian W., Hsi-Sheng Goan, and Gerard J. Milburn. "Quantum electro-mechanical systems (QEMS)." In Microelectronics, MEMS, and Nanotechnology, edited by Jung-Chih Chiao, Alex J. Hariz, David N. Jamieson, Giacinta Parish, and Vijay K. Varadan. SPIE, 2004. http://dx.doi.org/10.1117/12.522241.
Full textAspelmeyer, Markus. "Quantum Optomechanics: a mechanical platform for quantum foundations and quantum information." In Quantum Information and Measurement. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qim.2012.qm3a.1.
Full textReports on the topic "Quantum mechanical"
L. COLLINS, J. KRESS, and R. WALKER. TRANSIENT QUANTUM MECHANICAL PROCESSES. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/768235.
Full textParks, A. D., and J. L. Solka. Computing With Quantum Mechanical Oscillators. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada389497.
Full textBartelt, Norman Charles, Donald Ward, Xiaowang Zhou, Michael E. Foster, Peter A. Schultz, Bryan M. Wang, and Kevin F. McCarty. Quantum mechanical studies of carbon structures. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1227805.
Full textChao, Alex. Possible Quantum Mechanical Effect on Beam Echo. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/784795.
Full textHeifets, Samuel A. Quantum-mechanical Analysis of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/784820.
Full textTretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.
Full textThompson, Ward Hugh. New methods for quantum mechanical reaction dynamics. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/503469.
Full textHeifets, Samuel A. Quantum-mechanical Analysis of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/784790.
Full textChao, Alex. Possible Quantum Mechanical Effect on Beam Echo. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/784825.
Full textTarn, Tzyh-Jong. Group Theoretical Approach for Controlled Quantum Mechanical Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada482245.
Full text