Academic literature on the topic 'Quantum mechanics; Classical limit'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum mechanics; Classical limit.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum mechanics; Classical limit"

1

Castagnino, Mario. "The classical–statistical limit of quantum mechanics." Physica A: Statistical Mechanics and its Applications 335, no. 3-4 (April 2004): 511–17. http://dx.doi.org/10.1016/j.physa.2003.12.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allori, Valia, and Nino Zanghì. "On the Classical Limit of Quantum Mechanics." Foundations of Physics 39, no. 1 (December 2, 2008): 20–32. http://dx.doi.org/10.1007/s10701-008-9259-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kocis, L. "Semi-classical limit of relativistic quantum mechanics." Pramana 65, no. 1 (July 2005): 147–52. http://dx.doi.org/10.1007/bf02704384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rahmani, Faramarz, Mehdi Golshani, and Ghadir Jafari. "Gravitational reduction of the wave function based on Bohmian quantum potential." International Journal of Modern Physics A 33, no. 22 (August 10, 2018): 1850129. http://dx.doi.org/10.1142/s0217751x18501294.

Full text
Abstract:
In objective gravitational reduction of the wave function of a quantum system, the classical limit of the system is obtained in terms of the objective properties of the system. On the other hand, in Bohmian quantum mechanics the usual criterion for getting classical limit is the vanishing of the quantum potential or the quantum force of the system, which suffers from the lack of an objective description. In this regard, we investigated the usual criterion of getting the classical limit of a free particle in Bohmian quantum mechanics. Then we argued how it is possible to have an objective gravitational classical limit related to the Bohmian mechanical concepts like quantum potential or quantum force. Also we derived a differential equation related to the wave function reduction. An interesting connection will be made between Bohmian mechanics and gravitational concepts.
APA, Harvard, Vancouver, ISO, and other styles
5

REZENDE, JORGE. "STATIONARY PHASE, QUANTUM MECHANICS AND SEMI-CLASSICAL LIMIT." Reviews in Mathematical Physics 08, no. 08 (November 1996): 1161–85. http://dx.doi.org/10.1142/s0129055x96000421.

Full text
Abstract:
A method of stationary phase for the normalized-oscillatory integral on Hilbert space is developed in the case where the phase function has a finite number of critical points which are non-degenerate. Applications to the Feynman path integral and the semi-classical limit of quantum mechanics are given.
APA, Harvard, Vancouver, ISO, and other styles
6

Batalin, Igor A., and Peter M. Lavrov. "Quantum localization of classical mechanics." Modern Physics Letters A 31, no. 22 (July 14, 2016): 1650128. http://dx.doi.org/10.1142/s0217732316501285.

Full text
Abstract:
Quantum localization of classical mechanics within the BRST-BFV and BV (or field–antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
APA, Harvard, Vancouver, ISO, and other styles
7

Bolivar, A. O. "The Bohm quantum potential and the classical limit of quantum mechanics." Canadian Journal of Physics 81, no. 7 (July 1, 2003): 971–76. http://dx.doi.org/10.1139/p03-063.

Full text
Abstract:
Using a procedure based on the limit [Formula: see text], we show that the classical limiting method based on the Bohm quantum potential (Q [Formula: see text] 0) is not necessary to characterize the classical limit of quantum mechanics. PACS No.: 03.65.Ta
APA, Harvard, Vancouver, ISO, and other styles
8

HUANG, Y. C., F. C. MA, and N. ZHANG. "GENERALIZATION OF CLASSICAL STATISTICAL MECHANICS TO QUANTUM MECHANICS AND STABLE PROPERTY OF CONDENSED MATTER." Modern Physics Letters B 18, no. 26n27 (November 20, 2004): 1367–77. http://dx.doi.org/10.1142/s0217984904007955.

