Dissertations / Theses on the topic 'Quantum Networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Quantum Networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dai, Wenhan. "Quantum networks : state transmission and network operation." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128289.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2020
Cataloged from student-submitted the PDF of thesis.
Includes bibliographical references (pages 147-155).
Quantum information science is believed to create the next technological revolution. As key ingredients of quantum information science, quantum networks enable various technologies such as secure communication, distributed quantum sensing, quantum cloud computing, and next-generation positioning, navigation, and timing. The main task of quantum networks is to enable quantum communication among different nodes in the network. This includes the topics such as the transmission of quantum states involving multiple parties, the processing of quantum information at end nodes, and the distribution of entanglement among remote nodes. Since quantum communication has its own peculiar properties that have no classical counterparts, the protocols and strategies designed for classical communication networks are not well-suited for quantum ones. This calls for new concepts, paradigms, and methodologies tailored for quantum networks.
To that end, this thesis studies the design and operation of quantum networks, with focus on the following three topics: state transmission, queueing delay, and remote entanglement distribution. The first part develops protocols to broadcast quantum states from a transmitter to N different receivers. The protocols exhibit resource tradeoffs between multiparty entanglement, broadcast classical bits (bcbits), and broadcast quantum bits (bqubits), where the latter two are new types of resources put forth in this thesis. We prove that to send 1 bqubit to N receivers using shared entanglement, O(logN) bcbits are both necessary and sufficient. We also show that the protocols can be implemented using poly(N) basic gates composed of single-qubit gates and CNOT gates. The second part introduces a tractable model for analyzing the queuing delay of quantum data, referred to as quantum queuing delay (QQD).
The model employs a dynamic programming formalism and accounts for practical aspects such as the finite memory size. Using this model, we develop a cognitive-memory-based policy for memory management and show that this policy can decrease the average queuing delay exponentially with respect to memory size. The third part offers a design of remote entanglement distribution (RED) protocols that maximize the entanglement distribution rate (EDR). We introduce the concept of enodes, representing the entangled quantum bit (qubit) pairs in the network. This concept enables us to design the optimal RED protocols based on the solutions of some linear programming problems. Moreover, we investigate RED in a homogeneous repeater chain, which is a building block for many quantum networks. In particular, we determine the maximum EDR for homogeneous repeater chains in a closed form. The contributions of this work provide guidelines for the design and implementation of quantum networks.
by Wenhan Dai.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Valentini, Lorenzo. "Quantum Error Correction for Quantum Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textRafiei, Nima. "Quantum Communication Networks." Thesis, Stockholms universitet, Fysikum, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-186606.
Full textMaring, Nicolas. "Quantum frecuency conversion for hybrid quantum networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/663202.
Full textMenneer, Tamaryn Stable Ia. "Quantum artificial neural networks." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286530.
Full textFAROOQ, UMER. "Decoherence in Quantum Networks." Doctoral thesis, Università degli Studi di Camerino, 2015. http://hdl.handle.net/11581/401743.
Full textAndersson, Erika. "Quantum information and atomic networks." Doctoral thesis, Stockholm, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3068.
Full textMeignant, Clément. "Multipartite communications over quantum networks." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS342.
Full textThe field of quantum networks is currently a major area of investigation in quantum technologies. One of the simplest acts of quantum communication, the distribution of a single bipartite entangled state, has been highly studied as it is a simple problem to characterize, simulate and implement. It is also useful for a prominent quantum network application: the secured distribution of a cryptographic key. However, the use of quantum networks goes far beyond. We need to study the simultaneous distribution of multipartite states over quantum networks. In this manuscript, we report on several works of progress in the domain. We first study the recycling of previously distributed resources in the asymptotic regime by the use of entanglement combing and quantum state merging. Then, we characterize the distribution of quantum states using the tensor network formalism. We also characterize a broad class of classical distribution protocols by the same formalism and use this similarity to compare the distribution of classical correlations over classical networks to a the distribution of quantum state over quantum networks. We also build protocols to distribute specific classes of states over quantum networks such as graph states and GHZ states by using the graph state formalism and a bit of graph theory. Finally, we implement the previous protocols in a more realistic setting and participate in the elaboration of multipartite features for a quantum network simulator: QuISP. We also aimed to popularize the notions of quantum information to a broad audience. We report on the creation of a video game based on quantum optics, adding to the existing popularization ludography
Pesah, Arthur. "Learning quantum state properties with quantum and classical neural networks." Thesis, KTH, Tillämpad fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252693.
Full textRomán, Rodríguez Víctor. "Quantum Optics Systems for Long-Distance Cryptography and Quantum Networks." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS224.
Full textThe thesis is divided into two parts: The first part is in the field of Quantum Cryptography. In this part we develop a theoretical study of a Quantum Key Distribution (QKD) protocol in the scenario of a satellite-ground station link. We consider the addition of quantum channel fluctuations and the possibility of success of the protocol in the framework of continuous variables in an implementation with state-of-the-art technologies. We show the feasibility of CVQKD in the satellite context. In the second part, we build, from scratch, a source of continuous-variable graph-like quantum states of light using nonlinear waveguides. These states are essential for the implementation of communication and quantum computing protocol as they can be seen to be quantum networks. We perform a theoretical study for multimode quantum states of light after the interaction in a non-linear waveguide that help us to design the experiment. Finally we present the experimental results that demonstrate the first results on the quantum source of continuous variable multimode quantum states of light, measuring up to 11 squeezed thermal light states
Magnani, Lorenzo Domenico. "Syndrome-based Piggybacking for Quantum Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21815/.
Full textCuquet, Palau Martí. "Entanglement distribution in quantum complex networks." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/107850.
Full textThis thesis deals with the study of quantum networks with a complex structure, the implications this structure has in the distribution of entanglement and how their functioning can be enhanced by operating in the quantum regime. We first consider a complex network of bipartite states, both pure and mixed, and study the distribution of long-distance entanglement. Then, we move to a network with noisy channels and study the creation and distribution of large, multipartite states. The work contained in this thesis is primarily motivated by the idea that the interplay between quantum information and complex networks may give rise to a new understanding and characterization of natural systems. Complex networks are of particular importance in communication infrastructures, as most present telecommunication networks have a complex structure. In the case of quantum networks, which are the necessary framework for distributed quantum processing and for quantum communication, it is very plausible that in the future they acquire a complex topology resembling that of existing networks, or even that methods will be developed to use current infrastructures in the quantum regime. A central task in quantum networks is to devise strategies to distribute entanglement among its nodes. In the first part of this thesis, we consider the distribution of bipartite entanglement as an entanglement percolation process in a complex network. Within this approach, perfect entanglement is established probabilistically between two arbitrary nodes. We see that for large networks, the probability of doing so is a constant strictly greater than zero (and independent of the size of the network) if the initial amount of entanglement is above a certain critical value. Quantum mechanics offer here the possibility to change the structure of the network without need to establish new, "physical" channels. By a proper local transformation of the network, the critical entanglement can be decreased and the probability increased. We apply this transformation to complex network models with arbitrary degree distribution. In the case of a noisy network of mixed states, we see that for some classes of states, the same approach of entanglement percolation can be used. For general mixed states, we consider a limited-path-length entanglement percolation constrained by the amount of noise in the connections. We see how complex networks still offer a great advantage in the probability of connecting two nodes. In the second part, we move to the multipartite scenario. We study the creation and distribution of graph states with a structure that mimic the underlying communication network. In this case, we use an arbitrary complex network of noisy channels, and consider that operations and measurements are also noisy. We propose an efficient scheme to distribute and purify small subgraphs, which are then merged to reproduce the desired state. We compare this approach with two bipartite protocols that rely on a central station and full knowledge of the network structure. We show that the fidelity of the generated graphs can be written as the partition function of a classical disordered spin system (a spin glass), and its decay rate is the analog of the free energy. Applying the three protocols to a one-dimensional network and to complex networks, we see that they are all comparable, and in some cases the proposed subgraph protocol, which needs only local information of the network, performs even better.
Ahamed, Woakil Uddin. "Quantum recurrent neural networks for filtering." Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.
Full textSteele, Christopher Mark. "Relativistic spin networks." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275956.
Full textFainsin, David. "Continuous Variable Multimode Quantum States at Telecommunication Wavelengths for Quantum Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS564.
Full textThe goal of this thesis is to build a source of multimode vacuum squeezed states of light at telecommunication wavelength. We achieve this via in a single-pass spontaneous parametric down-conversion of a frequency comb in the near-infrared using a type-0 ppKTP waveguide. This method offers numerous advantages. Firstly, the production is entirely deterministic, providing a high level of reliability. Additionally, it doesn't require any cryogenic systems to operate. Furthermore, it was constructed using integrated optics elements (waveguides), which suggests the potential for integration on a photonic chip. The choice of wavelength for telecommunications is also deliberate, given our future intention to transmit this source with minimal losses. We present the results of the assembly and mode-to-mode characterization of the source, extending to the production of clusters. More specifically, we demonstrate the presence of over 20 squeezed modes and a degree of squeezing in the first mode exceeding 2.5 dB. In parallel, we present an experimental proposal to move towards a direct application of this source for continuous-variable quantum cryptography protocols. Finally, a more theoretical study is conducted on routing in complex cluster states
Sansavini, Francesca. "Quantum information protocols in complex entangled networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18512/.
Full textRieländer, Daniel. "Quantum light source compatible with solid-state quantum memories and telecom networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404382.
Full textEsta Tesis doctoral se encuentra en el área de la comunicación cuántica experimental. Trata de pares de fotones de los cuales uno está almacenado en una memoria cuántica de estado sólido y su pareja es compatible con redes telecom. Las correlaciones cuánticas entre un fotón telecom y un fotón almacenado en una memoria cuántica son un recurso importante para aplicaciones del futuro como un repetidor cuántico, que permite la transmisión de un estado cuántico hacia distancias largas. Durante la primer parte de la tesis, se ha desarrollado una fuente de fotones nueva basada en la conversión paramétrica espontanea (SPDC). SPDC es un proceso no lineal que divide esporádicamente un fotón de alta frecuencia en dos fotones correlacionados de baja frecuencia dentro de un rango de varios centenares de GHz, llamados fotones signal y idler. La fuente es compatible con una memoria cuántica de estado sólido basada en un cristal dopado con iones de praseodimio, usando el protocolo de pinta de frecuencias atómica (AFC). Este material ha demostrado propiedades extraordinarias para el almacenamiento de luz coherente. Sin embargo, ofrece un ancho de banda muy limitado de 4 MHz alrededor de una longitud de onda de 606 nm para el almacenamiento. Esto pone requisitos rigurosos a los fotones creados. Para cumplir con estos requisitos el proceso de SPDC se encuentra dentro de una cavidad de configuración ¿bow-tie¿. La cavidad es resonante con los fotones de signal y los de idler, que tienen longitudes de onda diferentes, que induce pares de fotones extensamente no-degenerados. Esta resonancia doble induce un fuerte efecto de agrupación de modos espectrales, que evita un gran número de modos redundantes. El espectro de los fotones creados se ha investigado detenidamente y contiene tres grupos con pocos modos espectrales. La anchura de cada modo es 2 MHz y cumple con los requisitos de la memoria cuántica. El filtraje de un modo único se realiza con una cavidad de Fabry-Perot adicional. El resultado es la demonstración de los pares de fotones más estrechos en un modo espectral individual creados por SPDC. En la segunda parte de la tesis se crean fotones individuales de 606nm anunciados por la detección de un fotón de 1436 nm. Estos fotones anunciados se almacenan como excitación colectiva óptica en un cristal de praseodimio usando el protocolo de AFC. Correlaciones no-clásicas entre el fotón almacenado y el fotón anunciante se observan hasta una duración de almacenado de 4 µs, 20 veces más largo que lo conseguido en experimentos previos con una memoria cuántica de estado sólido. Con el desarrollo posterior de la fuente se logró una tasa de coincidencia un orden de magnitud más alta y una eficiencia de anunciado del 28 %. La naturaleza del fotón individual anunciado se demostró por medido del "antibunching" del campo signal. Estos avances hicieron que los fotones creados fueran compatibles con el almacenamiento en el estado de spin del cristal de praseodimio usando el protocolo completo de AFC. Esto permitió que la duración de almacenamiento fuera extendida a 11 µs y también una lectura en demanda. La última parte de la tesis explora entrelazamiento en frecuencia entre los pares de fotones creados. Es un tipo de entrelazamiento, aún poco investigado, basado en los modos espectrales, que es muy conveniente para los fotones de banda estrecha. Tomamos la ventaja de que la fuente crea varios modos de frecuencias separados y correlacionados en energía. Para demonstrar una superposición coherente de los modos de frecuencia usamos moduladores electro-ópticos para mezclarlos coherentemente. Demostramos franjas de interferencia entre dos fotones con una alta visibilidad, un fuerte indicador del entrelazamiento en frecuencia.
Donaldson, Ross James. "Quantum-based security in optical fibre networks." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3141.
Full textBarlow, Thomas Michael. "Cavity quantum electrodynamics of fibre-cavity networks." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12646/.
Full textDu, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.
Full textAbdelhamid, Awad Aly Ahmed Sala. "Quantum error control codes." Diss., Texas A&M University, 2008. http://hdl.handle.net/1969.1/85910.
Full textHuthmacher, Lukas. "Investigation of efficient spin-photon interfaces for the realisation of quantum networks." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277150.
Full textMoore, Darren William. "Quantum state reconstruction and computation with mechanical networks." Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728195.
Full textRigovacca, Luca. "Nonclassicality detection and communication bounds in quantum networks." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55942.
Full textAlanis, Dimitrios. "Quantum-assisted multi-objective optimization of heterogeneous networks." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/419588/.
Full textPosner, Matthew T. "Optical integrated circuits for large-scale quantum networks." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/417392/.
Full textWaldherr, Konrad [Verfasser]. "Numerical Linear and Multilinear Algebra in Quantum Control and Quantum Tensor Networks / Konrad Waldherr." München : Verlag Dr. Hut, 2014. http://d-nb.info/1064560601/34.
Full textKuzyk, Mark. "Multimode Optomechanical Systems and Phononic Networks." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24186.
Full textAvveduti, Silvia. "Analysis of multi-hop Teleportation Protocols for Quantum Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19934/.
Full textWildfeuer, Sebastian. "Squeezing enhancement and adiabatic elimination in quantum feedback networks." Thesis, Aberystwyth University, 2013. http://hdl.handle.net/2160/7bf65304-9754-44a6-8280-8ead941fe0d1.
Full textJordaan, Bertus Scholtz. "Building a Cross-Cavity Node for Quantum Processing Networks." Thesis, State University of New York at Stony Brook, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13424934.
Full textWorldwide there are significant efforts to build networks that can distribute photonic entanglement, first with applications in communication, with a long-term vision of constructing fully connected quantum processing networks (QPN). We have constructed a network of atom-light interfaces, providing a scalable QPN platform by creating connected room-temperature qubit memories using dark-state polaritons (DSPs). Furthermore, we combined ideas from two leading elements of quantum information namely collective enhancement effects of atomic ensembles and Cavity-QED to create a unique network element that can add quantum processing abilities to this network. We built a dual connection node consisting of two moderate finesse Fabry-Perot cavities. The cavities are configured to form a cross-cavity layout and coupled to a cold atomic ensemble. The physical regime of interest is the non-limiting case between (i) low N with high cooperativity and (ii) free-space-high-N ensembles. Lastly, we have explored how to use light-matter interfaces to implement an analog simulator of relativistic quantum particles following Dirac and Jackiw-Rebbi model Hamiltonians. Combining this development with the cross-cavity node provides a pathway towards quantum simulation of more complex phenomena involving interacting many quantum relativistic particles.
Almaas, Eivind. "Topics in the theory of quantum and classical networks /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402957195756.
Full textCHESSA, Stefano. "Quantum Information Capacities for Networks and Higher Dimensional Channels." Doctoral thesis, Scuola Normale Superiore, 2022. https://hdl.handle.net/11384/125264.
Full textTang, Xinke. "Optically switched quantum key distribution network." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289444.
Full textBridgeman, Jacob. "Tensor Network Methods for Quantum Phases." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17647.
Full textGarciÌa-Islas, Juan Manuel. "Aspects of (2+1)-dimensional quantum gravity and topology." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289494.
Full textBozzio, Mathieu. "Security and implementation of advanced quantum cryptography : quantum money and quantum weak coin flipping." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT045.
Full textHarnessing the laws of quantum theory can drastically boost the security of modern communication networks, from public key encryption to electronic voting and online banking. In this thesis, we bridge the gap between theory and experiment regarding two quantum-cryptographic tasks: quantum money and quantum weak coin flipping. Quantum money exploits the no-cloning property of quantum physics to generate unforgeable tokens, banknotes, and credit cards. We provide the first proof-of-principle implementation of this task, using photonic systems at telecom wavelengths. We then develop a practical security proof for quantum credit card schemes, in which the bank can remotely verify a card even in the presence of a malicious payment terminal. We finally propose a setup for secure quantum storage of the credit card, using electromagnetically-induced transparency in a cloud of cold cesium atoms. Quantum weak coin flipping is a fundamental cryptographic primitive, which helps construct more complex tasks such as bit commitment and multiparty computation. It allows two distant parties to flip a coin when they both desire opposite outcomes. Using quantum entanglement then prevents any party from biasing the outcome of the flip beyond a certain probability. We propose the first implementation for quantum weak coin flipping, which requires a single photon and linear optics only. We provide the complete security analysis in the presence of noise and losses, and show that the protocol is implementable on the scale of a small city with current technology. We finally propose a linear-optical extension of the protocol to lower the coin bias
Güney, Durdu. "Novel photonic bandgap based architectures for quantum computers and networks." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3288844.
Full textTitle from first page of PDF file (viewed February 5, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 108-114).
Vollmer, Christina E. [Verfasser]. "Non-classical state engineering for quantum networks / Christina E. Vollmer." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1050990617/34.
Full textPejic, Michael. "Quantum Bayesian networks with application to games displaying Parrondo's paradox." Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3685984.
Full textBayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market—it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples.
Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.
Linn, Hanna. "Detecting quantum speedup for random walks with artificial neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289347.
Full textSlumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
Bondarenko, Dmytro [Verfasser]. "Constructing networks of quantum channels for state preparation / Dmytro Bondarenko." Hannover : Gottfried Wilhelm Leibniz Universität, 2021. http://d-nb.info/1235138682/34.
Full textRatner, Michael. "Quantum Walks and Structured Searches on Free Groups and Networks." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/442825.
Full textPh.D.
Quantum walks have been utilized by many quantum algorithms which provide improved performance over their classical counterparts. Quantum search algorithms, the quantum analogues of spatial search algorithms, have been studied on a wide variety of structures. We study quantum walks and searches on the Cayley graphs of finitely-generated free groups. Return properties are analyzed via Green’s functions, and quantum searches are examined. Additionally, the stopping times and success rates of quantum searches on random networks are experimentally estimated.
Temple University--Theses
Silvi, Pietro. "Tensor Networks: a quantum-information perspective on numerical renormalization groups." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4293.
Full textKuns, Kevin A. "Future Networks of Gravitational Wave Detectors| Quantum Noise and Space Detectors." Thesis, University of California, Santa Barbara, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13810824.
Full textThe current network of three terrestrial interferometric gravitational wave detectors have observed ten binary black holes and one binary neutron star to date in the frequency band from 10 Hz to 5 kHz. Future detectors will increase the sensitivity by up to a factor of 10 and will push the sensitivity band down to lower frequencies. However, observing sources lower than a few Hz requires going into space where the interferometer arms can be longer and where there is no seismic noise. A new 100 km space detector, TianGO, sensitive to the frequency band from 10 mHz to 100 Hz is described. Through its excellent ability to localize sources in the sky, TianGO can use binary black holes as standard candles to help resolve the current tension between measurements of the Hubble constant. Furthermore, all of the current and future detectors, on both the ground and in space, are limited by quantum shot noise at high frequencies, and some will be limited by quantum radiation pressure at low frequencies as well. Much effort is made to use squeezed states of light to reduce this quantum noise, however classical noise and losses severely limit this reduction. One would ideally design a gravitational wave transducer that, using its own ability to generate ponderomotive squeezing due to the radiation pressure mediated interaction between the optical modes of the light and the mechanical modes of the mirrors, approaches the fundamental limits to quantum measurement. First steps in this direction are described and it is shown that it is feasible that a large scale 40 m interferometer can observe this ponderomotive squeezing in the near future. Finally, a method of removing the effects of the vacuum fluctuations responsible for the quantum noise in gravitational wave detectors and its application to testing for the presence of deviations from general relativity is described.
Nuuman, Sinan. "Quantum reinforcement learning for dynamic spectrum access in cognitive radio networks." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/15617/.
Full textDuncan, Cameron. "Quantum phases of a bosonic generalization of the Moore-Read ansatz." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20690.
Full textFoxon, Tim. "Discrete models for quantum gravity in three dimensions." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338071.
Full textShettell, Nathan. "Quantum Information Techniques for Quantum Metrology." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS504.
Full textQuantum metrology is an auspicious discipline of quantum information which is currently witnessing a surge of experimental breakthroughs and theoretical developments. The main goal of quantum metrology is to estimate unknown parameters as accurately as possible. By using quantum resources as probes, it is possible to attain a measurement precision that would be otherwise impossible using the best classical strategies. For example, with respect to the task of phase estimation, the maximum precision (the Heisenberg limit) is a quadratic gain in precision with respect to the best classical strategies. Of course, quantum metrology is not the sole quantum technology currently undergoing advances. The theme of this thesis is exploring how quantum metrology can be enhanced with other quantum techniques when appropriate, namely: graph states, error correction and cryptography. Graph states are an incredibly useful and versatile resource in quantum information. We aid in determining the full extent of the applicability of graph states by quantifying their practicality for the quantum metrology task of phase estimation. In particular, the utility of a graph state can be characterised in terms of the shape of the corresponding graph. From this, we devise a method to transform any graph state into a larger graph state (named a bundled graph state) which approximately saturates the Heisenberg limit. Additionally, we show that graph states are a robust resource against the effects of noise, namely dephasing and a small number of erasures, and that the quantum Cramér-Rao bound can be saturated with a simple measurement strategy. Noise is one of the biggest obstacles for quantum metrology that limits its achievable precision and sensitivity. It has been showed that if the environmental noise is distinguishable from the dynamics of the quantum metrology task, then frequent applications of error correction can be used to combat the effects of noise. In practise however, the required frequency of error correction to maintain Heisenberg-like precision is unobtainable for current quantum technologies. We explore the limitations of error correction enhanced quantum metrology by taking into consideration technological constraints and impediments, from which, we establish the regime in which the Heisenberg limit can be maintained in the presence of noise. Fully implementing a quantum metrology problem is technologically demanding: entangled quantum states must be generated and measured with high fidelity. One solution, in the instance where one lacks all of the necessary quantum hardware, is to delegate a task to a third party. In doing so, several security issues naturally arise because of the possibility of interference of a malicious adversary. We address these issues by developing the notion of a cryptographic framework for quantum metrology. We show that the precision of the quantum metrology problem can be directly related to the soundness of an employed cryptographic protocol. Additionally, we develop cryptographic protocols for a variety of cryptographically motivated settings, namely: quantum metrology over an unsecured quantum channel and quantum metrology with a task delegated to an untrusted party. Quantum sensing networks have been gaining interest in the quantum metrology community over the past few years. They are a natural choice for spatially distributed problems and multiparameter problems. The three proposed techniques, graph states, error correction and cryptography, are a natural fit to be immersed in quantum sensing network. Graph states are an well-known candidate for the description of a quantum network, error correction can be used to mitigate the effects of a noisy quantum channel, and the cryptographic framework of quantum metrology can be used to add a sense of security. Combining these works formally is a future perspective
Hu, Zhizhai, University of Western Sydney, of Science Technology and Environment College, and School of Computing and Information Technology. "Quantum computation via neural networks applied to image processing and pattern recognition." THESIS_CSTE_CIT_Hu_Z.xml, 2001. http://handle.uws.edu.au:8081/1959.7/136.
Full textDoctor of Philosophy (PhD)