To see the other types of publications on this topic, follow the link: Quantum nanoscience.

Dissertations / Theses on the topic 'Quantum nanoscience'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Quantum nanoscience.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Suri, Baladitya. "Transmon qubits coupled to superconducting lumped element resonators." Thesis, University of Maryland, College Park, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3711371.

Full text
Abstract:
<p> I discuss the design, fabrication and measurement at millikelvin-temperatures of Al/AlO<i><sub>x</sub></i>/Al Josephson junction-based transmon qubits coupled to superconducting thin-film lumped element microwave resonators made of aluminum on sapphire. The resonators had a center frequency of around 6GHz, and a total quality factor ranging from 15,000 to 70,000 for the various devices. The area of the transmon junctions was about 150 nm &times; 150 nm and with Josephson energy <i>E<sub>J</sub></i> such that 10GHz &le; <i>E<sub>J</sub></i> &le; 30 GHz. The charging energy of the transmon
APA, Harvard, Vancouver, ISO, and other styles
2

Roark, Brandon Kyle. "Nucleic Acid-Driven Quantum Dot-Based Lattice Formations for Biomedical Applications." Thesis, The University of North Carolina at Charlotte, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10619578.

Full text
Abstract:
<p> We present a versatile biosensing strategy that uses nucleic acids programmed to undergo an isothermal toehold mediated strand displacement in the presence of analyte. This rearrangement results in a double biotinylated duplex formation that induces the rapid aggregation of streptavidin decorated quantum dots (QDs). As biosensor reporters, QDs are advantageous to organic fluorophores and fluorescent proteins due to their enhanced spectral and fluorescence properties. Moreover, the nanoscale regime aids in an enhanced surface area that increase the number of binding of macromolecules, thus
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Bin, and 王斌. "Ab-initio calculation of quantum ac transport in nanoscale structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Bin. "Ab-initio calculation of quantum ac transport in nanoscale structures." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43085489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Engel, Jesse Hart. "Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots." Thesis, University of California, Berkeley, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3616442.

Full text
Abstract:
<p> Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their
APA, Harvard, Vancouver, ISO, and other styles
6

Shah, Raman Anand. "Orientational and quantum plasmonic effects in the optics of metal nanoparticles." Thesis, The University of Chicago, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3638691.

Full text
Abstract:
<p> The classical theory of plasmonics envisions spherical nanoparticles obeying classical electrodynamics. Modern colloidal synthesis of noble metal nanoparticles, in tandem with emerging methods of nanoparticle assembly, transcends the assumptions of this theory. First, strongly nonspherical particles give rise to optical spectra with complicated orientation dependence. An interpolation method is introduced to connect electrodynamic simulation results, generally carried out at fixed orientations, with experimental optical spectra, such as those of randomly oriented ensembles. Second, the abi
APA, Harvard, Vancouver, ISO, and other styles
7

Dereviankin, Vitalii Alekseevich. "Development of a Liquid Contacting Method for Investigating Photovoltaic Properties of PbS Quantum Dot Solids." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4240.

Full text
Abstract:
Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photon-to-electron conversion yields. However, record power conversion efficiencies remain limited mainly due to bulk and interfacial defects in the light absorbing material (QD solids). Interfacial defects can be formed when a semiconductor, such as QD solid, is contacted by another material and may predetermine the semiconductor/metal or semiconductor/metal-oxide junction properties. The objective of the work described in this dissertation was set to explore whether electrochemical contacting using liquid electro
APA, Harvard, Vancouver, ISO, and other styles
8

Esposito, Massimiliano. "Kinetic theory for quantum nanosystems." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211088.

Full text
Abstract:
In this thesis, we investigate the emergence of kinetic processes in finite quantum systems. We first generalize the Redfield theory to describe the dynamics of a small quantum system weakly interacting with an environment of finite heat capacity. We then study in detail the spin-GORM model, a model made of a two-level system interacting with a random matrix environment. By doing this, we verify our new theory and find a critical size of the environment over which kinetic processes occur. We finally study the emergence of a diffusive transport process, on a finite tight-binding subsystem inter
APA, Harvard, Vancouver, ISO, and other styles
9

Maurer, Peter. "Coherent control of diamond defects for quantum information science and quantum sensing." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11431.

Full text
Abstract:
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum
APA, Harvard, Vancouver, ISO, and other styles
10

Plant, Simon Richard. "Molecular engineering with endohedral fullerenes : towards solid-state molecular qubits." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:84f12a03-5b1d-4e04-82d5-5b28ca92e56c.