Full text
Abstract:
Classical statistical average values are generally generalized to average values of quantum mechanics. It is discovered that quantum mechanics is a direct generalization of classical statistical mechanics, and we generally deduce both a new general continuous eigenvalue equation and a general discrete eigenvalue equation in quantum mechanics, and discover that a eigenvalue of quantum mechanics is just an extreme value of an operator in possibility distribution, the eigenvalue f is just classical observable quantity. A general classical statistical uncertain relation is further given, and the general classical statistical uncertain relation is generally generalized to the quantum uncertainty principle; the two lost conditions in classical uncertain relation and quantum uncertainty principle, respectively, are found. We generally expound the relations among the uncertainty principle, singularity and condensed matter stability, discover that the quantum uncertainty principle prevents the appearance of singularity of the electromagnetic potential between nucleus and electrons, and give the failure conditions of the quantum uncertainty principle. Finally, we discover that the classical limit of quantum mechanics is classical statistical mechanics, the classical statistical mechanics may further be degenerated to classical mechanics and we discover that merely stating that the classical limit of quantum mechanics is classical mechanics is a mistake. As application examples, we deduce both the Schrödinger equation and the state superposition principle, and deduce that there exists a decoherent factor from a general mathematical representation of the state superposition principle; the consistent difficulty between statistical interpretation of quantum mechanics and determinant property of classical mechanics is overcome.
APA, Harvard, Vancouver, ISO, and other styles
9

Polonyi, Janos. "Macroscopic Limit of Quantum Systems." Universe 7, no. 9 (August 26, 2021): 315. http://dx.doi.org/10.3390/universe7090315.

Full text
Abstract:
Classical physics is approached from quantum mechanics in the macroscopic limit. The technical device to achieve this goal is the quantum version of the central limit theorem, derived for an observable at a given time and for the time-dependent expectation value of the coordinate. The emergence of the classical trajectory can be followed for the average of an observable over a large set of independent microscopical systems, and the deterministic classical laws can be recovered in all practical purposes, owing to the largeness of Avogadro’s number. This result refers to the observed system without considering the measuring apparatus. The emergence of a classical trajectory is followed qualitatively in Wilson’s cloud chamber.
APA, Harvard, Vancouver, ISO, and other styles
10

Bhatt, Bhavya, Manish Ram Chander, Raj Patil, Ruchira Mishra, Shlok Nahar, and Tejinder P. Singh. "Path Integrals, Spontaneous Localisation, and the Classical Limit." Zeitschrift für Naturforschung A 75, no. 2 (February 25, 2020): 131–41. http://dx.doi.org/10.1515/zna-2019-0251.

Full text
Abstract:
AbstractThe measurement problem and the absence of macroscopic superposition are two foundational problems of quantum mechanics today. One possible solution is to consider the Ghirardi–Rimini–Weber (GRW) model of spontaneous localisation. Here, we describe how spontaneous localisation modifies the path integral formulation of density matrix evolution in quantum mechanics. We provide two new pedagogical derivations of the GRW propagator. We then show how the von Neumann equation and the Liouville equation for the density matrix arise in the quantum and classical limit, respectively, from the GRW path integral.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum mechanics; Classical limit"

1

Anastopoulos, Charalabos. "Emergence of classical behaviour in quantum systems." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crawford, Michael G. A. "Generalized coherent states and classical limits in quantum mechanics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ53489.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

PEREA, CÓRDOBA MILTÓN HENRY. "On the semiclassical limit of emergent quantum mechanics, as a classical thermodynamics of irreversible processes in the linear regime." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/54840.

Full text
Abstract:
[EN] Motivated by the conceptual problems concerning the quantisation of gravity, the Dutch theoretical physicist G. 't Hooft (1999 Nobel prize in physics) put forward the notion that quantum mechanics must be the emergent theory of some underlying, deterministic theory. This proposal usually goes by the name quantum mechanics as an emergent phenomenon. This research line, initiated by 't Hooft in the late 1990's, has been the subject of intense research over the last 15 years, by 't Hooft himself as well as by many other researchers. In this PhD thesis we present our own approach to quantum mechanics as an emergent phenomenon. According to the emergence paradigm for quantum mechanics, information-loss effects in the underlying deterministic theory lead to the arrangement of states of the latter into equivalence classes, that one identifies as quantum states of the emergent quantum mechanics. In brief, quantisation is dissipation, according to 't Hooft. Moreover it has been argued in the literature that, in the presence of weak gravitational fields, quantum effects must be indistinguishable from thermal effects. Since the latter are typically dissipative in nature, the presence of a weak gravitational field should provide a framework in which quantum effects can be explained as due to thermal, dissipative fluctuations. Furthermore, since gravitational effects can be locally gauged away (thanks to the equivalence principle), there should exist some kind of equivalence principle for quantum effects, i.e., some kind of relativity principle for the notion of quantumness as opposed to the notion of classicality. In this PhD thesis we elaborate on this idea. Once a reference frame is fixed, however, quantum effects cannot be gauged away, and the statement quantisation is dissipation lends itself to a thermodynamical treatment. In this thesis we also present one mechanism whereby quantum mechanics is seen to emerge, thus explicitly realising 't Hooft's proposal. This mechanism is based on a dictionary between semiclassical quantum mechanics, on the one hand, and the classical theory of irreversible thermodynamics in the linear regime, on the other. This thermodynamical formalism, developed by Nobel prize winners Onsager and Prigogine, can be easily mapped into that of semiclassical quantum mechanics.
[ES] Motivado por los problemas conceptuales relativos a la cuantización de la gravedad, el físico teórico holandés G. 't Hooft (premio Nobel de física en 1999) sugirió la noción de que la mecánica cuántica pudiera ser la teoría emergente de alguna otra teoría determinista subyacente. Dicha propuesta se conoce como la mecánica cuántica en tanto que teoría emergente. Esta línea de investigación, iniciada por 't Hooft a finales de los años 90, ha sido objeto de intenso estudio a lo largo de los últimos 15 años, tanto por el mismo 't Hooft como por numerosos otros investigadores. En esta tesis doctoral presentamos nuestra propia aproximación a la mecánica cuántica como fenómeno emergente. De acuerdo con este paradigma emergente para la mecánica cuántica, son efectos de pérdida de información en la teoría determinista subyacente los que conducen a que los estados de ésta última se agrupen en clases de equivalencia, las cuales clases se identifican con los estados cuánticos de la mecánica cuántica emergente. En breve, la cuantización es disipación, según 't Hooft. Asimismo se ha argumentado en la literatura que, en presencia de campos gravitatorios débiles, los efectos cuánticos son indistinguibles de los efectos térmicos. Dado que éstos últimos son típicamente disipativos por naturaleza, la presencia de un campo gravitatorio débil debería proporcionar un entorno en el cual los efectos cuánticos puedan entenderse como debidos a fluctuaciones térmicas, disipativas. Además, dado que los campos gravitatorios pueden eliminarse localmente (gracias al principio de equivalencia), debería existir algún tipo de principio de equivalencia para los efectos cuánticos, i.e., algún tipo de principio de relatividad para la noción de cuanticidad, por oposición a la noción de clasicidad. En esta tesis doctoral elaboramos estas ideas. Sin embargo, una vez fijado un sistema de referencia, los efectos gravitatorios ya no pueden eliminarse, y la afirmación de que la cuantización es disipación se presta a un tratamiento termodinámico. En esta tesis también presentamos un mecanismo mediante el cual la mecánica cuántica se ve emerger, comprobándose así explícitamente la propuesta de 't Hooft. Este mecanismo se basa en un diccionario entre la mecánica cuántica semiclásica, por un lado, y la teoría clásica de la termodinámica irreversible en el régimen lineal, por otro lado. Dicho formalismo termodinámico, desarrollado por los premios Nobel Onsager y Prigogine, puede trasladarse fácilmente a la mecánica cuántica semiclásica.
[CAT] Motivat pels problemes conceptuals en relació a la quantització de la gravetat, el físic teóric holandés G. 't Hooft (premi Nobel de física en 1999) va suggerir la noció de que la mecànica quàntica pogués ser la teoria emergent d ' alguna altra teoria determinista subjacent. A questa proposta es coneix com a mecanica quantica en tant que teoria emergent. Aquesta línia d ' investigació, iniciada per 't Hooft a final dels anys 90, ha sigut intensament estudiada durant els últims 15 anys , tant pel mateix 't Hooft com per nombrosos altres investigadors. En aquesta tesi doctoral presentem la nostra própia aproximació a la mecànica quàntica com a fenomen emergent. D ' acord amb aquest paradigma emergent per a la mecànica quàntica, són efectes de pérdua d ' informació en la teoria determinista, subjacent els que condueixen a que els estats d ' aquesta última s ' agrupen en classes d ' equivalència, les quals s ' identifiquen amb els estats quàntics de la mecànica quàntica emergent. Breument, la quantització es dissipació segons 't Hooft. Aixímateix, s ' ha argumentat a la literatura que, en presència de camps gravitatoris febles, els efectes quàntics són indistingibles dels efectes tèrmics. Com aquests últims són típicament dissipatius per naturalesa, la presència d ' un camp gravitatori feble hauria de proporcionar un entorn en el qual els efectes quàntico es puguen entendre com deguts a fluctuacions tèrmiques, dissipatives. A més a més, com que els camps gravitatoris poden eliminar-se localment (gràcies al principi d ' equivalència), hauria d ' existir algun tipus de principi d ' equivalència per als efectes quàntics, i.e. , algun tipus de principi de relativitat per a la noció de quanticitat, per oposició a la noció de classicitat. En aquesta tesi doctoral elaborem aquestes idees. En canvi, una vegada fixat el sistema de referència, els efectes gravitatoris ja no poden eliminar-se, i l ' afirmació de que la quantització és dissipació es presta a un tractament termodinàmic. En aquesta tesi també presentem un mecanisme mitjançant el qual la mecànica quàntica es veu emergir, comprovant-se explícitament la proposta de 't Hooft. A quest mecanisme es basa en un diccionari entre la mecànica quàntica semiclàssica, d ' una banda, i la teoria clàssica de la termodinàmica irreversible en el règim lineal, d ' una altra banda. A quest formalisme termodinàmic, desenvolupat pels premis Nobel Onsager i Prigogine, pot traslladar-se fàcilment a la mecànica quàntica semiclàssica.
Perea Córdoba, MH. (2015). On the semiclassical limit of emergent quantum mechanics, as a classical thermodynamics of irreversible processes in the linear regime [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54840
TESIS
APA, Harvard, Vancouver, ISO, and other styles
4

Exler, Matthias. "On classical and quantum mechanical energy spectra of finite Heisenberg spin systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980110440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Römer, Sarah. "The Classical Limit of Bohmian Mechanics." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-113148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Breuer, Thomas. "Classical observables, measurement, and quantum mechanics." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Borgan, Sharry. "Classical and quantum mechanics with chaos." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4968/.

Full text
Abstract:
This thesis is concerned with the study, classically and quantum mechanically, of the square billiard with particular attention to chaos in both cases. Classically, we show that the rotating square billiard has two regular limits with a mixture of order and chaos between, depending on an energy parameter, E. This parameter ranges from -2w(^2) to oo, where w is the angular rotation, corresponding to the two integrable limits. The rotating square billiard has simple enough geometry to permit us to elucidate that the mechanism for chaos with rotation or curved trajectories is not flyaway, as previously suggested, but rather the accumulation of angular dispersion from a rotating line. Furthermore, we find periodic cycles which have asymmetric trajectories, below the value of E at which phase space becomes disjointed. These trajectories exhibit both left and right hand curvatures due to the fine balance between Centrifugal and Coriolis forces. Quantum mechanically, we compare the spectral analysis results for the square billiard with three different theoretical distribution functions. A new feature in the study is the correspondence we find, by utilising the Berry-Robnik parameter q, between classical E and a quantum rotation parameter w. The parameter q gives the ratio of chaotic quantum phase volume which we can link to the ratio of chaotic phase volume found classically for varying values of E. We find good correspondence, in particular, the different values of q as w is varied reflect the births and subsequent destructions of the different periodic cycles. We also study wave packet dynamics, necessitating the adaptation of a one dimensional unitary integration method to the two dimensional square billiard. In concluding we suggest how this work may be used, with the aid of the chaotic phase volumes calculated, in future directions for research work.
APA, Harvard, Vancouver, ISO, and other styles
8

Nielsen, Steven Ole. "Mixed quantum-classical dynamics and statistical mechanics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63602.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lami, Ludovico. "Non-classical correlations in quantum mechanics and beyond." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457968.

Full text
Abstract:
Aquesta tesis parteix d'una pregunta aparentment ingènua: Què passa si es separen dos sistemes físics que estaven en contacte? Un dels descobriments més rellevants del segle passat és que els sistemes que obeeixen les lleis de la mecànica quàntica, en comptes de les lleis clàssiques, romanen intrínsecament connectats fins i tot quan estan separats físicament. Aquest fenomen és conegut com entrellaçament o entanglement. Aquí, ens preguntem quelcom més profund: pertany l'entrellaçament exclusivament als sistemes quàntics o és comú a totes les teories no clàssiques? I, donat el cas, com es pot comparar l'entrellaçament quàntic amb l'entrella çament que pertany a d'altres teories? La primera part de la tesis tracta amb aquestes qüestions considerant la teoria quàntica com a part d'un grup més ampli de teories físiques anomenat general probabilistic theories (GPTs). El Capítol 1 repassa les motivacions que hi ha darrera el formalisme GPT, contextualitzant el Capítol 2, on plantegem les preguntes mencionades en conjectures formals adjuntant-ne la nostre contribució cap a una solució completa. Al Capítol 3, considerem l'entrellaçament a nivell de mesures i no d'estats, la qual cosa ens porta cap a la investigació d'una de les seves principals implicacions, data hiding. En aquest marc, determinem la màxima efi ciència de el data hiding que un sistema quàntic pot exhibir i també el màxim valor entre tots els GPTs, trobant que els primers escalen amb l'arrel quadrada dels darrers. En la segona part d'aquest manuscrit estudiem alguns problemes relacionats amb l'entrellaçament quàntic. Al Capítol 4, discutim la seva resistència al soroll blanc, modelitzat amb canals que actuen tant local com globalment. Aquests canals depenen d'un nombre limitat de paràmetres, això fa que siguem capaços de respondre totes les preguntes bàsiques relacionades amb les propietats de transformació de l'entrellaçament. El Capítol 5 presenta la nostre visió sobre l'entrellaçament gaussià, amb especial focus en el rol del anomenat `positive partial transposition cri- terion' en aquest context. Extensament, fent servir tècniques d'anàlisis de matrius com ara Schur complements i matrix means, presentem demostracions de resultats clàssics generalitzant-los i resolent algun dels problemes oberts existents en la matèria. La tercera part de la tesis es basa en formes més generals de correlacions no clàssiques en sistemes bipartits i de variable contínua. Al Capítol 6 investiguem el Gaussian steering i problemes relacionats en la seva quantificació, així com presentem un esquema general que permeti consistentment classificar correlacions de sistemes bipartits gaussians en `clàssiques' i `quàntiques'. Finalment, el Capítol 7 explora alguns dels problemes relacionats amb strong subadditivity en desigualtats de matrius que juga un paper clau en el nostre anàlisis de correlacions en estats gaussians bipartits. Entre d'altres coses, la teoria que desenvolupem ens serveix per concloure que una Rényi-2 versió gaussiana del difús squashed entanglement coincideix amb el corresponent entrellaçament de formació quan s'avalua en estats gaussians.
Esta tesis versa sobre una cuestión aparentemente naíf: ¿qué ocurre cuando se separan dos sistemas físicos que estaban juntos previamente? Uno de los mayores descubrimientos del siglo pasado es que los sistemas que obedecen leyes mecano-cuánticas, en lugar de clásicas, permanecen ligados inextricablemente incluso tras haber sido separados físicamente, un fenómeno conocido como entrelazamiento. Aquí nos preguntamos algo más profundo si cabe: ¿es el entrelazamiento una característica exclusiva de los sistemas cuánticos o es común a todas las teorías no-clásicas? Y, si es este el caso, ¿cuán fuerte es el entrelazamiento mecano-cuántico comparado con aquel exhibido por otras teorías? La primera parte de esta tesis trata estas cuestiones considerando la teoría cuántica como parte de un conjunto más amplio de teorías físicas, colectivamente llamadas teorías probabilísticas generales (TPG). En el Capítulo 2 revisamos la sólida motivación que subyace al formalismo TPG, preparando el terreno para el Capítulo 2, donde traducimos las anteriores cuestiones a conjeturas precisas, y donde presentamos nuestro progreso hacia una solución completa. En el Capítulo 3 consideramos el entrelazamiento a nivel de medidas en vez de estados, lo cual conduce a la investigación de una de sus implicaciones principales, la ocultación de información. En este contexto, determinamos el máximo poder de ocultación de información que puede exhibir un sistema mecano-cuántico, así como el mayor valor entre todas las TPG, hallando que el primero crece como la raíz cuadrada del segundo. En la segunda parte de este manuscrito exploramos algunos de los problemas relacionados con el entrelazamiento cuántico. En el Capítulo 4 discutimos su resistencia al ruido blanco modelado por canales que actúan bien local o bien globalmente. Debido al número limitado de parámetros de los que dependen estos canales, somos capaces de responder todas las preguntas básicas que conciernen a diversas propiedades de la transformación del entrelazamiento. En el siguiente Capítulo 5 presentamos nuestra perspectiva sobre el tema del entrelazamiento gaussiano, con un énfasis particular sobre el papel del célebre \criterio de la transposición parcial positiva" en este contexto. Empleando extensivamente herramientas del análisis matricial como los complementos de Schur y las medias matriciales, presentamos pruebas unificadas de resultados clásicos, extendiéndolos y cerrando algunos de los problemas abiertos en el campo. La tercera parte de esta tesis se ocupa de formas más generales de correlaciones no-clásicas en sistemas bipartitos de variable continua. En el Capítulo 6 estudiamos el \steering" gaussiano y problemas relacionados con su cuantificaci ón, y dise~namos un esquema general que permite clasificar consistentemente correlaciones de estados gaussianos bipartitos en \clásicas" y \cuánticas". Finalmente, en el Capítulo 7 exploramos algunos problemas vinculados a una desigualdad matricial de \subaditividad fuerte" que desempe~na un papel crucial en nuestro análisis de las correlaciones en los estados gaussianos bipartitos. Entre otras cosas, la teoría que desarrollamos nos permite concluir que una versión Rényi-2 gaussiana del escurridizo squashed entanglement coincide en estados gaussianos con el correspondiente entrelazamiento de formación
This thesis is concerned with a seemingly naive question: what happens when you separate two physical systems that were previously together? One of the greatest discovery of the last century is that systems that obey quantum me- chanical instead of classical laws remain inextricably linked even after they are physically separated, a phenomenon known as entanglement. This leads im- mediately to another, deep question: is entanglement an exclusive feature of quantum systems, or is it common to all non-classical theories? And if this is the case, how strong is quantum mechanical entanglement as compared to that exhibited by other theories? The first part of the thesis deals with these questions by considering quan- tum theory as part of a wider landscape of physical theories, collectively called general probabilistic theories (GPTs). Chapter 1 reviews the compelling motiva- tions behind the GPT formalism, preparing the ground for Chapter 2, where we translate the above questions into precise conjectures, and present our progress toward a full solution. In Chapter 3 we consider entanglement at the level of measurements instead of states, which leads us to the investigation of one of its main implications, data hiding. In this context, we determine the maximal data hiding strength that a quantum mechanical system can exhibit, and also the maximum value among all GPTs, finding that the former scales as the square root of the latter. In the second part of this manuscript we explore some problems connected with quantum entanglement. In Chapter 4 we discuss its resistance to white noise, as modelled by channels acting either locally or globally. Due to the limited number of parameters on which these channels depend, we are able to answer all the basic questions concerning various entanglement transformation properties. The following Chapter 5 presents our view on the topic of Gaussian entanglement, with particular emphasis on the role of the celebrated `positive partial transposition criterion' in this context. Extensively employing matrix analysis tools such as Schur complements and matrix means, we present unified proofs of classic results, further extending them and closing some open problems in the field along the way. The third part of this thesis concerns more general forms of non-classical correlations in bipartite continuous variable systems. In Chapter 6 we look into Gaussian steering and problems related to its quantification, moreover devising a general scheme that allows to consistently classify correlations of bipartite Gaussian states into `classical' and `quantum' ones. Finally, Chapter 7 explores some problems connected with a `strong subadditivity' matrix inequality that plays a crucial role in our analysis of correlations in bipartite Gaussian states. Among other things, the theory we develop allows us to conclude that a Rényi-2 Gaussian version of the elusive squashed entanglement coincides with the corre- sponding entanglement of formation when evaluated on Gaussian states.
APA, Harvard, Vancouver, ISO, and other styles
10

Schlosshauer-Selbach, Maximilian. "The quantum-to-classical transition : decoherence and beyond /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum mechanics; Classical limit"

1

Advanced quantum mechanics the classical-quantum connection. Sudbury, Mass: Jones and Bartlett Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blümel, R. Advanced quantum mechanics the classical-quantum connection. Sudbury, Mass: Jones and Bartlett Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bóna, Pavel. Classical Systems in Quantum Mechanics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45070-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bolivar, A. O. Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Supersymmetry in quantum and classical mechanics. Boca Raton, Fla: Chapman & Hall/CRC, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gutzwiller, Martin C. Chaos in Classical and Quantum Mechanics. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0983-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kelley, J. Daniel, and Jacob J. Leventhal. Problems in Classical and Quantum Mechanics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46664-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gutzwiller, M. C. Chaos in classical and quantum mechanics. New York: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dyke, P. P. G. Guide to mechanics. Basingstoke: Macmillan Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1946-, Jamiołkowski Andrzej, ed. Geometric phases in classical and quantum mechanics. Boston: Birkhäuser, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum mechanics; Classical limit"

1

Shankar, Ramamurti. "The Classical Limit." In Principles of Quantum Mechanics, 189–94. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-7673-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shankar, R. "The Classical Limit." In Principles of Quantum Mechanics, 179–84. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-0576-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shankar, R. "The Classical Limit." In Principles of Quantum Mechanics, 223–35. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-0576-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Home, Dipankar. "Classical Limit of Quantum Mechanics." In Conceptual Foundations of Quantum Physics, 139–89. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9808-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mantica, Giorgio, and Joseph Ford. "On the Completeness of the Classical Limit of Quantum Mechanics." In Quantum Chaos — Quantum Measurement, 241–48. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7979-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faddeev, L., and O. Yakubovskiĭ. "The interconnection between quantum and classical mechanics. Passage to the limit from quantum mechanics to classical mechanics." In The Student Mathematical Library, 69–76. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/stml/047/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bóna, Pavel. "Macroscopic Limits." In Classical Systems in Quantum Mechanics, 75–112. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45070-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miller, William H. "Classical-Limit Quantum Mechanics and the Theory of Molecular Collisions." In Advances in Chemical Physics, 69–177. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143773.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chibbaro, Sergio, Lamberto Rondoni, and Angelo Vulpiani. "Quantum Mechanics, Its Classical Limit and Its Relation to Chemistry." In Reductionism, Emergence and Levels of Reality, 121–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06361-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tikochinsky, Y., and D. Shalitin. "Quantum Statistical Mechanics in Phase Space and the Classical Limit." In Maximum-Entropy and Bayesian Methods in Science and Engineering, 51–82. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9054-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum mechanics; Classical limit"

1

Davidovich, Luiz. "Quantum optics in cavities and the classical limit of quantum mechanics." In The XXXI latin american school of physics (Escuela Latinoamericana de fisica, ELAF) new perspectives on quantum mechanics. AIP, 1999. http://dx.doi.org/10.1063/1.58234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tollaksen, Jeff. "The Time-symmetric Formulation of Quantum Mechanics, Weak Values and the Classical Limit of Quantum Mechanics." In Quantum Information and Measurement. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/qim.2013.w4a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tollaksen, Jeff. "The Time-symmetric Formulation of Quantum Mechanics, Weak Values and the Classical Limit of Quantum Mechanics." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.w4a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davidovich, L. "Decoherence, Wigner functions, and the classical limit of quantum mechanics in cavity QED." In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gillet, Jean-Numa, and Sebastian Volz. "Atomic-Scale Three-Dimensional Phononic Crystals With a Large Thermoelectric Figure of Merit." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68381.

Full text
Abstract:
The design of thermoelectric materials led to extensive research on superlattices with a low thermal conductivity. Indeed, the thermoelectric figure of merit ZT varies with the inverse of the thermal conductivity but is directly proportional to the power factor. Unfortunately, as nanowires, superlattices cancel heat conduction in only one main direction. Moreover they often show dislocations owing to lattice mismatches, which reduces their electrical conductivity and avoids a ZT larger than unity. Self-assembly is a major epitaxial technology to design ultradense arrays of germanium quantum dots (QDs) in silicon for many promising electronic and photonic applications as quantum computing. Accurate positioning of the self-assembled QD can now be achieved with few dislocations. We theoretically demonstrate that high-density three-dimensional (3-D) arrays of self-assembled Ge QDs, with a size of only some nanometers, in a Si matrix can also show an ultra-low thermal conductivity in the three spatial directions. This property can be considered to design new CMOS-compatible thermoelectric devices. To obtain a realistic and computationally-manageable model of these nanomaterials, we simulate their thermal behavior with atomic-scale 3-D phononic crystals. A phononic-crystal period (supercell) consists of diamond-like Si cells. At each supercell center, we substitute Si atoms by Ge atoms to form a box-like nanoparticle. Since this phononic crystal is periodic, we compute its phonon dispersion curves by classical lattice dynamics. Non-periodicities can be introduced with statistical distributions. From the flat dispersion curves, we obtain very small group velocities; this reduces the thermal conductivity in our phononic crystal compared to bulk Si. However, owing to the wave-particle duality at very small scales in quantum mechanics, another reduction arises from multiple scattering of the particle-like phonons in nanoparticle clusters. At room temperature, the thermal conductivity in an example phononic crystal can be reduced by a factor of at least 165 compared to bulk Si or below 0.95 W/mK. This value, which is lower than the classical Einstein limit of single crystalline Si, is an upper limit of the thermal conductivity since we use an incoherent-scattering approach for the nanoparticles. Because of its very low thermal conductivity, we hope to obtain a much larger ZT than unity in our atomic-scale 3-D phononic crystal. Indeed, this silicon-based nanomaterial is crystalline with a power factor that can be optimized by doping using CMOS-compatible processes. Future research on the phononic-crystal electrical conductivity has to be performed in order to compute the full ZT with a good accuracy.
APA, Harvard, Vancouver, ISO, and other styles
6

Nikolić, Hrvoje, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Classical Mechanics as Nonlinear Quantum Mechanics." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ishihara, Abraham K., and Shahar Ben-Menahem. "A Matrix WKB Approach to Feedforward and Feedback Control." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16119.

Full text
Abstract:
We apply a powerful new analytical approximation method, recently developed by the authors, to the design and analysis of feedforward and feedback control systems. This formalism employs a matrix version of the WKB expansion, which is an asymptotic approximation method familiar in quantum mechanics and classical continuum mechanics. Our matrix WKB formalism has proven remarkably useful in approximating and characterizing the long-term dynamics of systems of ODEs (both linear and nonlinear) when there exists a time scale hierarchy. In particular, the linear error dynamics encountered in the analysis and design of controllers for multi-input multi-output systems, is typically formulated as a first-order vector differential equation involving a time-dependent matrix. To illustrate our matrix WKB approach, we consider the feedforward and feedback control of the single link manipulator. The desired trajectory is assumed to vary sinusoidally with time. For sufficiently small expansion parameters, the closed form WKB approximants can be used to determine safe controller parameters. Given a specific time scale hierarchy, we use a theorem reported previously to partition the controller parameter space into three distinct regions in which the system is, respectively: exponentially stable, exponentially unstable, and undecided. The undecided region is a narrow strip about a computable transition hypersurface. This strip can be made progressively narrower by working to a high enough order in the WKB expansion. In the limit of infinitely small expansion parameters, the transition curve tends to the actual stability-instability boundary.
APA, Harvard, Vancouver, ISO, and other styles
8

Evers, Jörg. "Spatial Measurements Beyond Classical Limit." In International Conference on Quantum Information. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/icqi.2007.ithc5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kosyakov, B. P. "Subnuclear realm: classical in quantum and quantum in classical." In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Urbański, Paweł. "An affine framework for analytical mechanics." In Classical and Quantum Integrability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc59-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum mechanics; Classical limit"

1

Haque, Azizul, and Thomas F. George. Dynamics of Observed Reality: Abridged Version of Classical and Quantum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada198637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Sang-Bong. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10139084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography