To see the other types of publications on this topic, follow the link: Quantum Networks.

Dissertations / Theses on the topic 'Quantum Networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Quantum Networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dai, Wenhan. "Quantum networks : state transmission and network operation." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128289.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2020
Cataloged from student-submitted the PDF of thesis.
Includes bibliographical references (pages 147-155).
Quantum information science is believed to create the next technological revolution. As key ingredients of quantum information science, quantum networks enable various technologies such as secure communication, distributed quantum sensing, quantum cloud computing, and next-generation positioning, navigation, and timing. The main task of quantum networks is to enable quantum communication among different nodes in the network. This includes the topics such as the transmission of quantum states involving multiple parties, the processing of quantum information at end nodes, and the distribution of entanglement among remote nodes. Since quantum communication has its own peculiar properties that have no classical counterparts, the protocols and strategies designed for classical communication networks are not well-suited for quantum ones. This calls for new concepts, paradigms, and methodologies tailored for quantum networks.
To that end, this thesis studies the design and operation of quantum networks, with focus on the following three topics: state transmission, queueing delay, and remote entanglement distribution. The first part develops protocols to broadcast quantum states from a transmitter to N different receivers. The protocols exhibit resource tradeoffs between multiparty entanglement, broadcast classical bits (bcbits), and broadcast quantum bits (bqubits), where the latter two are new types of resources put forth in this thesis. We prove that to send 1 bqubit to N receivers using shared entanglement, O(logN) bcbits are both necessary and sufficient. We also show that the protocols can be implemented using poly(N) basic gates composed of single-qubit gates and CNOT gates. The second part introduces a tractable model for analyzing the queuing delay of quantum data, referred to as quantum queuing delay (QQD).
The model employs a dynamic programming formalism and accounts for practical aspects such as the finite memory size. Using this model, we develop a cognitive-memory-based policy for memory management and show that this policy can decrease the average queuing delay exponentially with respect to memory size. The third part offers a design of remote entanglement distribution (RED) protocols that maximize the entanglement distribution rate (EDR). We introduce the concept of enodes, representing the entangled quantum bit (qubit) pairs in the network. This concept enables us to design the optimal RED protocols based on the solutions of some linear programming problems. Moreover, we investigate RED in a homogeneous repeater chain, which is a building block for many quantum networks. In particular, we determine the maximum EDR for homogeneous repeater chains in a closed form. The contributions of this work provide guidelines for the design and implementation of quantum networks.
by Wenhan Dai.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
APA, Harvard, Vancouver, ISO, and other styles
2

Valentini, Lorenzo. "Quantum Error Correction for Quantum Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Le quantum networks e molte altre tecnologie, quali i quantum computer, necessitano di qubit affidabili per il loro funzionamento. Per ottenere ciò, in questo elaborato, si presenta il tema della quantum error correction ponendo particolare attenzione ai codici quantum low-density parity-check (QLDPC). In aggiunta, vengono testati alcuni algoritmi su IBMQ, la serie di computer quantistici resi disponibili online da IBM, per comprenderne le problematiche. Si conclude l'elaborato con alcune riflessioni su come i codici presentati possono arginare alcune delle problematiche riscontrate durante l'implementazione su quantum computer.
APA, Harvard, Vancouver, ISO, and other styles
3

Rafiei, Nima. "Quantum Communication Networks." Thesis, Stockholms universitet, Fysikum, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-186606.

Full text
Abstract:
Quantum communication protocols invoke one of the most fundamentallaws of quantum mechanics, namely the superposition principle whichleads to the no-cloning theorem. During the last three decades, quantumcryptography have gone from prospective theories to practical implementationsscalable for real communication. Scientist from all over the world havecontributed to this major progress, starting from Stephen Wiesner, CharlesH. Bennett and Gilles Brassard who all developed the theory of QuantumKey Distribution (QKD). QKD lets two users share a key through a quantumchannel (free space or fiber link) under unconditionally secure circumstances.They can use this key to encode a message which they thereaftershare through a public channel (internet, telephone,...). Research developmentshave gone from the ordinary 2-User Quantum Key Distribution oververy small free space distances to distances over 200 km in optical fiber andQuantum Key Distribution Networks.As great experimental achievements have been made regarding QKDprotocols, a new quantum communication protocol have been developed,namely Quantum Secret Sharing. Quantum Secret Sharing is an extensionof an old cryptography scheme called Secret Sharing. The aim of secretsharing is to split a secret amongst a set of users in such a way that thesecret is only revealed if every user of this set is ready to collaborate andshare their part of the secret with other users.We have developed a 5-User QKD Network through birefringent singlemode fiber in two configurations. One being a Tree configuration and theother being a Star configuration. In both cases, the number of users, thedistances between them and the stability of our setup are all well competitivewith the current worldwide research involving similar work.We have also developed a Single Qubit Quantum Secret Sharing schemewith phase encoding through single mode fiber with 3, 4 and 5 parties. Thelatter is, to the best of our knowledge, the first time a 5-Party Single QubitQuantum Secret Sharing experiment has been realized.
APA, Harvard, Vancouver, ISO, and other styles
4

Maring, Nicolas. "Quantum frecuency conversion for hybrid quantum networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/663202.

Full text
Abstract:
The ability to control the optical frequency of quantum state carriers (i.e. photons) is an important functionality for future quantum networks. It allows all matter quantum systems - nodes of the network - to be compatible with the telecommunication C-band, therefore enabling long distance fiber quantum communication between them. It also allows dissimilar nodes to be connected with each other, thus resulting in heterogeneous networks that can take advantage of the different capabilities offered by the diversity of its constituents. Quantum memories are one of the building blocks of a quantum network, enabling the storage of quantum states of light and the entanglement distribution over long distances. In our group, two different types of memories are investigated: a cold atomic ensemble and an ion-doped crystal. In this thesis I investigate the quantum frequency conversion of narrow-band photons, emitted or absorbed by optical quantum memories, with two different objectives: the first one is to connect quantum memories emitting or absorbing visible single photons with the telecommunication wavelengths, where fiber transmission loss is minimum. The second and main goal is to study the compatibility between disparate quantum nodes, emitting or absorbing photons at different wavelengths. More precisely the objective is to achieve a quantum connection between the two optical memories studied using quantum frequency conversion techniques. The main core of this work is the quantum frequency conversion interface that bridges the gap between the cold ensemble of Rubidium atoms, emitting photons at 780nm, and the Praseodymium ion doped crystal, absorbing photons at 606nm. This interface is composed of two different frequency conversion devices, where a cascaded conversions takes place: the first one converts 780nm photons to the telecommunication C-band, and the second one converts them back to visible, at 606nm. This comes with several challenges such as conversion efficiency, phase stability and parasitic noise reduction, which are important considerations to show the conservation of quantum behaviors through the conversion process. This work can be divided in three parts. In a first one, we built a quantum frequency conversion interface between 606nm and the C-band wavelength, capable of both up and down-conversion of single photon level light. We also characterized the noise processes involved in this specific conversion. In the down-conversion case we showed that memory compatible heralded single photons emitted from a photon pair source preserve their non-classical properties through the conversion process. In the up-conversion case, we showed the storage of converted telecom photons in the praseodymium doped crystal, and their retrieval with high signal to noise ratio. The second part of the work was devoted to the conversion of photons from an emissive Rubidium atomic quantum memory to the telecom C band. In this work we converted the heralding photons from the atomic ensemble and measured non-classical correlations between a stored excitation and a C-band photon, necessary for quantum repeater applications. In the last part of the thesis, we setup the full frequency conversion interface and showed that heralded photons emitted by the atomic ensemble are converted, stored in the solid state memory and retrieved with high signal to noise ratio. We demonstrated that a single collective excitation stored in the atomic ensemble is transfered to the crystal by mean of a single photon at telecom wavelength. We also showed time-bin qubit transfer between the two quantum memories. This work represents the first proof of principle of a photonic quantum connection between disparate quantum memory nodes. The results presented in this thesis pave the way towards the realization of modular and hybrid quantum networks.
APA, Harvard, Vancouver, ISO, and other styles
5

Menneer, Tamaryn Stable Ia. "Quantum artificial neural networks." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

FAROOQ, UMER. "Decoherence in Quantum Networks." Doctoral thesis, Università degli Studi di Camerino, 2015. http://hdl.handle.net/11581/401743.