Full text
Abstract:
Information processors that harness quantum mechanics may be able to outperform their classical counterparts at certain tasks. Quantum information processing (QIP) can utilize the quantum mechanical phenomenon of entanglement to implement quantum algorithms. Endohedral fullerenes, where atoms, ions or clusters are trapped in a carbon cage, are a class of nanomaterials that show great promise as the basis for a solid-state QIP architecture. Some endohedral fullerenes are spin–active, and offer the potential to encode information in their spin-states. This thesis addresses the challenges of how
APA, Harvard, Vancouver, ISO, and other styles
11

Angell, Joshua James. "SYNTHESIS AND CHARACTERIZATION OF CdSe-ZnS CORE-SHELL QUANTUM DOTS FOR INCREASED QUANTUM YIELD." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/594.

Full text
Abstract:
Quantum dots are semiconductor nanocrystals that have tunable emission through changes in their size. Producing bright, efficient quantum dots with stable fluorescence is important for using them in applications in lighting, photovoltaics, and biological imaging. This study aimed to optimize the process for coating CdSe quantum dots (which are colloidally suspended in octadecene) with a ZnS shell through the pyrolysis of organometallic precursors to increase their fluorescence and stability. This process was optimized by determining the ZnS shell thickness between 0.53 and 5.47 monolayers and
APA, Harvard, Vancouver, ISO, and other styles
12

Riley, James R. "A Systematic Investigation of Quantum Confinement Effects in Bismuth Nanowire Arrays." Thesis, Boston College, 2009. http://hdl.handle.net/2345/693.

Full text
Abstract:
Thesis advisor: Michael Graf<br>Bismuth is an interesting element to study because the low effective mass of its charge carriers makes the material sensitive to quantum confinement effects. When bismuth is reduced to the nanoscale two interesting phenomena may occur: it may transition from a semimetal to a semiconductor, or charge carriers in special surface states may begin to dominate the behavior of the material. Arrays of bismuth nanowires of various diameters were studied to investigate these possibilities. The magnetoresistance of the arrays was measured and the period of Shubnikov-de Ha
APA, Harvard, Vancouver, ISO, and other styles
13

Nah, Seungjoo. "Kondo temperature of a quantum dot." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41137.

Full text
Abstract:
The low-energy properties of quantum dot systems are dominated by the Kondo effect. We study the dependence of the characteristic energy scale of the effect, the Kondo temperature, on the gate voltage, which controls the number of electrons in the strongly blockaded dot. We show that in order to obtain the correct Kondo temperature as a function of the gate voltage, it is crucial to take into account the presence of many energy levels in the dot. The dependence turns out to be very different from that in the conventional single-level Anderson impurity model. Unlike in the latter, the Kondo tem
APA, Harvard, Vancouver, ISO, and other styles
14

Woolfson, Robert. "Spins in rings : new chemistry and physics with molecular wheels." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/spins-in-rings-new-chemistry-and-physics-with-molecular-wheels(1cce143a-105e-4f8c-ac19-388f793fddc4).html.

Full text
Abstract:
This thesis explores the synthesis and characterisation of a range of molecular wheels containing unpaired electron spins. These molecular spin systems are of considerable interest, both for the insight they provide into the physics of such systems and for their potential as quantum bits ("qubits") in a quantum information processing device. In particular, this thesis explores using these wheels to meet criteria 1 and 5 of the DiVincenzo criteria. The synthesis of a novel homometallic and nonametallic ring of CrIII ions is introduced, along with extensive physical characterisation. Inelastic N
APA, Harvard, Vancouver, ISO, and other styles
15

Hjerrild, Natasha E. "Silver nanowire transparent conductors for quantum dot photovoltaics." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f1e7821e-1fcc-489b-86d2-13a3298205dd.

Full text
Abstract:
This thesis studies the application of silver nanowire transparent conductors in PbS quantum dot photovoltaics. Silver nanowires were synthesized using a colloidal method and characterized using scanning electron microscopy. Nanowires were deposited on glass substrates by a stamp transfer process to generate a low density continuous network of conductive nanowires. This resulted in a highly conductive and transparent film appropriate for optoelectronic applications. Nanowire synthesis, deposition, and processing were optimised to produce transparent conductors suitable for thin film photovolta
APA, Harvard, Vancouver, ISO, and other styles
16

Lambright, Scott. "Ultrafast Charge Carrier Dynamics in Au/Semiconductor Nanoheterostructures." Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1404741549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Galvani, Benoit. "Modélisation du transport électronique quantique : effet du confinement et des collisions dans les cellules solaires." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0402.

Full text
Abstract:
La limite de Shockley-Queisser représente le compromis entre la non-exploitation des photons d’énergie insuffisante et les pertes par thermalisation des porteurs photo-générés à hautes énergies. Il existe des dispositifs photovoltaïques permettant de dépasser cette limite, basés sur les propriétés quantiques des porteurs et de leur transport. La compréhension des phénomènes physiques quantiques est essentiel pour l’élaboration de nouvelles solutions. L’objectif de cette thèse consiste à réaliser une étude numérique des effets liés au confinement et aux collisions dans des cellules solaires. Da
APA, Harvard, Vancouver, ISO, and other styles
18

Churchill, Hugh Olen Hill. "Quantum Dots in Gated Nanowires and Nanotubes." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10412.

Full text
Abstract:
This thesis describes experiments on quantum dots made by locally gating one-dimensional quantum wires. The first experiment studies a double quantum dot device formed in a Ge/Si core/shell nanowire. In addition to measuring transport through the double dot, we detect changes in the charge occupancy of the double dot by capacitively coupling it to a third quantum dot on a separate nanowire using a floating gate. We demonstrate tunable tunnel coupling of the double dot and quantify the strength of the tunneling using the charge sensor. The second set of experiments concerns carbon nanotube doub
APA, Harvard, Vancouver, ISO, and other styles
19

Nagy, Amber M. "Characterization and Interactions of Nanoparticles in Biological Systems." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1290014457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bylsma, Jason Michael. "Multidimensional Spectroscopy of Semiconductor Quantum Dots." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4001.

Full text
Abstract:
The coherent properties of semiconductor nanostructures are inherently difficult to measure and one-dimensional spectroscopies are often unable to separate inhomogeneous and homogeneous linewidths. We have refined and improved a method of performing multidimensional Fourier transform spectroscopy based on four-wave mixing (FWM) experiments in the box geometry. We have modified our system with broadband beamsplitters in all interferometer arms, high-resolution translation stages and the ability to work in reflection geometry. By improving the phase-stability of our setup and scanning pulse dela
APA, Harvard, Vancouver, ISO, and other styles
21

Raviraj, Tejas. "Design, Implementation, and Test of Next Generation FPGAs Using Quantum-Dot Cellular Automata Technology." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302291185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Guidez, Emilie Brigitte. "Quantum mechanical origin of the plasmonic properties of noble metal nanoparticles." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17314.

Full text
Abstract:
Doctor of Philosophy<br>Department of Chemistry<br>Christine M. Aikens<br>Small silver and gold clusters (less than 2 nm) display a discrete absorption spectrum characteristic of molecular systems whereas larger particles display a strong, broad absorption band in the visible. The latter feature is due to the surface plasmon resonance, which is commonly explained by the collective dipolar motion of free electrons across the particle, creating charged surface states. The evolution between molecular properties and plasmon is investigated. Time-dependent density functional theory (TDDFT) calculat
APA, Harvard, Vancouver, ISO, and other styles
23

Yan, Yueran. "CdTe, CdTe/CdS Core/Shell, and CdTe/CdS/ZnS Core/Shell/Shell Quantum Dots Study." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1327614907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mondelo-Martell, Manel. "Quantum Confinement of Gaseous Molecules in Nanostructures: Effects on the Dynamics and Internal Structure." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/586179.

Full text
Abstract:
Quantum confinement effects, understood as the changes on the structure and dynamics of a molecule when it goes from a free environment to a cavity with some characteristic length of the order of the nanometer, represent both a challenge and an opportunity. A challenge, because there is still work to be done in order to be able to understand and model them properly. An opportunity, because they offer the means to tune molecular properties such as adsorption, diffusion, or even reactivity. The present Doctoral Thesis is focused on the theoretical and computational study of the system consistin
APA, Harvard, Vancouver, ISO, and other styles
25

Miller, Emily Jo. "Assembly of Hybrid Nanostructures Utilizing Iron Oxide." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1586550489892278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Botros, Christopher Marcus, and Richard N. Savage. "Quantum Dot Deposition into PDMS and Application onto a Solar Cell." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/897.

Full text
Abstract:
Research to increase the efficiency of conventional solar cells is constantly underway. The goal of this work is to increase the efficiency of conventional solar cells by incorporating quantum dot (QD) nanoparticles in the absorption mechanism. The strategy is to have the QDs absorb UV and fluoresce photons in the visible region that are more readily absorbed by the cells. The outcome is that the cells have more visible photons to absorb and have increased power output. The QDs, having a CdSe core and a ZnS shell, were applied to the solar cells as follows. First, the QDs were synthesized in a
APA, Harvard, Vancouver, ISO, and other styles
27

Heath, Travis Justin. "Studies on the Preparation and Luminescence Properties of Cadmium Selenide Quantum Dots, Their Immobilization, and Applications." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1750.

Full text
Abstract:
Quantum dots are semiconductive particles whose properties are highly influenced by the presence of at least one electron. Cadmium selenide quantum dots were synthesized via colloidal synthesis. Contrary to previous preparations, more focus was placed on the temperature rather than the duration of time at which they form. A series of colored solutions were obtained because the excited quantum dots of various sizes emitted specific wavelengths of light. The emission spectra showed that the temperature-dependent quantum dots were successfully synthesized. The quantum dots were also immobilized
APA, Harvard, Vancouver, ISO, and other styles
28

Kapkar, Rohan Viren. "Modeling and Simulation of Altera Logic Array Block using Quantum-Dot Cellular Automata." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1304616947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Harvey, Tyler. "Electron Orbital Angular Momentum| Preparation, Application and Measurement." Thesis, University of Oregon, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10599464.

Full text
Abstract:
<p> The electron microscope is an ideal tool to prepare an electron into a specified quantum state, entangle that state with states in a specimen of interest, and measure the electron final state to indirectly gain information about the specimen. There currently exist excellent technologies to prepare both momentum eigenstates (transmission electron microscopy) and position eigenstates (scanning transmission electron microscopy) in a narrow band of energy eigenstates. Similarly, measurement of the momentum and position final states is straightforward with post-specimen lenses and pixelated det
APA, Harvard, Vancouver, ISO, and other styles
30

Moore, Christopher S. "Study of Immobilizing Cadmium Selenide Quantum Dots in Selected Polymers for Application in Peroxyoxalate Chemiluminescence Flow Injection Analysis." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1151.

Full text
Abstract:
Two batches of CdSe QDs with different sizes were synthesized for immobilizing in polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE). The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use in applicable immunoassays. Hydrogen peroxide standards were injected into the flow injection analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-(2,4,6-trichlorophenyl) oxalate. Linear correlations between hydrogen peroxide and chemilumenscent intensities yielded regression values greater than
APA, Harvard, Vancouver, ISO, and other styles
31

Liang, Dong. "Semiconductor Nanowires: Synthesis and Quantum Transport." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1327641946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Weichselbaum, Andreas. "Nanoscale Quantum Dynamics and Electrostatic Coupling." Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1091115085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kirsanova, Maria. "Engineering of Semiconductor Nanocomposites for Harvesting and Routing of Optical Energy." Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1308104239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Antu, Antara Debnath. "Morphology and Surface Passivation of Colloidal PbS Nanoribbons." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1499383746861722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Casalenuovo, Kristen. "Density Functional Investigations of Pure and Ligated Clusters." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1788.

Full text
Abstract:
Atomic clusters are attractive candidates for building motifs for new nano-assembled materials with desirable properties. At this nano-regime of matter, the size, shape, and composition of clusters changes their electronic structure and hence their properties. Computational modeling must work hand in hand with experiment to provide robust descriptions of the geometries and energetics of atomic clusters and how they might behave in a nano-assembled material. To this end, we have investigated three distinct species as model systems: antimony oxides SbxOy (x = 1, 2; y = 0 - 3), metal ion-solvent
APA, Harvard, Vancouver, ISO, and other styles
36

Roe, Clarissa A. "Investigation of Carbon Nanomaterials Embedded in a Cementitious Matrix." TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1750.

Full text
Abstract:
The objective of this thesis was to investigate whether the addition of carbon nanofibers had an effect on the splitting tensile strength of Hydro-Stone gypsum concrete. The carbon nanofibers used were single-walled carbon nanotubes (SWNT), buckminsterfullerene (C60), and graphene oxide (GO). Evidence of the nanofibers interacting with gypsum crystals in a connective manner was identified in both 1 mm thick concrete discs and concrete columns possessing a height of 2 in and a diameter of 1 in. Before imaging, the columns were subjected to a splitting tensile strength test. The results illustra
APA, Harvard, Vancouver, ISO, and other styles
37

Rolon, Soto Juan Enrique. "Coherent Exciton Phenomena in Quantum Dot Molecules." Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1314742055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Waissman, Jonah. "Carbon Nanotubes for the Generation and Imaging of Interacting 1D States of Matter." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11661.

Full text
Abstract:
Low-dimensional systems in condensed matter physics exhibit a rich array of correlated electronic phases. One-dimensional systems stand out in this regard. Electrons cannot avoid each other in 1D, enhancing the effects of interactions. The resulting correlations leave distinct spatial imprints on the electronic density that can be imaged with scanning probes. Disorder, however, can destroy these delicate interacting states by breaking up the electron liquid into localized pieces. Thus, to generate fragile interacting quantum states, one requires an extremely clean system in which disorder does
APA, Harvard, Vancouver, ISO, and other styles
39

Dutta, Debosruti. "Insights into the Epitaxial Relationships between One-Dimensional Nanomaterials and Metal Catalyst Surfaces Using Density Functional Theory Calculations." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5213.

Full text
Abstract:
This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in
APA, Harvard, Vancouver, ISO, and other styles
40

Esteves, Richard J. "The Dawn of New Quantum Dots: Synthesis and Characterization of Ge1-xSnx Nanocrystals for Tunable Bandgaps." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4637.

Full text
Abstract:
Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due
APA, Harvard, Vancouver, ISO, and other styles
41

Gonsalves, Peter Robert. "THE DESIGN AND FABRICATION OF A MICROFLUIDIC REACTOR FOR SYNTHESIS OF CADMIUM SELENIDE QUANTUM DOTS USING SILICON AND GLASS SUBSTRATES." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/720.

Full text
Abstract:
A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. A syringe containing a room temperature CdSe solution was interfaced to the microfluid
APA, Harvard, Vancouver, ISO, and other styles
42

Thapliyal, Himanshu. "Design, Synthesis and Test of Reversible Circuits for Emerging Nanotechnologies." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3379.

Full text
Abstract:
Reversible circuits are similar to conventional logic circuits except that they are built from reversible gates. In reversible gates, there is a unique, one-to-one mapping between the inputs and outputs, not the case with conventional logic. Also, reversible gates require constant ancilla inputs for reconfiguration of gate functions and garbage outputs that help in keeping reversibility. Reversible circuits hold promise in futuristic computing technologies like quantum computing, quantum dot cellular automata, DNA computing, optical computing, etc. Thus, it is important to minimize parameters
APA, Harvard, Vancouver, ISO, and other styles
43

Wijesundara, Kushal Chinthaka. "Ultrafast Exciton Dynamics and Optical Control in Semiconductor Quantum Dots." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1336648375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Quan, Qimin. "Photonic Crystal Nanobeam Cavities for Biomedical Sensing." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10421.

Full text
Abstract:
Manipulation of light at the nanoscale has the promise to enable numerous technological advances in biomedical sensing, optical communications, nano-mechanics and quantum optics. As photons have vanishingly small interaction cross sections, their interactions have to be mitigated by matters (i.e. quantum emitters, molecules, electrons etc.). Waveguides and cavities are the fundamental building blocks of the optical circuits, which control or confine light to specific matters of interest. The first half of the thesis (Chapters 2 & 3) focuses on how to design various photonic nanostructures to m
APA, Harvard, Vancouver, ISO, and other styles
45

Tang, Yiteng. "Exciton Physics of Colloidal Nanostructures and Metal Oxides." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1617121207654824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kirsanova, Maria. "ZnSe/CdS Core/Shell Nanostructures and Their Catalytic Properties." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1342565590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ruiz-Tijerina, David A. "Kondo Physics and Many-Body Effects in Quantum Dots and Molecular Junctions." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1385982088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Van, Zandt Nicholas L. "Aqueous Fabrication of Pristine and Oxide Coated ZnSe Nanoparticles." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1623356039586297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chan, Christopher Chang Sing. "Dynamics of nanostructured light emitted diodes." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8ca45bb5-7ebf-4f25-a06e-8ab14602382d.

Full text
Abstract:
Experimental investigations of the optical properties of GaN nanostructured light emitting diode (LED) arrays are presented. Microphotoluminescence spectroscopy with pulsed and continuous wave lasers was used to probe the carrier dynamics and emission mechanisms of nanorod LED arrays fabricated by a top down etching method. Results show a possible reduction in internal electric field as nanorod diameter decreases. Localisation effects were also observed, affecting the spectral shape of the nanorod emission. Under two-photon excitation, quantum dot-like sharp spectral peaks in the PL spectra ar
APA, Harvard, Vancouver, ISO, and other styles
50

Tolley, Robert Douglas. "Charge Transport in Nano-Constrictions and Magnetic Microstructures." Miami University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=miami1344095174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!