Full text
Abstract:
The title of the present dissertation Decoherence in Quantum Network sounds very general and all-inclusive. Indeed it embraces two topics (decoherence and quantum network) from the area of Quantum Mechanics each of which is described in all respects by a huge literature developed in the last three decades [...]. Quantum decoherence, as the name lets it mean, is the mechanism that makes a quantum system loose its coherence properties, and with them the capability of giving rise to interference phenomena or to other interesting quantum effects [...]. The key idea promoted by decoherence is the insight that realistic quantum systems are never isolated, but are immersed in the surrounding environment and interact continuously with it [...]. As an example one may consider a two-level quantum system (i.e. a quantum bit, usually shortened with a terminology from information science to \qubit" ) in contact with a wide environment. Hence, quantum systems are open systems, and continuously interact or exchange information with an external environment whose degrees of freedom are too numerous to be monitored. The resulting correlation between the system and the environment spoils quantum coherence and brings about the transition from a pure quantum state to a mixture of quantum state resulting a classical state. To describe decoherence different kind of approaches can be used (for example Master equation, random matrix, etc). A quantum network typically consists of a number of quantum objects (e.g., atoms, ions, quantum dots, cavities, etc.), to be referred to hereafter as the sites or the nodes of the network. They can interact and the interactions (or their correlations) will be usually described by the edges of a graph. Quantum networks can address different information processing tasks. For instance a quantum state can be transferred from qubit to qubit down a chain solely due to the interactions, that is according to the laws of quantum physics [...]. Quantum networks offer us new opportunities and phenomena as compared to classical networks. An extension to large scale of the idea of a quantum network could lead to a futurible quantum internet [...]. The study of networks has traditionally been the territory of graph theory [...], also with the advent of their quantum versions. Within simple quantum network model information processing is usually described by assuming perfect control of the underlying graph. However, this is not much realistic since randomness is often present and it leads to decoherence effects [...]. In contrast, the conservation of coherence is essential for any quantum information process [...], hence there is a persistent interest in decoherence effects in quantum networks, which motivate us to study models for describing such noisy effects. We consider a simple model of quantum network, employing qubits (spin-1/2 particles) attached to the nodes of an underlying graph and we study the simplest task, namely information storage (on a single and two qubits), when the graph randomly changes in time. Actually we randomly add edges to an initially disconnected graph according to the Gilbert model characterized by a weighting parameter ex [...] and in an identically and independent way at each time step. We find that by increasing ex the dynamics of relevant quantities like fidelity, entropy or concurrence, gradually transforms from damped to damped oscillatory and finally to purely oscillatory. That leads to the paper [see, Information dissipation in random quantum networks, by U. Farooq and S. Mancini, OSID 21(3), 1450004, 2014]. We also study a system composed by pairs of qubits attached to each node of a linear chain, a model that stems from quantum dot arrays. Here we use the approach of evolution with a stochastic Hamiltonian to describe the noisy effects. We then evaluate the effect of two most common disorders, namely exchange coupling and hyperfine interaction fluctuations, in adiabatic preparation of ground state in such model. We show that the adiabatic ground state preparation is highly robust against these disorders making the chain a good analog simulator. Moreover, we also study the adiabatic information transfer, using singlet-triplet states, across the chain. In contrast to ground state preparation the transfer mechanism is highly affected by disorders. This suggested that for communication tasks across such chains adiabatic evolution is not as effective and quantum quenches would be preferable. That leads to the paper [see, Adiabatic many-body state preparation and information transfer in quantum dot arrays, by U. Farooq, A. Bayat, S. Mancini and S. Bose Phys. Rev. B 91, 134303, 2015]. The present work is organized as follows. In chapter 1, we shall give a survey of the various types of approach which can be employed to analyse the dynamics of open quantum systems that leads to decoherence effects. In chapter 2, we shall give a general description about quantum network and its possible applications. In chapter 3, we shall discuss the problem of quantum state transfer in qubit network and shall give a brief overview of some scheme that enable nearly prefect state transfer. In chapter 4, we shall discuss singlet-triplet networks, that is networks having on each site a pair of (generally entangled) qubit. Then within this framework we propose a model stemming from quantum dot array. There we shall address the problem of ground state preparation and state transfer. Finally we shall describe the inherent entanglement of the ground state of strongly correlated systems can be exploited for both classical and quantum communications. In chapter 5, we shall propose a decoherence model for qubit networks based on edges representing XY interactions randomly added to a disconnected graph accordingly to a suitable probability distribution. In this way we shall describe dissipation of information initially localize in single or two qubits all over the network. In chapter 6 we shall model the noisy effects in the quantum dot array introduced in chapter 4 and investigate their consequences on the preparation of ground state and quantum state transfer mechanism. Finally we shall draw conclusions.
APA, Harvard, Vancouver, ISO, and other styles
7

Andersson, Erika. "Quantum information and atomic networks." Doctoral thesis, Stockholm, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meignant, Clément. "Multipartite communications over quantum networks." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS342.

Full text
Abstract:
Le domaine des réseaux quantiques est actuellement un champ d'investigation majeur dans les technologies quantiques. Des recherches sont en cours à tous les niveaux. L'un des actes les plus simples de la communication quantique, la distribution d'un état unique bipartite intriqué, a été très étudié car il s'agit d'un problème simple à caractériser, simuler et mettre en œuvre. Il est également utile pour une application importante des réseaux quantiques : la distribution sécurisée d'une clé cryptographique. Cependant, l'utilisation des réseaux quantiques va bien au-delà, dans le domaine multipartite. Dans ce manuscrit, nous étudions d'abord le recyclage de ressources précédemment distribuées dans le régime asymptotique par l'utilisation du peignage d'intrication et de la fusion d'états quantiques. Ensuite, nous caractérisons la distribution des états quantiques en utilisant le formalisme du réseau tensoriel. Nous caractérisons également une large classe de protocoles de distribution classiques et utilisons cette similitude pour comparer la distribution des corrélations classiques sur les réseaux classiques à la distribution des états quantiques sur les réseaux quantiques. Enfin, nous mettons en œuvre les protocoles précédents dans un cadre plus réaliste et participons à l'élaboration de fonctionnalités multipartites pour un simulateur de réseau quantique : QuISP. Nous avons également cherché à vulgariser et à diffuser les notions d'information quantique auprès d'un large public. Nous rendons compte de la création d'un jeu vidéo basé sur l'optique quantique, s'ajoutant à la vulgarisation ludographique existante
The field of quantum networks is currently a major area of investigation in quantum technologies. One of the simplest acts of quantum communication, the distribution of a single bipartite entangled state, has been highly studied as it is a simple problem to characterize, simulate and implement. It is also useful for a prominent quantum network application: the secured distribution of a cryptographic key. However, the use of quantum networks goes far beyond. We need to study the simultaneous distribution of multipartite states over quantum networks. In this manuscript, we report on several works of progress in the domain. We first study the recycling of previously distributed resources in the asymptotic regime by the use of entanglement combing and quantum state merging. Then, we characterize the distribution of quantum states using the tensor network formalism. We also characterize a broad class of classical distribution protocols by the same formalism and use this similarity to compare the distribution of classical correlations over classical networks to a the distribution of quantum state over quantum networks. We also build protocols to distribute specific classes of states over quantum networks such as graph states and GHZ states by using the graph state formalism and a bit of graph theory. Finally, we implement the previous protocols in a more realistic setting and participate in the elaboration of multipartite features for a quantum network simulator: QuISP. We also aimed to popularize the notions of quantum information to a broad audience. We report on the creation of a video game based on quantum optics, adding to the existing popularization ludography
APA, Harvard, Vancouver, ISO, and other styles
9

Pesah, Arthur. "Learning quantum state properties with quantum and classical neural networks." Thesis, KTH, Tillämpad fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Román, Rodríguez Víctor. "Quantum Optics Systems for Long-Distance Cryptography and Quantum Networks." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS224.

Full text
Abstract:
La thèse est divisée en deux parties : La première partie s'inscrit dans le domaine de la cryptographie quantique. Dans cette partie, nous développons une étude théorique d'un protocole de distribution de clés quantiques (QKD) dans le scénario d'une liaison satellite-station terrestre. Nous considérons l'ajout des fluctuations quantiques du canal et la possibilité de succès du protocole dans le cadre de variables continues dans une implémentation avec des technologies de pointe. Nous montrons la faisabilité de CVQKD dans le contexte du satellite. Dans la deuxième partie, nous construisons, à partir de zéro, une source d'états quantiques de la lumière de type graphe à variables continues en utilisant des guides d'ondes non linéaires. Ces états sont essentiels pour la mise en œuvre de protocoles de communication et de calcul quantique, car ils peuvent être considérés comme des réseaux quantiques. Nous réalisons une étude théorique des états quantiques multimodes de la lumière après l'interaction dans un guide d'ondes non linéaire qui nous aide à concevoir l'expérience. Enfin, nous présentons les résultats expérimentaux qui démontrent les premiers résultats sur la source quantique d'états quantiques de lumière multimode à variation continue, mesurant jusqu'à 11 états de lumière thermique comprimée
The thesis is divided into two parts: The first part is in the field of Quantum Cryptography. In this part we develop a theoretical study of a Quantum Key Distribution (QKD) protocol in the scenario of a satellite-ground station link. We consider the addition of quantum channel fluctuations and the possibility of success of the protocol in the framework of continuous variables in an implementation with state-of-the-art technologies. We show the feasibility of CVQKD in the satellite context. In the second part, we build, from scratch, a source of continuous-variable graph-like quantum states of light using nonlinear waveguides. These states are essential for the implementation of communication and quantum computing protocol as they can be seen to be quantum networks. We perform a theoretical study for multimode quantum states of light after the interaction in a non-linear waveguide that help us to design the experiment. Finally we present the experimental results that demonstrate the first results on the quantum source of continuous variable multimode quantum states of light, measuring up to 11 squeezed thermal light states
APA, Harvard, Vancouver, ISO, and other styles
11

Magnani, Lorenzo Domenico. "Syndrome-based Piggybacking for Quantum Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21815/.

Full text
Abstract:
The quantum internet has the potential to improve application functionalities by incorporating quantum information technology into the infrastructure of the overall internet. Moreover, by harnessing the qubit properties, new applications like QKD, quantum sensor networks and remote blind quantum computing are achievable. Quantum repeaters are the fundamental elements to allow quantum communications over long distances. These repeaters implement quantum communication protocols and route qubits through the network. To this latter purpose, the syndrome-based piggybacking can be exploited to inform quantum repeaters about the destination of qubits. The aim of this work is to investigate the piggybacking technique, by analysing its behaviour in both noiseless quantum channel conditions and noisy quantum channel conditions. Considering quantum communications based on QECCs, this technique allows to communicate classical bits through quantum channels without using classical channel and without consuming additional quantum resources.
APA, Harvard, Vancouver, ISO, and other styles
12

Cuquet, Palau Martí. "Entanglement distribution in quantum complex networks." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/107850.

Full text
Abstract:
Aquesta tesi tracta l’estudi de xarxes quàntiques amb una estructura complexa, les implicacions que aquesta estructura té en la distribució d’entrellaçament i com el seu funcionament pot ser millorat mitjançant operacions en el règim quàntic. Primer considerem xarxes complexes d’estats bipartits, tant purs com mescla, i estudiem la distribució d’entrellaçament a llargues distàncies. Després passem a analitzar xarxes de canals sorollosos i estudiem la creació i distribució de grans estats multipartits. El treball contingut en aquesta tesi està motivat principalment per la idea que la interacció entre la informació quàntica i les xarxes complexes pot donar lloc a una nova comprensió i caracterització dels sistemes naturals. Les xarxes complexes tenen una importància particular en les infraestructures de comunicació, ja que la majoria de xarxes de telecomunicació tenen una estructura complexa. En el cas de xarxes quàntiques, que són el marc necessari per al processament distribuït d’informació i comunicació quàntica, és ben possible que en el futur adquireixin una topologia complexa semblant a la de les xarxes existents, o que fins i tot es desenvolupin mètodes per a utilitzar les infraestructures actuals en el règim quàntic. Una tasca central en les xarxes quàntiques és dissenyar estratègies per distribuir entrellaçament entre els seus nodes. En la primera part d’aquesta tesi, considerem la distribució d’entrellaçament bipartit com un procés de percolació d’entrellaçament en una xarxa complexa. Des d’aquest enfocament, s’estableix entrellaçament perfecte de manera probabilística entre dos nodes arbitraris. Veiem que, per a xarxes grans, la probabilitat d’aconseguir-ho és una constant estrictament major que zero (i independent de la mida de la xarxa) si la quantitat inicial d’entrellaçament està per sobre d’un cert valor crític. La mecànica quàntica ofereix aquí la possibilitat de canviar l’estructura de la xarxa sense necessitat d’establir nous canals “físics”. Mitjançant una transformació local adequada de la xarxa, es pot disminuir l’entrellaçament crític i augmentar la probabilitat. Apliquem aquesta transformació a models de xarxes complexes amb una distribució de graus arbitrària. En el cas de xarxes sorolloses d’estats mescla, veiem que per algunes classes d’estat es pot utilitzar el mateix enfocament de percolació d’entrellaçament. Per a estats mescla generals considerem una percolació de llargada de camí limitada per la quantitat de soroll de les connexions. Veiem com les xarxes complexes ofereixen encara un gran avantatge en la probabilitat de connectar dos nodes. En la segona part, passem a l’escenari multipartit. Estudiem la creació i distribució d’estats graf amb una estructura que imita la de la xarxa de comuicació subjacent. En aquest cas, utilitzem una xarxa complexa arbitrària amb canals sorollosos, i considerem que les operacions i mesures són també sorolloses. Proposem un mètode eficient per a distribuir i purificar petits subgrafs, que després es fusionen per a reproduir l’estat desitjat. Comparem aquest enfocament amb dos protocols bipartits basats en un node central i coneixement complet de l’estructura de la xarxa. Mostrem que la fidelitat dels estats graf generats es pot escriure com la funció de partició d’un sistema desordenat de spins clàssics (un vidre de spins), i la seva taxa de decaïment és l’anàleg de l’energia lliure. Utilitzant els tres protocols en una xarxa unidimensional i en xarxes complexes veiem que són tots comparables, i que en alguns casos el protocol de subgrafs proposat, que necessita només informació local de la xarxa, té inclús un comportament millor.
This thesis deals with the study of quantum networks with a complex structure, the implications this structure has in the distribution of entanglement and how their functioning can be enhanced by operating in the quantum regime. We first consider a complex network of bipartite states, both pure and mixed, and study the distribution of long-distance entanglement. Then, we move to a network with noisy channels and study the creation and distribution of large, multipartite states. The work contained in this thesis is primarily motivated by the idea that the interplay between quantum information and complex networks may give rise to a new understanding and characterization of natural systems. Complex networks are of particular importance in communication infrastructures, as most present telecommunication networks have a complex structure. In the case of quantum networks, which are the necessary framework for distributed quantum processing and for quantum communication, it is very plausible that in the future they acquire a complex topology resembling that of existing networks, or even that methods will be developed to use current infrastructures in the quantum regime. A central task in quantum networks is to devise strategies to distribute entanglement among its nodes. In the first part of this thesis, we consider the distribution of bipartite entanglement as an entanglement percolation process in a complex network. Within this approach, perfect entanglement is established probabilistically between two arbitrary nodes. We see that for large networks, the probability of doing so is a constant strictly greater than zero (and independent of the size of the network) if the initial amount of entanglement is above a certain critical value. Quantum mechanics offer here the possibility to change the structure of the network without need to establish new, "physical" channels. By a proper local transformation of the network, the critical entanglement can be decreased and the probability increased. We apply this transformation to complex network models with arbitrary degree distribution. In the case of a noisy network of mixed states, we see that for some classes of states, the same approach of entanglement percolation can be used. For general mixed states, we consider a limited-path-length entanglement percolation constrained by the amount of noise in the connections. We see how complex networks still offer a great advantage in the probability of connecting two nodes. In the second part, we move to the multipartite scenario. We study the creation and distribution of graph states with a structure that mimic the underlying communication network. In this case, we use an arbitrary complex network of noisy channels, and consider that operations and measurements are also noisy. We propose an efficient scheme to distribute and purify small subgraphs, which are then merged to reproduce the desired state. We compare this approach with two bipartite protocols that rely on a central station and full knowledge of the network structure. We show that the fidelity of the generated graphs can be written as the partition function of a classical disordered spin system (a spin glass), and its decay rate is the analog of the free energy. Applying the three protocols to a one-dimensional network and to complex networks, we see that they are all comparable, and in some cases the proposed subgraph protocol, which needs only local information of the network, performs even better.
APA, Harvard, Vancouver, ISO, and other styles
13

Ahamed, Woakil Uddin. "Quantum recurrent neural networks for filtering." Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.

Full text
Abstract:
The essence of stochastic filtering is to compute the time-varying probability densityfunction (pdf) for the measurements of the observed system. In this thesis, a filter isdesigned based on the principles of quantum mechanics where the schrodinger waveequation (SWE) plays the key part. This equation is transformed to fit into the neuralnetwork architecture. Each neuron in the network mediates a spatio-temporal field witha unified quantum activation function that aggregates the pdf information of theobserved signals. The activation function is the result of the solution of the SWE. Theincorporation of SWE into the field of neural network provides a framework which is socalled the quantum recurrent neural network (QRNN). A filter based on this approachis categorized as intelligent filter, as the underlying formulation is based on the analogyto real neuron.In a QRNN filter, the interaction between the observed signal and the wave dynamicsare governed by the SWE. A key issue, therefore, is achieving a solution of the SWEthat ensures the stability of the numerical scheme. Another important aspect indesigning this filter is in the way the wave function transforms the observed signalthrough the network. This research has shown that there are two different ways (anormal wave and a calm wave, Chapter-5) this transformation can be achieved and thesewave packets play a critical role in the evolution of the pdf. In this context, this thesishave investigated the following issues: existing filtering approach in the evolution of thepdf, architecture of the QRNN, the method of solving SWE, numerical stability of thesolution, and propagation of the waves in the well. The methods developed in this thesishave been tested with relevant simulations. The filter has also been tested with somebenchmark chaotic series along with applications to real world situation. Suggestionsare made for the scope of further developments.
APA, Harvard, Vancouver, ISO, and other styles
14

Steele, Christopher Mark. "Relativistic spin networks." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fainsin, David. "Continuous Variable Multimode Quantum States at Telecommunication Wavelengths for Quantum Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS564.

Full text
Abstract:
Le but de cette thèse est le montage d'une source d'états comprimés du vide multimode aux longueurs d'ondes utilisées pour les télécommunications. Pour ce faire, nous utilisons la conversion paramétrique descendante en simple passage d'un peigne de fréquence dans le proche infrarouge à l'aide d'un guide d'onde ppKTP de type-0. Cette méthode possède beaucoup d'avantages, tout d'abord la production est totalement déterministe ce qui lui offre beaucoup de fiabilité. D'autre part, elle ne nécessite aucun système de cryogénie pour fonctionner. Enfin, elle a été construite à l'aide d'éléments d'optique intégrée (guide d'onde) ce qui laisse à imaginer une intégration sur une puce photonique. Le choix de la longueur d'onde pour les télécommunications n'est pas un hasard non plus, étant donné notre volonté future de transmettre cette source avec le moins de pertes possibles. Nous présentons les résultats du montage et de la caractérisation mode-à-mode de la source allant jusqu'à la production de canevas quantiques. Plus précisément, nous montrons la présence de plus de 20 modes et un degré de compression du vide dans le premier mode supérieur à 2.5dB. En parallèle, nous présentons une proposition expérimentale pour aller vers une application directe de cette source pour des protocoles de cryptographie quantique à variables continues. Enfin, une étude plus théorique est réalisée sur le routage dans les canevas quantiques à structures complexes
The goal of this thesis is to build a source of multimode vacuum squeezed states of light at telecommunication wavelength. We achieve this via in a single-pass spontaneous parametric down-conversion of a frequency comb in the near-infrared using a type-0 ppKTP waveguide. This method offers numerous advantages. Firstly, the production is entirely deterministic, providing a high level of reliability. Additionally, it doesn't require any cryogenic systems to operate. Furthermore, it was constructed using integrated optics elements (waveguides), which suggests the potential for integration on a photonic chip. The choice of wavelength for telecommunications is also deliberate, given our future intention to transmit this source with minimal losses. We present the results of the assembly and mode-to-mode characterization of the source, extending to the production of clusters. More specifically, we demonstrate the presence of over 20 squeezed modes and a degree of squeezing in the first mode exceeding 2.5 dB. In parallel, we present an experimental proposal to move towards a direct application of this source for continuous-variable quantum cryptography protocols. Finally, a more theoretical study is conducted on routing in complex cluster states
APA, Harvard, Vancouver, ISO, and other styles
16

Sansavini, Francesca. "Quantum information protocols in complex entangled networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18512/.

Full text
Abstract:
Quantum entangled networks represent essential tools for Quantum Communication, i.e. the exchange of Quantum Information between parties. This work consists in the theoretical study of continuous variables (CV) entangled networks - which can be deterministically generated via multimode squeezed light - with complex topology. In particular we investigate CV complex quantum networks properties for quantum communication protocols. We focused on the role played by the topology in the implementation and the optimization of given characteristics of our entangled resource that are useful for a specific quantum communication task, i.e. the creation of an entanglement link between two arbitrary nodes of the resource we are provided with. We implemented an analytical procedure for the generation of entangled complex networks, their optimization and their manipulation via global linear optics operations. We also developed a numerical procedure, based on an evolutionary algorithm, for manipulating entanglement connections via local linear optics operations. Finally, we analyzed the re-shaping of our entangled resource via homodyne measurements.
APA, Harvard, Vancouver, ISO, and other styles
17

Rieländer, Daniel. "Quantum light source compatible with solid-state quantum memories and telecom networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404382.

Full text
Abstract:
This PhD thesis is in the scope of experimental quantum communication. It deals with correlated photon pairs of which one photon is stored in a solid state device, while the other photon is at telecom wavelength. Quantum correlation between a photon at telecom wavelength and a photon stored in a quantum memory is an important resource for future applications like quantum repeaters, allowing the transmission quantum states over long distances. During the first part of this thesis, a novel photon pair source has been developed, based on spontaneous parametric downconversion (SPDC) inside a bow-tie cavity. SPDC is a non-linear process which splits a pump photon sporadically into two correlated photons, called signal and idler photon. The source used in this work has been designed to be compatible with a solid state quantum memory based on a Praseodymium doped crystal, using the atomic frequency comp (AFC) protocol. This material has shown promising properties for classical light storage. However, it features a small storage bandwidth of 4 MHz at 606 nm, which sets stringent requirements for the photons to be stored. To match these requirements the SPDC process takes place inside a bowtie cavity which is resonant with the created signal and idler photons. The difference between storage wavelength and telecom wavelength (1436 nm in our case) leads to widely non-degenerate photon pairs. These double resonance leads to a strong clustering effect, which suppresses a high number of redundant spectral modes. The created photon spectrum is investigated carefully and consists of three clusters with few well separated modes. The width of each mode is around 2 MHz and matches the requirement for the quantum memory. Single mode operation was achieved by placing an additional Fabry-Perot cavity in the idler field at 1436 nm. This resulted in the demonstration of the narrowest photon pairs consisting of a spectral single mode, created by SPDC to date. In the second part of the thesis, heralded single photons at 606 nm were created by the detection of a photon at 1436 nm. These heralded photons were then stored as collective optical excitations in a praseodymium crystal, using the AFC scheme. Non-classical correlation between the heralding photon and the stored and retrieved photons were observed for storage time up to 4 µs, 20 times longer than achieved in previous solid state quantum memory experiments. Further development on the source, led to improved results, including an increase of coincidence count rate by one order of magnitude and a heralding efficiency of 28 %. The single photon nature of the heralded photon was also measured directly by showing strong antibunching of the 606 nm signal field. These improvements made the created photons compatible with the storage in the spin state of the praseodymium level scheme, using the full AFC protocol. That enabled an extended storage time of 11 µs with on demand readout of the stored photon. The last part of the thesis explores another important resource for the distribution of quantum states with a quantum repeater, entanglement between the created photon pairs. Here we show a rather new approach of entanglement, which is well suited for narrow band photons based on frequency bins. We take advantage of the fact that the source naturally creates several energy correlated well separated frequency modes. In order to show the coherent superposition of the frequency modes, we use electro-optical modulators to coherently mix them. We could show high-visibility two-photon interference fringes, a strong indicator for entanglement in the frequency domain. The results presented in this thesis open the door for the demonstration of entanglement between a solid-state spin-wave quantum memory and a photon at telecom wavelength. This represents an important step for the realization of quantum repeaters using solid state resources.
Esta Tesis doctoral se encuentra en el área de la comunicación cuántica experimental. Trata de pares de fotones de los cuales uno está almacenado en una memoria cuántica de estado sólido y su pareja es compatible con redes telecom. Las correlaciones cuánticas entre un fotón telecom y un fotón almacenado en una memoria cuántica son un recurso importante para aplicaciones del futuro como un repetidor cuántico, que permite la transmisión de un estado cuántico hacia distancias largas. Durante la primer parte de la tesis, se ha desarrollado una fuente de fotones nueva basada en la conversión paramétrica espontanea (SPDC). SPDC es un proceso no lineal que divide esporádicamente un fotón de alta frecuencia en dos fotones correlacionados de baja frecuencia dentro de un rango de varios centenares de GHz, llamados fotones signal y idler. La fuente es compatible con una memoria cuántica de estado sólido basada en un cristal dopado con iones de praseodimio, usando el protocolo de pinta de frecuencias atómica (AFC). Este material ha demostrado propiedades extraordinarias para el almacenamiento de luz coherente. Sin embargo, ofrece un ancho de banda muy limitado de 4 MHz alrededor de una longitud de onda de 606 nm para el almacenamiento. Esto pone requisitos rigurosos a los fotones creados. Para cumplir con estos requisitos el proceso de SPDC se encuentra dentro de una cavidad de configuración ¿bow-tie¿. La cavidad es resonante con los fotones de signal y los de idler, que tienen longitudes de onda diferentes, que induce pares de fotones extensamente no-degenerados. Esta resonancia doble induce un fuerte efecto de agrupación de modos espectrales, que evita un gran número de modos redundantes. El espectro de los fotones creados se ha investigado detenidamente y contiene tres grupos con pocos modos espectrales. La anchura de cada modo es 2 MHz y cumple con los requisitos de la memoria cuántica. El filtraje de un modo único se realiza con una cavidad de Fabry-Perot adicional. El resultado es la demonstración de los pares de fotones más estrechos en un modo espectral individual creados por SPDC. En la segunda parte de la tesis se crean fotones individuales de 606nm anunciados por la detección de un fotón de 1436 nm. Estos fotones anunciados se almacenan como excitación colectiva óptica en un cristal de praseodimio usando el protocolo de AFC. Correlaciones no-clásicas entre el fotón almacenado y el fotón anunciante se observan hasta una duración de almacenado de 4 µs, 20 veces más largo que lo conseguido en experimentos previos con una memoria cuántica de estado sólido. Con el desarrollo posterior de la fuente se logró una tasa de coincidencia un orden de magnitud más alta y una eficiencia de anunciado del 28 %. La naturaleza del fotón individual anunciado se demostró por medido del "antibunching" del campo signal. Estos avances hicieron que los fotones creados fueran compatibles con el almacenamiento en el estado de spin del cristal de praseodimio usando el protocolo completo de AFC. Esto permitió que la duración de almacenamiento fuera extendida a 11 µs y también una lectura en demanda. La última parte de la tesis explora entrelazamiento en frecuencia entre los pares de fotones creados. Es un tipo de entrelazamiento, aún poco investigado, basado en los modos espectrales, que es muy conveniente para los fotones de banda estrecha. Tomamos la ventaja de que la fuente crea varios modos de frecuencias separados y correlacionados en energía. Para demonstrar una superposición coherente de los modos de frecuencia usamos moduladores electro-ópticos para mezclarlos coherentemente. Demostramos franjas de interferencia entre dos fotones con una alta visibilidad, un fuerte indicador del entrelazamiento en frecuencia.
APA, Harvard, Vancouver, ISO, and other styles
18

Donaldson, Ross James. "Quantum-based security in optical fibre networks." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3141.

Full text
Abstract:
Electronic communication is used everyday for a number of different applications. Some of the information transferred during these communications can be private requiring encryption and authentication protocols to keep this information secure. Although there are protocols today which provide some security, they are not necessarily unconditionally secure. Quantum based protocols on the other hand, can provide unconditionally secure protocols for encryption and authentication. Prior to this Thesis, only one experimental realisation of quantum digital signatures had been demonstrated. This used a lossy photonic device along with a quantum memory allowing two parties to test whether they were sent the same signature by a single sender, and also store the quantum states for measurement later. This restricted the demonstration to distances of only a few metres, and was tested with a primitive approximation of a quantum memory rather than an actual one. This Thesis presents an experimental realisation of a quantum digital signature protocol which removes the reliance on quantum memory at the receivers, making a major step towards practicality. By removing the quantum memory, it was also possible to perform the swap and comparison mechanism in a more efficient manner resulting in an experimental realisation of quantum digital signatures over 2 kilometres of optical fibre. Quantum communication protocols can be unconditionally secure, however the transmission distance is limited by loss in quantum channels. To overcome this loss in conventional channels an optical amplifier is used, however the added noise from these would swamp the quantum signal if directly used in quantum communications. This Thesis looked into probabilistic quantum amplification, with an experimental realisation of the state comparison amplifier, based on linear optical components and single-photon detectors. The state comparison amplifier operated by using the wellestablished techniques of optical coherent state comparison and weak subtraction to post-select the output and provide non-deterministic amplification with increased fidelity at a high repetition rate. The success rates of this amplifier were found to be orders of magnitude greater than other state of the art quantum amplifiers, due to its lack of requirement for complex quantum resources, such as single or entangled photon sources, and photon number resolving detectors.
APA, Harvard, Vancouver, ISO, and other styles
19

Barlow, Thomas Michael. "Cavity quantum electrodynamics of fibre-cavity networks." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12646/.

Full text
Abstract:
Quantum mechanics, despite its abstract and unintuitive nature, is increasingly used in real-life applications. This thesis explores the current status of cavity quantum electrodynamics and its role in applications of quantum optics to quantum technologies. Various approaches to the treatment of optical cavities are discussed, with particular focus on a treatment in terms of cavities as linear optical devices, with a nonlinearity introduced by an atom, molecule, quantum dot etc in the cavity. Open quantum systems such as optical cavities coupled to a free external radiation field can be described by a quantum master equation. This thesis develops a description of such a system in which the Hamiltonian describes the coherent evolution of light inside the cavity, and the damping term describes the leaking of light out of the cavity mirrors. The goal of this approach is to describe couple networks of optical cavities in which information is transferred across the network coherently.
APA, Harvard, Vancouver, ISO, and other styles
20

Du, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.

Full text
Abstract:
Machine learning (ML) has revolutionized the world in recent years. Despite the success, the huge computational overhead required by ML models makes them approach the limits of Moore’s law. Quantum machine learning (QML) is a promising way to conquer this issue, empowered by Google's demonstration of quantum computational supremacy. Meanwhile, another cornerstone in QML is validating that quantum neural networks (QNNs) implemented on the noisy intermediate-scale quantum (NISQ) chips can accomplish classification and image generation tasks. Despite the experimental progress, little is known about the theoretical advances of QNNs. In this thesis, we explore the power of QNNs to fill this knowledge gap. First, we consider the potential advantages of QNNs in generative learning. We demonstrate that QNNs possess a stronger expressive power than that of classical neural networks in the measure of computational complexity and entanglement entropy. Moreover, we employ QNNs to tackle synthetic generation tasks with state-of-the-art performance. Next, we propose a Grover-search based quantum classifier, which can tackle specific classification tasks with quadratic runtime speedups. Furthermore, we exhibit that the proposed scheme allows batch gradient descent optimization, which is different from previous studies. This property is crucial to train large-scale datasets. Then, we study the capabilities and limitations of QNNs in the view of optimization theory and learning theory. The achieved results imply that a large system noise can destroy the trainability of QNNs. Meanwhile, we show that QNNs can tackle parity learning and juntas learning with provable advantages. Last, we devise a quantum auto-ML scheme to enhance the trainability QNNs under the NISQ setting. The achieved results indicate that our proposal effectively mitigates system noise and alleviates barren plateaus for both conventional machine learning and quantum chemistry tasks.
APA, Harvard, Vancouver, ISO, and other styles
21

Abdelhamid, Awad Aly Ahmed Sala. "Quantum error control codes." Diss., Texas A&M University, 2008. http://hdl.handle.net/1969.1/85910.

Full text
Abstract:
It is conjectured that quantum computers are able to solve certain problems more quickly than any deterministic or probabilistic computer. For instance, Shor's algorithm is able to factor large integers in polynomial time on a quantum computer. A quantum computer exploits the rules of quantum mechanics to speed up computations. However, it is a formidable task to build a quantum computer, since the quantum mechanical systems storing the information unavoidably interact with their environment. Therefore, one has to mitigate the resulting noise and decoherence effects to avoid computational errors. In this dissertation, I study various aspects of quantum error control codes - the key component of fault-tolerant quantum information processing. I present the fundamental theory and necessary background of quantum codes and construct many families of quantum block and convolutional codes over finite fields, in addition to families of subsystem codes. This dissertation is organized into three parts: Quantum Block Codes. After introducing the theory of quantum block codes, I establish conditions when BCH codes are self-orthogonal (or dual-containing) with respect to Euclidean and Hermitian inner products. In particular, I derive two families of nonbinary quantum BCH codes using the stabilizer formalism. I study duadic codes and establish the existence of families of degenerate quantum codes, as well as families of quantum codes derived from projective geometries. Subsystem Codes. Subsystem codes form a new class of quantum codes in which the underlying classical codes do not need to be self-orthogonal. I give an introduction to subsystem codes and present several methods for subsystem code constructions. I derive families of subsystem codes from classical BCH and RS codes and establish a family of optimal MDS subsystem codes. I establish propagation rules of subsystem codes and construct tables of upper and lower bounds on subsystem code parameters. Quantum Convolutional Codes. Quantum convolutional codes are particularly well-suited for communication applications. I develop the theory of quantum convolutional codes and give families of quantum convolutional codes based on RS codes. Furthermore, I establish a bound on the code parameters of quantum convolutional codes - the generalized Singleton bound. I develop a general framework for deriving convolutional codes from block codes and use it to derive families of non-catastrophic quantum convolutional codes from BCH codes. The dissertation concludes with a discussion of some open problems.
APA, Harvard, Vancouver, ISO, and other styles
22

Huthmacher, Lukas. "Investigation of efficient spin-photon interfaces for the realisation of quantum networks." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277150.

Full text
Abstract:
Quantum networks lie at the heart of distributed quantum computing and secure quantum communication - research areas that have seen a strong increase of interest over the last decade. Their basic architecture consist of stationary nodes composed of quantum processors which are linked via photonic channels. The key requirement, and at the same time the most demanding challenge, is the efficient distribution of entanglement between distant nodes. The two ground states of single spins confined in self-assembled InGaAs quantum dots provide an effective two-level system for the implementation of quantum bits. Moreover, they offer strong transition dipole moments with outstanding photonic properties allowing for the realisation of close to ideal, high-bandwidth spin-photon interfaces. These properties are combined with the benefits of working in the solid state, such as scalability and integrability of devices, to form a promising candidate for the implementation of fast entanglement distribution. In this dissertation we provide the first implementation of a unit cell of a quantum network based on single electron spins in InGaAs. We use a probabilistic scheme based on spin-photon entanglement and the erasure of which path information to project the two distant spins into a maximally entangled Bell state. The successful generation of entanglement is verified through a reconstruction of the final two-spin state and we achieve an average fidelity of $61.6\pm2.3\%$ at a record-high generation rate of $5.8\,\mathrm{kHz}$. One of the main constraints to the achieved fidelity is the limited coherence of the electron spin. We show that it can be extended by three orders of magnitude through decoupling techniques and develop a new measurement technique, allowing us to investigate the origins of the decoherence which has previously been obscured by nuclear feedback processes. Our results evidence that further extension of coherence is ultimately limited by intrinsic mechanisms closely related to local strain due to the growth method of self-assembled quantum dots. After establishing the intrinsic limits to the electron coherence we investigate the coherence properties of the single hole spin as an alternative two-level system with the potential for higher coherence times. We show that the hole spin coherence is indeed superior to the one of the electron and realise the first successful dynamic decoupling scheme implemented in these systems. We find that the decoherence at low external magnetic fields is still governed by coupling to the nuclear spins whereas it is dominated by electrical noise for fields exceeding a few Tesla. This noise source is extrinsic to the quantum dots and a better understanding offers the potential for further improvement of the coherence time. The findings of this work present a complete study of the coherence of the charge carriers in self-assembled quantum dots and provide the knowledge needed to improve the implementation of a quantum-dot based quantum network. In particular, the combination of spin-spin entanglement and the hole coherence times enable further research towards multidimensional photonic cluster states.
APA, Harvard, Vancouver, ISO, and other styles
23

Moore, Darren William. "Quantum state reconstruction and computation with mechanical networks." Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728195.

Full text
Abstract:
Networks of mechanical resonators embedded in the platform of optomechanics are studied in two quantum information contexts: quantum state reconstruction and measurement based quantum computation. The optomechanical setup considered consists of a harmonically interacting network of resonators one of which is coupled via radiation pressure to a resonant mode of a cavity electromagnetic field. We develop a protocol for reconstructing the state of the network from measurements on the output cavity field. An interaction profile tuned to a set of mechanical quadratures ensures that the cavity field carries a copy of the quadratures’ information. Homodyne detection of the output field provides measurement statistics directly linked to the statistics of the mechanical quadratures from which their marginals can be estimated and standard tomographic techniques applied, recovering the phase space distribution for the network. We provide a method for determining the interaction profiles required and analyse the effectiveness of the scheme for Gaussian states in the case of finite measurements. We also provide some further examples of state reconstruction in similar optomechanics settings. An equivalent setup is that in which the cavity field interacts simultaneously with a collection of non­interacting mechanical modes. Here we implement measurement based quantum computation, giving a summary of cluster state generation in optomechanics and providing a scheme for applying multimode Gaussian operations. Adapting QND measurements on movable mirrors we continuously monitor individual resonators in order to assess the feasibility of using indirect measurements for computation compared to projective measurements performed directly on the cluster. Using a linear cluster state of five modes and taking advantage of the decomposition of single-mode Gaussian operations into four steps, we perform a numerical assessment of a large array of experimental parameters, paring down the list until those that most significantly affect the outcome are distilled. These are the mechanical bath temperature, the mechanical dissipation rate and the cluster squeezing. They place strong restrictions on the experimental parameters in order to ensure high fidelities, with stronger requirements for more highly squeezed clusters. We conclude with a small discussion of currently available experimental settings and remarks on further research possibilities.
APA, Harvard, Vancouver, ISO, and other styles
24

Rigovacca, Luca. "Nonclassicality detection and communication bounds in quantum networks." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55942.

Full text
Abstract:
Quantum information investigates the possibility of enhancing our ability to process and transmit information by directly exploiting quantum mechanical laws. When searching for improvement opportunities, one typically starts by assessing the range of outcomes classically attainable, and then investigates to what extent control over the quantum features of the system could be helpful, as well as the best performance that could be achieved. In this thesis we provide examples of these aspects, in linear optics, quantum metrology, and quantum communication. We start by providing a criterion able to certify whether the outcome of a linear optical evolution cannot be explained by the classical wave-like theory of light. We do so by identifying a tight lower bound on the amount of correlations that could be detected among output intensities, when classical electrodynamics theory is used to describe the fields. Rather than simply detecting nonclassicality, we then focus on its quantification. In particular, we consider the characterisation of the amount of squeezing encoded on selected quantum probes by an unknown external device, without prior information on the direction of application. We identify the single-mode Gaussian probes leading to the largest average precision in noiseless and noisy conditions, and discuss the advantages arising from the use of correlated two-mode probes. Finally, we improve current bounds on the ultimate performance attainable in a quantum communication scenario. Specifically, we bound the number of maximally entangled qubits, or private bits, shared by two parties after a communication protocol over a quantum network, without restrictions on their classical communication. As in previous investigations, our approach is based on the evaluation of the maximum amount of entanglement that could be generated by the channels in the network, but it includes the possibility of changing entanglement measure on a channel-by-channel basis. Examples where this is advantageous are discussed.
APA, Harvard, Vancouver, ISO, and other styles
25

Alanis, Dimitrios. "Quantum-assisted multi-objective optimization of heterogeneous networks." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/419588/.

Full text
Abstract:
Some of the Heterogeneous Network (HetNet) components may act autonomously for the sake of achieving the best possible performance. The attainable routing performance depends on a delicate balance of diverse and often conflicting Quality-of-Service (QoS)requirements. Finding the optimal solution typically becomes an NP-hard problem, as the network size increases in terms of the number of nodes. Moreover, the employment of user defined utility functions for the aggregation of the different objective functions often leads to suboptimal solutions. On the other hand, Pareto Optimality is capable of amalgamating the different design objectives by relying on an element of elitism. Although there is a plethora of bio-inspired algorithms that attempt to address the associated multi-component optimization problem, they often fail to generate all the routes constituting the Optimal Pareto Front (OPF). As a remedy, we initially propose an optimal multi-objective quantum-assisted algorithm, namely the Non-dominated Quantum Optimization (NDQO) algorithm, which evaluates the legitimate routes using the concept of Pareto Optimality at a reduced complexity. We then compare the performance of the NDQO algorithm to the state-of-the-art evolutionary algorithms, demonstrating that the NDQO algorithm achieves a near-optimal performance. Furthermore, we analytically derive the upper and lower bounds of the NDQO’s algorithmic complexity, which is of the order of O(N) and O(N√N) in the best- and worst-case scenario, respectively. This corresponds to a substantial complexity reduction of the NDQO from the order of O(N2)imposed by the brute-force (BF) method. However again, as the number of nodes increases, the total number of routes increases exponentially, making its employment infeasible despite the complexity reduction offered. Therefore, we propose a novel optimal quantum-assisted algorithm, namely the Non-Dominated Quantum Iterative Optimization (NDQIO) algorithm, which exploits the synergy between the hardware parallelism and the quantum parallelism for the sake of achieving a further complexity reduction, which is on the order of O(√N) and O(N√N)in the best- and worst-case scenarios, respectively. Additionally, we provide simulation results for demonstrating that our NDQIO algorithm achieves an average complexity reduction of almost an order of magnitude compared to the near-optimal NDQO algorithm,while activating the same order of comparison operators. Apart from the traditional QoS requirements, the network design also has to consider the nodes’ user-centric social behavior. Hence, the employment of socially-aware load balancing becomes imperative for avoiding the potential formation of bottlenecks in the network’s packet-flow. Therefore, we also propose a novel algorithm, referred to as the Multi-Objective Decomposition Quantum Optimization (MODQO) algorithm, which exploits the quantum parallelism to its full potential by exploiting the database correlations for performing multi-objective routing optimization, while at the same time balancing the tele-traffic load among the nodes without imposing a substantial degradation on the network’s delay and power consumption. Furthermore, we introduce a novel socially-aware load balancing metric, namely the normalized entropy of the normalized composite betweenness of the associated socially-aware network, for striking a better trade-off between the network’s delay and power consumption. We analytically prove that the MODQO algorithm achieves the full-search based accuracy at a significantly reduced complexity, which is several orders of magnitude lower than that of the full-search. Finally, we compare the MODQO algorithm to the classic NSGA-II evolutionary algorithm and demonstrate that the MODQO succeeds in halving the network’s average delay, whilst simultaneously reducing the network’s average power consumption by 6 dB without increasing the computational complexity.
APA, Harvard, Vancouver, ISO, and other styles
26

Posner, Matthew T. "Optical integrated circuits for large-scale quantum networks." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/417392/.

Full text
Abstract:
This thesis presents the development of a platform to fabricate photonics integrated circuits that can be used to scale networks intended for quantum information processing (QIP) experiments. The stringent technical requirements for the transport and manipulation of quantum states of light are discussed with respect to channel waveguides and integrated gratings fabricated in silica-on-silicon through direct UV writing laser processing Tilted gratings are identified as a method to enable polarisation-based applications for this integrated platform. A novel implementation of in-line planar waveguide polarisers based on 45º tilted gratings is presented, demonstrating gratings with polarisation extinction ratio (PER) of 0.25 dB/mm and bandwidth impairments better than 0.3 dB in the C-band. 45º tilted gratings in UV written waveguides are used to create novel polarising coupler architectures with PER of 28.5 dB. The alteration of the material composition of germanesilicate planar core layers is investigated, producing waveguides with birefringence of 4.5 ± 0.2 × 10−4, higher than previously reported for this platform. A process for producing end facet endcaps to extend the platform’s capability for high power applications is also described. These developments offer potential for the scaling of QIP experiments with heralded spontaneous four-wave mixing single-photon sources. Finally, the thesis describes research-based education experiments conducted to inform a wide range of audiences on the importance of photonics technologies. The concept of Photonics, and the underlying science and associated research, has been introduced to 2,952 students from 81 schools in the South of England and over 6,000people in public events.
APA, Harvard, Vancouver, ISO, and other styles
27

Waldherr, Konrad [Verfasser]. "Numerical Linear and Multilinear Algebra in Quantum Control and Quantum Tensor Networks / Konrad Waldherr." München : Verlag Dr. Hut, 2014. http://d-nb.info/1064560601/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kuzyk, Mark. "Multimode Optomechanical Systems and Phononic Networks." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24186.

Full text
Abstract:
An optomechanical system consists of an optical cavity mode coupled to a mode of a mechanical oscillator. Depending on the configuration of the system, the optomechanical interaction can be used to drive or cool the mechanical mode, coherently swap the optical and mechanical states, or create entanglement. A multimode optomechanical system consists of many optical (mechanical) modes coupled to a mechanical (optical) mode. With the tools of the optomechanical interaction, multimode optomechanical systems provide a rich platform to study new physics and technologies. A central challenge in optomechanical systems is to mitigate the effects of the thermal environment, which remains significant even at cryogenic temperatures, for mechanical oscillators typically used in optomechanical systems. The central theme of this thesis is to study how the properties of multimode optomechanical systems can be used for such mitigation of thermal noise. The most straightforward extension of an optomechanical system to a multimode system is to have a single optical mode couple to two mechanical modes, or a single mechanical mode couple to two optical modes. In this thesis, we study both types of multimode system. In each case, we study the formation of a dark mode, an eigenstate of the three-mode system that is of particular interest. When the system is in a dark state, the two modes of similar character (optical or mechanical) interact with each other through the mode of dissimilar character, but due to interference, the interaction becomes decoupled from the properties of the dissimilar mode. Another interesting application of the three-mode system is two-mode optical entanglement, generated through mechanical motion. Such entanglement tends to be sensitive to thermal noise. We propose a new method for generating two-mode optical entanglement in the three-mode system that is robust against the thermal environment of the mechanical mode. Finally, we propose a novel, scalable architecture for a quantum computer. The architecture makes use of the concepts developed earlier in the thesis, and applies them to a system that on the surface looks quite different from the standard optomechanical system, but is formally equivalent. This dissertation includes previously published and unpublished coauthored material.
APA, Harvard, Vancouver, ISO, and other styles
29

Avveduti, Silvia. "Analysis of multi-hop Teleportation Protocols for Quantum Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19934/.

Full text
Abstract:
Quantum mechanics for computation and information purposes has seen a burst of interest in the scientific community and companies, due to the potential unique computational power offered by quantum computers, not achievable through classical computers. In particular two technologies are used in most quantum computers, which are the trapped ions and artificial atoms, but many different technologies are currently being studied for the physical implementation of quantum information systems. Quantum computers are challenging to build, because the element which represents information, the qubit, requires strict conditions such as isolation from the environment and a very refined control. Moreover, qubits cannot intrinsically reject noise as classical bits do. This thesis is organized as follows. In Chapter 2 the essential concepts for Quantum Computation and Information are introduced; in Chapter 3 an overview of the main applications is displayed; in Chapter 4 the current results in entanglement and teleportation in Quantum Network protocols are shown. The experimental outcomes obtained in IBM Q are discussed in Chapter 5. Finally, Chapter 6 contains the conclusions.
APA, Harvard, Vancouver, ISO, and other styles
30

Wildfeuer, Sebastian. "Squeezing enhancement and adiabatic elimination in quantum feedback networks." Thesis, Aberystwyth University, 2013. http://hdl.handle.net/2160/7bf65304-9754-44a6-8280-8ead941fe0d1.

Full text
Abstract:
Classical feedback control and system theory are playing an important role in modelling, controlling and analysing complex devices in many branches of engineering. Recent developments like quantum computers and miniaturisation of existing applications and devices are increasing the importance of the ability to control systems with quantum effects. Efforts have been made recently to extent the simplicity and power of the language of classical control theory to quantum mechanical systems. Within this framework of “Quantum Feedback Networks” we are investigating two problems. The first problem concerns the enhancement of squeezed states. It has been observed that the squeezing effect of squeezing devices can be enhancement by measurement based feedback techniques or use of optical cavities. We are investigating the possibility of feedback enhanced squeezing using coherent feedback control. Considered is a static ideal squeezing devices interacting with a single mode cavity undergoing coherent feedback using a beam splitter. We show that the overall squeezing of the output depends on the beam-splitter’s reflectivity and that we are thus able to enhance the squeezing by choosing an appropriate configuration of the beam-splitter. In the second part we investigate the question of compatibility of a rigorous approach to the adiabatic elimination of some degrees of freedom of a quantum mechanical systems and instantaneous feed-forward and feedback limits for quantum mechanical networks. The commutativity of both limits is not obvious but frequently assumed in quantum optics. We show that both limit procedures are instances of Schur complements and prove the commutativity of both limits by generalising a statement about successive Schur complements.
APA, Harvard, Vancouver, ISO, and other styles
31

Jordaan, Bertus Scholtz. "Building a Cross-Cavity Node for Quantum Processing Networks." Thesis, State University of New York at Stony Brook, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13424934.

Full text
Abstract:

Worldwide there are significant efforts to build networks that can distribute photonic entanglement, first with applications in communication, with a long-term vision of constructing fully connected quantum processing networks (QPN). We have constructed a network of atom-light interfaces, providing a scalable QPN platform by creating connected room-temperature qubit memories using dark-state polaritons (DSPs). Furthermore, we combined ideas from two leading elements of quantum information namely collective enhancement effects of atomic ensembles and Cavity-QED to create a unique network element that can add quantum processing abilities to this network. We built a dual connection node consisting of two moderate finesse Fabry-Perot cavities. The cavities are configured to form a cross-cavity layout and coupled to a cold atomic ensemble. The physical regime of interest is the non-limiting case between (i) low N with high cooperativity and (ii) free-space-high-N ensembles. Lastly, we have explored how to use light-matter interfaces to implement an analog simulator of relativistic quantum particles following Dirac and Jackiw-Rebbi model Hamiltonians. Combining this development with the cross-cavity node provides a pathway towards quantum simulation of more complex phenomena involving interacting many quantum relativistic particles.

APA, Harvard, Vancouver, ISO, and other styles
32

Almaas, Eivind. "Topics in the theory of quantum and classical networks /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402957195756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

CHESSA, Stefano. "Quantum Information Capacities for Networks and Higher Dimensional Channels." Doctoral thesis, Scuola Normale Superiore, 2022. https://hdl.handle.net/11384/125264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tang, Xinke. "Optically switched quantum key distribution network." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289444.

Full text
Abstract:
Encrypted data transmission is becoming increasingly more important as information security is vital to modern communication networks. Quantum Key Distribution (QKD) is a promising method based on the quantum properties of light to generate and distribute unconditionally secure keys for use in classical data encryption. Significant progress has been achieved in the performance of QKD point-to-point transmission over a fibre link between two users. The transmission distance has exceeded several hundred kilometres of optical fibre in recent years, and the secure bit rate achievable has reached megabits per second, making QKD applicable for metro networks. To realize quantum encrypted data transmission over metro networks, quantum keys need to be regularly distributed and shared between multiple end users. Optical switching has been shown to be a promising technique for cost-effective QKD networking, enabling the dynamic reconfiguration of transmission paths with low insertion loss. In this thesis, the performance of optically switched multi-user QKD systems are studied using a mathematical model in terms of transmission distance and secure key rates. The crosstalk and loss limitations are first investigated theoretically and then experimentally. The experiment and simulation both show that negligible system penalties are observed with crosstalk of -20 dB or below. A practical quantum-safe metro network solution is then reported, integrating optically-switched QKD systems with high speed reconfigurability to protect classical network traffic. Quantum signals are routed by rapid optical switches between any two endpoints or network nodes via reconfigurable connections. Proof-of-concept experiments with commercial QKD systems are conducted. Secure keys are continuously shared between virtualised Alice-Bob pairs over effective transmission distances of 30 km, 31.7 km, 33.1 km and 44.6 km. The quantum bit error rates (QBER) for the four paths are proportional to the channel losses with values between 2.6% and 4.1%. Optimising the reconciliation and clock distribution architecture is predicted to result in an estimated maximum system reconfiguration time of 20 s, far shorter than previously demonstrated. In addition, Continuous Variable (CV) QKD has attracted much research interest in recent years, due to its compatibility with standard telecommunication techniques and relatively low cost in practical implementation. A wide band balanced homodyne detection system built from modified off-the-shelf components is experimentally demonstrated. Practical limits and benefits for high speed CVQKD key transmission are demonstrated based on an analysis of noise performance. The feasibility of an optically switched CV-QKD is also experimentally demonstrated using two virtualised Alice-Bob pairs for the first time. This work represents significant advances towards the deployment of CVQKD in a practical quantum-safe metro network. A method of using the classical equalization technique for Inter-symbol-interference mitigation in CVQKD detection is also presented and investigated. This will encourage further research to explore the applications of classical communication tools in quantum communications.
APA, Harvard, Vancouver, ISO, and other styles
35

Bridgeman, Jacob. "Tensor Network Methods for Quantum Phases." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17647.

Full text
Abstract:
The physics that emerges when large numbers of particles interact can be complex and exotic. The collective behaviour may not re ect the underlying constituents, for example fermionic quasiparticles can emerge from models of interacting bosons. Due to this emergent complexity, manybody phenomena can be very challenging to study, but also very useful. A theoretical understanding of such systems is important for robust quantum information storage and processing. The emergent, macroscopic physics can be classi ed using the idea of a quantum phase. All models within a given phase exhibit similar low-energy emergent physics, which is distinct from that displayed by models in di erent phases. In this thesis, we utilise tensor networks to study many-body systems in a range of quantum phases. These include topologically ordered phases, gapless symmetry-protected phases, and symmetry-enriched topological phases.
APA, Harvard, Vancouver, ISO, and other styles
36

García-Islas, Juan Manuel. "Aspects of (2+1)-dimensional quantum gravity and topology." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bozzio, Mathieu. "Security and implementation of advanced quantum cryptography : quantum money and quantum weak coin flipping." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT045.

Full text
Abstract:
Les lois de la mécanique quantique présentent un fort potentiel d’amélioration pour la sécurité des réseaux de communication, du cryptage à clé publique au vote électronique, en passant par la banque en ligne. Cette thèse porte sur la sécurité pratique et l’implémentation de deux tâches cryptographiques quantiques : la monnaie quantique et le tirage à pile-ou-face faible. La monnaie quantique exploite le théorème de non-clonage quantique pour générer des jetons, billets ou cartes de crédit strictement infalsifiables. Nous réalisons la première démonstration expérimentale de cette fonctionnalité sur une plateforme photonique aux longueurs d’onde télécom. Nous développons ensuite une analyse de sécurité pratique pour les cartes de crédit quantique. La banque peut ainsi vérifier l’authenticité de la carte à distance, même en présence d’un terminal de paiement malhonnête. Enfin, nous proposons une expérience permettant le stockage sécurisé d’une carte de crédit quantique en utilisant la transparence électromagnétiquement induite au sein d’un nuage d’atomes refroidis. Le tirage à pile-ou-face faible est une primitive cryptographique fondamentale: elle permet en effet la construction de tâches plus complexes telles que la mise en gage de bit et le calcul multipartite sécurisé. Lors d’un tirage à pile ou face, deux entités distantes et méfiantes jettent une pièce. Grâce à l’intrication quantique, il est possible de limiter la probabilité que l’entité malhonnête biaise la pièce. Dans ce projet, nous proposons la première implémentation du pile-ou-face faible. Celle-ci requiert un photon unique et une plateforme d’optique linéaire. Nous présentons l’analyse de sécurité en présence d’erreurs et de pertes, et démontrons que le protocole est réalisable à l’échelle d’une ville. Enfin, nous proposons de réduire davantage la probabilité du biais du protocole
Harnessing the laws of quantum theory can drastically boost the security of modern communication networks, from public key encryption to electronic voting and online banking. In this thesis, we bridge the gap between theory and experiment regarding two quantum-cryptographic tasks: quantum money and quantum weak coin flipping. Quantum money exploits the no-cloning property of quantum physics to generate unforgeable tokens, banknotes, and credit cards. We provide the first proof-of-principle implementation of this task, using photonic systems at telecom wavelengths. We then develop a practical security proof for quantum credit card schemes, in which the bank can remotely verify a card even in the presence of a malicious payment terminal. We finally propose a setup for secure quantum storage of the credit card, using electromagnetically-induced transparency in a cloud of cold cesium atoms. Quantum weak coin flipping is a fundamental cryptographic primitive, which helps construct more complex tasks such as bit commitment and multiparty computation. It allows two distant parties to flip a coin when they both desire opposite outcomes. Using quantum entanglement then prevents any party from biasing the outcome of the flip beyond a certain probability. We propose the first implementation for quantum weak coin flipping, which requires a single photon and linear optics only. We provide the complete security analysis in the presence of noise and losses, and show that the protocol is implementable on the scale of a small city with current technology. We finally propose a linear-optical extension of the protocol to lower the coin bias
APA, Harvard, Vancouver, ISO, and other styles
38

Güney, Durdu. "Novel photonic bandgap based architectures for quantum computers and networks." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3288844.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed February 5, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 108-114).
APA, Harvard, Vancouver, ISO, and other styles
39

Vollmer, Christina E. [Verfasser]. "Non-classical state engineering for quantum networks / Christina E. Vollmer." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1050990617/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pejic, Michael. "Quantum Bayesian networks with application to games displaying Parrondo's paradox." Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3685984.

Full text
Abstract:

Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market—it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples.

Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.

APA, Harvard, Vancouver, ISO, and other styles
41

Linn, Hanna. "Detecting quantum speedup for random walks with artificial neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289347.

Full text
Abstract:
Random walks on graphs are an essential base for crucial algorithms for solving problems, like the boolean satisfiability problem. A speedup of random walks could improve these algorithms. The quantum version of the random walk, quantum walk, is faster than random walks in specific cases, e.g., on some linear graphs. An analysis of when the quantum walk is faster than the random walk can be accomplished analytically or by simulating both the walks on the graph. The problem arises when the graphs grow in size and connectivity. There are no known general rules for what an arbitrary graph not having explicit symmetries should exhibit to promote the quantum walk. Simulations will only answer the question for one single case, and will not provide any general rules for properties the graph should have. Using artificial neural networks (ANNs) as an aid for detecting when the quantum walk is faster on average than random walk on graphs, going from an initial node to a target node, has been done before. The quantum speedup may not be more than polynomial if the initial state of the quantum walk is purely in the initial node of the graph. We investigate starting the quantum walk in various superposition states, with an additional auxiliary node, to maybe achieve a larger quantum speedup. We suggest different ways to add the auxiliary node and select one of these schemes for use in this thesis. The superposition states examined are two stabiliser states and two magic states, inspired by the Gottesman-Knill theorem. According to this theorem, starting a quantum algorithm in a magic state may give an exponential speedup, but starting in a stabilizer state cannot give an exponential speedup, given that only gates from the Clifford group are used in the algorithm, as well as measurements are performed in the Pauli basis. We show that it is possible to train an ANN to classify graphs into what quantum walk was the fastest for various initial states of the quantum walk. The ANN classifies linear graphs and random graphs better than a random guess. We also show that a convolutional neural network (CNN) with a deeper architecture than earlier proposed for the task, is better at classifying the graphs than before. Our findings pave the way for automated research in novel quantum walk-based algorithms.
Slumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
APA, Harvard, Vancouver, ISO, and other styles
42

Bondarenko, Dmytro [Verfasser]. "Constructing networks of quantum channels for state preparation / Dmytro Bondarenko." Hannover : Gottfried Wilhelm Leibniz Universität, 2021. http://d-nb.info/1235138682/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ratner, Michael. "Quantum Walks and Structured Searches on Free Groups and Networks." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/442825.

Full text
Abstract:
Mathematics
Ph.D.
Quantum walks have been utilized by many quantum algorithms which provide improved performance over their classical counterparts. Quantum search algorithms, the quantum analogues of spatial search algorithms, have been studied on a wide variety of structures. We study quantum walks and searches on the Cayley graphs of finitely-generated free groups. Return properties are analyzed via Green’s functions, and quantum searches are examined. Additionally, the stopping times and success rates of quantum searches on random networks are experimentally estimated.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
44

Silvi, Pietro. "Tensor Networks: a quantum-information perspective on numerical renormalization groups." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4293.

Full text
Abstract:
In this thesis, we will focus on a very general family of variational wave-functions, whose main peculiarity is that their descriptors/parameters are tailored according to simple linear algebraic relations. The computational power and success of these tools descends from arguments that were born within quantum information framework: entanglement [1]. Quantum entanglement is indeed a resource, but it is also a measure of internal correlations in multipartite systems. Once we characterized general entanglement properties of many-body ground states, then by controlling entanglement of a variational trial wavefunction we can exclusively address physical states, and disregard non-physical states, even before the simulation takes place. This is the central concept which Tensor Network architectures are based upon.
APA, Harvard, Vancouver, ISO, and other styles
45

Kuns, Kevin A. "Future Networks of Gravitational Wave Detectors| Quantum Noise and Space Detectors." Thesis, University of California, Santa Barbara, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13810824.

Full text
Abstract:

The current network of three terrestrial interferometric gravitational wave detectors have observed ten binary black holes and one binary neutron star to date in the frequency band from 10 Hz to 5 kHz. Future detectors will increase the sensitivity by up to a factor of 10 and will push the sensitivity band down to lower frequencies. However, observing sources lower than a few Hz requires going into space where the interferometer arms can be longer and where there is no seismic noise. A new 100 km space detector, TianGO, sensitive to the frequency band from 10 mHz to 100 Hz is described. Through its excellent ability to localize sources in the sky, TianGO can use binary black holes as standard candles to help resolve the current tension between measurements of the Hubble constant. Furthermore, all of the current and future detectors, on both the ground and in space, are limited by quantum shot noise at high frequencies, and some will be limited by quantum radiation pressure at low frequencies as well. Much effort is made to use squeezed states of light to reduce this quantum noise, however classical noise and losses severely limit this reduction. One would ideally design a gravitational wave transducer that, using its own ability to generate ponderomotive squeezing due to the radiation pressure mediated interaction between the optical modes of the light and the mechanical modes of the mirrors, approaches the fundamental limits to quantum measurement. First steps in this direction are described and it is shown that it is feasible that a large scale 40 m interferometer can observe this ponderomotive squeezing in the near future. Finally, a method of removing the effects of the vacuum fluctuations responsible for the quantum noise in gravitational wave detectors and its application to testing for the presence of deviations from general relativity is described.

APA, Harvard, Vancouver, ISO, and other styles
46

Nuuman, Sinan. "Quantum reinforcement learning for dynamic spectrum access in cognitive radio networks." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/15617/.

Full text
Abstract:
This thesis proposes Quantum Reinforcement Learning (QRL) as an improvement to conventional reinforcement learning-based dynamic spectrum access used within cognitive radio networks. The aim is to overcome the slow convergence problem associated with exploration within reinforcement learning schemes. A literature review for the background of the carried out research work is illustrated. Review of research works on learning-based assignment techniques as well as quantum search techniques is provided. Modelling of three traditional dynamic channel assignment techniques is illustrated and the advantage characteristic of each technique is discussed. These techniques have been simulated to provide a comparison with learning based techniques, including QRL. Reinforcement learning techniques are used as a direct comparison with the Quantum Reinforcement Learning approaches. The elements of Quantum computation are then presented as an introduction to quantum search techniques. The Grover search algorithm is introduced. The algorithm is discussed from a theoretical perspective. The Grover algorithm is then used for the first time as a spectrum allocation scheme and compared to conventional schemes. Quantum Reinforcement Learning (QRL) is introduced as a natural evolution of the quantum search. The Grover search algorithm is combined as a decision making mechanism with conventional Reinforcement Learning (RL) algorithms resulting in a more efficient learning engine. Simulation results are provided and discussed. The convergence speed has been significantly increased. The beneficial effects of Quantum Reinforcement Learning (QRL) become more pronounced as the traffic load increases. The thesis shows that both system performance and capacity can be improved. Depending on the traffic load, the system capacity has improved by 9-84% from a number of users supported perspective. It also demonstrated file delay reduction for up to an average of 26% and 2.8% throughput improvement.
APA, Harvard, Vancouver, ISO, and other styles
47

Duncan, Cameron. "Quantum phases of a bosonic generalization of the Moore-Read ansatz." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20690.

Full text
Abstract:
I investigate a generalization of the quantum many-body trial wave-function due to Moore and Read (MR). The generalization extends the fermionic MR wave-function to spin-lattices in non-trivial topological phases. These Spin-MR wave-functions are defined as expectation values of local operators in an auxiliary conformal field theory (CFT). The tensor-network formalism naturally discretizes the functional dependence of a Spin-MR wave-function on its auxiliary theory. I derive within the tensor-network formalism original analytical approximations of Spin-MR expectation values. My approximations map expectation values of Spin-MR states to correlation functions of field theories defined in perturbation theory by the Spin-MR auxiliary CFT. Spin-MR states admit a lattice-gas interpretation as multi-component plasmas: interpreted in this way, my approximations are exact in the dilute, large-system-size limit. I consider families of Spin-MR examples in which the perturbed theory is explicitly solvable, allowing me to show the existence of a phase transition between massive and massless Spin-MR states. I apply my analytical method to calculate the entanglement spectra of example Spin-MR states, including confirmation of a result of Scaffidi and Ringel. Entanglement spectra are important diagnostics of symmetry protected topological (SPT) order. I discuss the usefulness of my analytical method as part of a numerical research program to search for non-trivial SPT order in the space of Spin-MR states.
APA, Harvard, Vancouver, ISO, and other styles
48

Foxon, Tim. "Discrete models for quantum gravity in three dimensions." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shettell, Nathan. "Quantum Information Techniques for Quantum Metrology." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS504.

Full text
Abstract:
La métrologie quantique est une discipline prometteuse de l'information quantique qui connaît actuellement une vague de percées expérimentales et de développements théoriques. L'objectif principal de la métrologie quantique est d'estimer des paramètres inconnus aussi précisément que possible. En utilisant des ressources quantiques comme sondes, il est possible d'atteindre une précision de mesure qui serait autrement impossible en utilisant les meilleures stratégies classiques. Par exemple, en ce qui concerne la tâche d'estimation de la phase, la précision maximale (la limite d'Heisenberg) est un gain de précision quadratique par rapport aux meilleures stratégies classiques. Bien entendu, la métrologie quantique n'est pas la seule technologie quantique qui connaît actuellement des avancées. Le thème de cette thèse est l'exploration de la manière dont la métrologie quantique peut être améliorée par d'autres techniques quantiques lorsque cela est approprié, à savoir : les états graphiques, la correction d'erreurs et la cryptographie. Les états de graphes sont une ressource incroyablement utile et polyvalente dans l'information quantique. Nous aidons à déterminer l'étendue de l'applicabilité des états de graphes en quantifiant leur utilité pour la tâche de métrologie quantique de l'estimation de phase. En particulier, l'utilité d'un état de graphe peut être caractérisée en fonction de la forme du graphe correspondant. À partir de là, nous concevons une méthode pour transformer tout état de graphe en un état de graphe plus grand (appelé "bundled graph states") qui sature approximativement la limite de Heisenberg. En outre, nous montrons que les états de graphe constituent une ressource robuste contre les effets du bruit (le déphasage et un petit nombre d'effacements) et que la limite quantique de Cramér-Rao peut être saturée par une simple stratégie de mesure. Le bruit issu de l’environnement est l'un des principaux obstacles à la métrologie quantique, qui limite la précision et la sensibilité qu'elle peut atteindre. Il a été démontré que si le bruit environnemental peut être distingué de la dynamique de la tâche de métrologie quantique, des applications fréquentes de correction d'erreurs peuvent être utilisées pour combattre les effets du bruit. En pratique, cependant, la fréquence de correction d'erreurs requise pour maintenir une précision de type Heisenberg est impossible à atteindre pour les technologies quantiques actuelles. Nous explorons les limites de la métrologie quantique améliorée par la correction d'erreurs en prenant en compte les contraintes et les obstacles technologiques, à partir desquels nous établissons le régime dans lequel la limite d'Heisenberg peut être maintenue en présence de bruit. La mise en œuvre complète d'un problème de métrologie quantique est technologiquement exigeante : des états quantiques intriqués doivent être générés et mesurés avec une grande fidélité. Une solution, dans le cas où l'on ne dispose pas de tout le matériel quantique nécessaire, consiste à déléguer une tâche à un tiers. Ce faisant, plusieurs problèmes de sécurité se posent naturellement en raison de la possibilité d'interférence d'un adversaire malveillant. Nous abordons ces questions en développant la notion de cadre cryptographique pour la métrologie quantique. Nous montrons que la précision du problème de la métrologie quantique peut être directement liée à la solidité d'un protocole cryptographique employé. En outre, nous développons des protocoles cryptographiques pour une variété de paramètres motivés par la cryptographie, à savoir : la métrologie quantique sur un canal quantique non sécurisé et la métrologie quantique avec une tâche déléguée à une partie non fiable. Les réseaux de détection quantique ont suscité un intérêt croissant dans la communauté de la métrologie quantique au cours des dernières années. Ils constituent un choix naturel pour les problèmes distribués dans l'espace et les problèmes multiparamètres.[...]
Quantum metrology is an auspicious discipline of quantum information which is currently witnessing a surge of experimental breakthroughs and theoretical developments. The main goal of quantum metrology is to estimate unknown parameters as accurately as possible. By using quantum resources as probes, it is possible to attain a measurement precision that would be otherwise impossible using the best classical strategies. For example, with respect to the task of phase estimation, the maximum precision (the Heisenberg limit) is a quadratic gain in precision with respect to the best classical strategies. Of course, quantum metrology is not the sole quantum technology currently undergoing advances. The theme of this thesis is exploring how quantum metrology can be enhanced with other quantum techniques when appropriate, namely: graph states, error correction and cryptography. Graph states are an incredibly useful and versatile resource in quantum information. We aid in determining the full extent of the applicability of graph states by quantifying their practicality for the quantum metrology task of phase estimation. In particular, the utility of a graph state can be characterised in terms of the shape of the corresponding graph. From this, we devise a method to transform any graph state into a larger graph state (named a bundled graph state) which approximately saturates the Heisenberg limit. Additionally, we show that graph states are a robust resource against the effects of noise, namely dephasing and a small number of erasures, and that the quantum Cramér-Rao bound can be saturated with a simple measurement strategy. Noise is one of the biggest obstacles for quantum metrology that limits its achievable precision and sensitivity. It has been showed that if the environmental noise is distinguishable from the dynamics of the quantum metrology task, then frequent applications of error correction can be used to combat the effects of noise. In practise however, the required frequency of error correction to maintain Heisenberg-like precision is unobtainable for current quantum technologies. We explore the limitations of error correction enhanced quantum metrology by taking into consideration technological constraints and impediments, from which, we establish the regime in which the Heisenberg limit can be maintained in the presence of noise. Fully implementing a quantum metrology problem is technologically demanding: entangled quantum states must be generated and measured with high fidelity. One solution, in the instance where one lacks all of the necessary quantum hardware, is to delegate a task to a third party. In doing so, several security issues naturally arise because of the possibility of interference of a malicious adversary. We address these issues by developing the notion of a cryptographic framework for quantum metrology. We show that the precision of the quantum metrology problem can be directly related to the soundness of an employed cryptographic protocol. Additionally, we develop cryptographic protocols for a variety of cryptographically motivated settings, namely: quantum metrology over an unsecured quantum channel and quantum metrology with a task delegated to an untrusted party. Quantum sensing networks have been gaining interest in the quantum metrology community over the past few years. They are a natural choice for spatially distributed problems and multiparameter problems. The three proposed techniques, graph states, error correction and cryptography, are a natural fit to be immersed in quantum sensing network. Graph states are an well-known candidate for the description of a quantum network, error correction can be used to mitigate the effects of a noisy quantum channel, and the cryptographic framework of quantum metrology can be used to add a sense of security. Combining these works formally is a future perspective
APA, Harvard, Vancouver, ISO, and other styles
50

Hu, Zhizhai, University of Western Sydney, of Science Technology and Environment College, and School of Computing and Information Technology. "Quantum computation via neural networks applied to image processing and pattern recognition." THESIS_CSTE_CIT_Hu_Z.xml, 2001. http://handle.uws.edu.au:8081/1959.7/136.

Full text
Abstract:
This thesis explores moving information processing by means of quantum computation technology via neural networks. A new quantum computation algorithm achieves a double-accurate outcome on measuring optical flows in a video. A set of neural networks act as experimental tools that manipulate the applied data. Attempts have been made to calculate a pixel's location, velocity and grey scale value of moving images but the location and velocity could not be simultaneously measured precisely enough in accordance with both classical and quantum uncertainty principles. The error in measurement produced by quantum principles was found to be half that produced by a classical approach. In some circumstances the ratio of a pixel's coordinates and that of velocities could be determined using quantum eigenstate theory. The Hamiltonian of interaction of two NOT gates is most likely to represent the Gibbs potential distribution in calculating the posterior probability of an image. A quantum chain code algorithm was erected to describe the edges of image features. The FACEFLOW experimental system was built in order to classify the moving human faces. Three kinds of neural network models were finally presented.
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography