Academic literature on the topic 'Quantum optimal control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum optimal control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum optimal control"

1

James, M. R. "Optimal Quantum Control Theory." Annual Review of Control, Robotics, and Autonomous Systems 4, no. 1 (May 3, 2021): 343–67. http://dx.doi.org/10.1146/annurev-control-061520-010444.

Full text
Abstract:
This article explains some fundamental ideas concerning the optimal control of quantum systems through the study of a relatively simple two-level system coupled to optical fields. The model for this system includes both continuous and impulsive dynamics. Topics covered include open- and closed-loop control, impulsive control, open-loop optimal control, quantum filtering, and measurement feedback optimal control.
APA, Harvard, Vancouver, ISO, and other styles
2

Werschnik, J., and E. K. U. Gross. "Quantum optimal control theory." Journal of Physics B: Atomic, Molecular and Optical Physics 40, no. 18 (September 4, 2007): R175—R211. http://dx.doi.org/10.1088/0953-4075/40/18/r01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Friesecke, Gero, Felix Henneke, and Karl Kunisch. "Frequency-sparse optimal quantum control." Mathematical Control & Related Fields 8, no. 1 (2018): 155–76. http://dx.doi.org/10.3934/mcrf.2018007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

CALARCO, T., M. A. CIRONE, M. COZZINI, A. NEGRETTI, A. RECATI, and E. CHARRON. "QUANTUM CONTROL THEORY FOR DECOHERENCE SUPPRESSION IN QUANTUM GATES." International Journal of Quantum Information 05, no. 01n02 (February 2007): 207–13. http://dx.doi.org/10.1142/s0219749907002645.

Full text
Abstract:
We show how quantum optimal control theory can help achieve high-fidelity quantum gates in real experimental settings. We discuss several optimization methods (from iterative algorithms to optimization by interference and to impulsive control) and different physical scenarios (from optical lattices to atom chips and to Rydberg atoms).
APA, Harvard, Vancouver, ISO, and other styles
5

Atia, Yosi, Yuval Elias, Tal Mor, and Yossi Weinstein. "Quantum computing gates via optimal control." International Journal of Quantum Information 12, no. 05 (August 2014): 1450031. http://dx.doi.org/10.1142/s0219749914500312.

Full text
Abstract:
We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13 C 2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Geremia, J. M., and H. Rabitz. "Optimal Hamiltonian identification: The synthesis of quantum optimal control and quantum inversion." Journal of Chemical Physics 118, no. 12 (March 22, 2003): 5369–82. http://dx.doi.org/10.1063/1.1538242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goerz, Michael H., Sebastián C. Carrasco, and Vladimir S. Malinovsky. "Quantum Optimal Control via Semi-Automatic Differentiation." Quantum 6 (December 7, 2022): 871. http://dx.doi.org/10.22331/q-2022-12-07-871.

Full text
Abstract:
We develop a framework of "semi-automatic differentiation" that combines existing gradient-based methods of quantum optimal control with automatic differentiation. The approach allows to optimize practically any computable functional and is implemented in two open source Julia packages, GRAPE.jl and Krotov.jl, part of the QuantumControl.jl framework. Our method is based on formally rewriting the optimization functional in terms of propagated states, overlaps with target states, or quantum gates. An analytical application of the chain rule then allows to separate the time propagation and the evaluation of the functional when calculating the gradient. The former can be evaluated with great efficiency via a modified GRAPE scheme. The latter is evaluated with automatic differentiation, but with a profoundly reduced complexity compared to the time propagation. Thus, our approach eliminates the prohibitive memory and runtime overhead normally associated with automatic differentiation and facilitates further advancement in quantum control by enabling the direct optimization of non-analytic functionals for quantum information and quantum metrology, especially in open quantum systems. We illustrate and benchmark the use of semi-automatic differentiation for the optimization of perfectly entangling quantum gates on superconducting qubits coupled via a shared transmission line. This includes the first direct optimization of the non-analytic gate concurrence.
APA, Harvard, Vancouver, ISO, and other styles
8

Rabitz, Herschel, Michael Hsieh, and Carey Rosenthal. "Optimal control landscapes for quantum observables." Journal of Chemical Physics 124, no. 20 (May 28, 2006): 204107. http://dx.doi.org/10.1063/1.2198837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Artamonov, Maxim, Tak-San Ho, and Herschel Rabitz. "Quantum optimal control of HCN isomerization." Chemical Physics 328, no. 1-3 (September 2006): 147–55. http://dx.doi.org/10.1016/j.chemphys.2006.06.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Artamonov, Maxim, Tak-San Ho, and Herschel Rabitz. "Quantum optimal control of ozone isomerization." Chemical Physics 305, no. 1-3 (October 2004): 213–22. http://dx.doi.org/10.1016/j.chemphys.2004.06.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum optimal control"

1

Edwards, Simon C. "Optimal feedback control of quantum states." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haddadfarshi, Farhang. "Optimal control of dissipative quantum dynamics." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49425.

Full text
Abstract:
In this thesis, we develop a perturbative approximation for the solution of Lindblad master equations with time-dependent generators that satisfies the fundamental property of complete positivity, as essential for quantum simulations and optimal control of open quantum systems. By probing our method to several explicit examples we show that ensuring this property not only improves the accuracy of the perturbative approximation substantially, but also it permits to read off the effective dissipative processes . Subsequently, we design optimal entangling quantum gates for trapped ions mediated by a bus mode which is subject to decoherence. We show that suitably designed polychromatic control pulses, help to suppress the qubit-phonon entanglement substantially while maintaining the mediated interaction. This leads to a considerable reduction in the gate infidelity, in particular, for multi-qubit gates this yields a significant improvement in the gate performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Peng, Yuchen. "Quantum gate and quantum state preparation through neighboring optimal control." Thesis, University of Maryland, College Park, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10159056.

Full text
Abstract:

Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4.

After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β 01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability &epsis; ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β 01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.

APA, Harvard, Vancouver, ISO, and other styles
4

Bartels, Björn [Verfasser], and Florian [Akademischer Betreuer] Mintert. "Smooth optimal control of coherent quantum dynamics." Freiburg : Universität, 2015. http://d-nb.info/1119327296/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Farzamfar, Marzieh. "Optimal control for molecular quantum wave-packet revivals." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-185278.

Full text
Abstract:
We want to design an optimal femtosecond laser pulse which can give us certain revival patterns for two specific quantum molecular systems. We formulate an optimization process by applying optimal control theory when the propagation follows the time-dependent Schrödinger equation. We demonstrate that the designed optimal laser pulse can give us the prescribed revival pattern with some probability.
APA, Harvard, Vancouver, ISO, and other styles
6

Safaei, Shabnam. "Quantum Optimal Control of Josephson Junction-Based Circuits." Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peter, Natalie [Verfasser]. "Optimal quantum control of atomic wave packets in optical lattices / Natalie Peter." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1188731165/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basilewitsch, Daniel [Verfasser]. "Optimal control of quantum information tasks in open quantum systems / Daniel Basilewitsch." Kassel : Universitätsbibliothek Kassel, 2021. http://d-nb.info/1232368407/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rau, Sebastian [Verfasser]. "Optimal Control of interacting Quantum Particle Systems / Sebastian Rau." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042308470/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Santos, Ludovic. "Using quantum optimal control to drive intramolecular vibrational redistribution and to perform quantum computing." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/261328.

Full text
Abstract:
Quantum optimal control theory is applied to find optimal pulses for controlling the motion of an ion and a molecule for two different applications. Those optimal pulses enable the control of the dynamics of the system by driving the atom or the molecule from an initial state to desired states.The evolution equations obtained by means of the quantum optimal control theory are resolved iteratively using a monotonic convergent algorithm. A number of simulation parameters are varied in order to get the optimal pulses including the duration of the pulses, the time step of the time grid, a penalty factor that limits the maximal intensity of the fields, and a guess pulse which is used to start the optimal control.The optimal pulses obtained for each application are analyzed by Fourier transform, and also by looking at the time evolution of the populations that they generate in the system.The first application is the preparation of specific vibrational states of acetylene that are usually not reachable from the ground state, and that would remain unpopulated by usual spectroscopy. Relevant state energies and transition dipole moments are extracted from the experimental literature and especially from the global acetylene Hamiltonian conferring an uncommon precision to the control simulation. The control starts from the ground state. The target states belongs to the polyad Ns=1, Nr=5 of acetylene which includes two vibrational dark states and one vibrational bright state. First, the simulation is performed with the Schrödinger equation and in a second step, with the Liouville--von Neumann equation, as mixed states are prepared. Indeed, the control starts from a Boltzmann distribution of population in the rotational levels of the vibrational ground state chosen in order to simulate an experimental condition. But the distribution is truncated to limit the computational effort. One of the dark states appears to be a potential target for a realistic experimental investigation because the average population of the Rabi oscillation remains high and decoherence is expected to be weak. The optimal pulses obtained have a high fidelity, have a spectrum with well-resolved peak frequencies, and their experimental feasibility seems achievable within the current abilities of experimental laboratories.The second application is to propose an experimental realization of a microscopic physical device able to simulate quantum dynamics. The idea is to use the motional states of a Cd^+ ion trapped in an anharmonic potential to realize a quantum dynamics simulator of a single-particle Schrödinger equation. In this way, the motional states store the information and the optimal pulse manipulates this information to realize operations. In the present case, the simulated dynamics was the propagation of a wave packet in a harmonic potential. Starting from an initial quantum state, the pulse acts on the system to modify the motional states of the ion in such a way that the final superposition of motional states corresponds to the results of the dynamics. This simulation is performed with the Liouville--von Neumann equation and also with the Lindblad equation as dissipation is included to test the robustness of the pulse against perturbations of the potential. The optimal pulses that are obtained have a high fidelity which shows that the ion trap system has correctly realized the quantum dynamics simulation. The optimal pulses are valid for any initial condition if the potential of the simulation or the mass of the propagated wave packet is unchanged.
La théorie du contrôle optimal quantique est utilisée pour trouver des impulsions optimales permettant de contrôler la dynamique d'un atome et d'une molécule les menant d'un état initial à un état final. Les équations d'évolution obtenues grâce au contrôle optimal limitent l'intensité maximale de l'impulsion et sont résolues itérativement grâce à l'algorithme de Zhu--Rabitz. Le contrôle optimal est utilisé pour réaliser deux objectifs. Le premier est la préparation d'états vibrationnels de l'acétylène qui sont généralement inaccessibles par transition au départ de l'état vibrationnel fondamental. Ces états, appelés états sombres, sont les états cibles de la simulation. Ils appartiennent à la polyade Ns=1, Nr=5 de l'acétylène qui en contient deux ainsi qu'un état, dit brillant, qui lui est accessible depuis l'état fondamental. Les énergies des états du système et les moments de transitions dipolaires sont déterminés à partir d'un Hamiltonien très précis qui confère une précision inhabituelle à la simulation. Un des états sombres apparaît être un candidat potentiel pour une réalisation expérimentale car la population moyenne de cet état reste élevée après l'application de l'impulsion.Les niveaux rotationnels des états vibrationnels sont également pris en compte.Les impulsions optimales obtenues ont une fidélité élevée et leur spectre en fréquence présente des pics résolus.Le deuxième objectif est de proposer la réalisation expérimentale d'un dispositif microscopique capable de simuler une dynamique quantique. Ce travail montre qu'on peut utiliser les états de mouvement d'un ion de Cd^+ piégé dans un potentiel anharmonique pour réaliser la propagation d'un paquet d'onde dans un potentiel harmonique. Ce dispositif stocke l'information de la dynamique simulée grâce aux états de mouvements et l'impulsion optimale manipule l'information pour réaliser les propagations. En effet, démarrant d'un état quantique initial, l'impulsion agit sur le système en modifiant les états de mouvements de l'ion de telle sorte que la superposition finale des états de mouvements corresponde aux résultats de la dynamique. De la dissipation est incluse pour tester la robustesse de l'impulsion face à des perturbations du potentiel anharmonique. Les impulsions optimales obtenues ont une fidélité élevée ce qui montre que le système a correctement réalisé la simulation de dynamique quantique.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum optimal control"

1

Pardalos, P. M. Optimization and control of bilinear systems: Theory, algorithms, and applications. New York: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Slavcheva, Gabriela, and Philippe Roussignol, eds. Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12491-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

1927-, Thirring Walter E., ed. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb. 4th ed. Berlin: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lieb, Elliott H. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lieb, Elliott H. The stability of matter: From atoms to stars. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1927-, Thirring Walter E., ed. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb. 3rd ed. Berlin: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pötz, Walter. Coherent Control in Atoms, Molecules, and Semiconductors. Dordrecht: Springer Netherlands, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kocaman, Serdar. On-chip Group and Phase Velocity Control for Classical and Quantum Optical Devices. [New York, N.Y.?]: [publisher not identified], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

service), SpringerLink (Online, ed. Geometry and Physics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nev.) International Conference on Scientific Computing and Applications (8th 2012 Las Vegas. Recent advances in scientific computing and applications: Eigth International Conference on Scientific Computing and Applications, April 1-4, 2012, University of Nevada, Las Vegas, Nevada. Edited by Li, Jichun, editor of compilation, Yang, Hongtao, 1962- editor of compilation, and Machorro, Eric A. (Eric Alexander), 1969- editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum optimal control"

1

Castro, Alberto, and Eberhard K. U. Gross. "Quantum Optimal Control." In Fundamentals of Time-Dependent Density Functional Theory, 265–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23518-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

D'Alessandro, Domenico. "Optimal Control of Quantum Systems." In Introduction to Quantum Control and Dynamics, 199–238. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003051268-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Butkovskiy, A. G., and Yu I. Samoilenko. "Optimal Control of Quantum-Mechanical Processes." In Mathematics and Its Applications, 101–16. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1994-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parthasarathy, Harish. "Quantum Gravity, Lie Groups in Robotics, Field of Robots, Quantum Robots, Quantum Transmission Lines, Quantum Optimal Control." In Electromagnetics, Control and Robotics, 187–216. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003345046-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ivanović, Igor D. "Optimal State Determination: A Conjecture." In Information Complexity and Control in Quantum Physics, 65–76. Vienna: Springer Vienna, 1987. http://dx.doi.org/10.1007/978-3-7091-2971-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sugny, Dominique. "Geometric Optimal Control of Simple Quantum Systems." In Advances in Chemical Physics, 127–212. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118135242.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Narayanan, Sri Hari Krishna, Thomas Propson, Marcelo Bongarti, Jan Hückelheim, and Paul Hovland. "Reducing Memory Requirements of Quantum Optimal Control." In Computational Science – ICCS 2022, 129–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08760-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parthasarathy, Harish. "Master-slave Robots, Optimal Control, Quantum Mechanics and Informationlds." In Electromagnetics, Control and Robotics, 1–53. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003345046-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Vivie-Riedle, Regina, and Carmen M. Tesch. "Molecular quantum computing: Implementation of global quantum gates applying optimal control theory." In Ultrafast Phenomena XIII, 76–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Haiwei, Yaoxiong Wang, and Feng Shuang. "Optimal Single Quantum Measurement of Multi-level Quantum Systems between Pure State and Mixed State." In Informatics in Control, Automation and Robotics, 351–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum optimal control"

1

Vašinka, Dominik, Martin Bielak, Michal Neset, and Miroslav Ježek. "Bidirectional Quantum Control." In Quantum 2.0, QTu3A.45. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qtu3a.45.

Full text
Abstract:
We demonstrate a new method for optimal bidirectional control of complex physical systems. Employing a set of collaborative neural networks, our approach exhibits unprecedented accuracy, even at the single-photon level.
APA, Harvard, Vancouver, ISO, and other styles
2

Jing, Hang, and Yan Li. "Integrating Quantum Computing into Optimal Control for Optimality and Stability in Microgrids." In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10689028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Correia, Franck, Godefroy Bichon, Mohamed Guessoum, Charbel Cherfan, Rémi Geiger, Arnaud Landragin, and Franck Pereira Dos Santos. "Quantum Optimal Control for Atom Interferometry." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw4c.7.

Full text
Abstract:
We develop interferometry-based atomic inertial sensors robust to Doppler-type inhomogeneities by using quantum optimal control methods. Theoretical results show optimized phase profiles of Raman and Bragg optical π-pulses enabling maximization of the fidelity.
APA, Harvard, Vancouver, ISO, and other styles
4

Rabitz, Herschel. "Optimal control of quantum dynamical systems." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mdd2.

Full text
Abstract:
A long-sought-after goal in chemistry and physics has been the desire to externally control and manipulate molecular dynamical processes governed by the laws of quantum mechanics. Although optimal control theory is widely used in many engineering disciplines, it has only recently been recognized that these concepts are applicable to the design of controllers (e.g., external optical fields) for manipulating molecular scale events. The theoretical concepts of quantum mechanical optimal control theory will be reviewed and illustrated with realistic computations. The prospect of teaching lasers in the laboratory to control molecules will also be discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

BELAVKIN, VIACHESLAV P., and SIMON EDWARDS. "Quantum Filtering and Optimal Control." In Quantum Stochastics and Information - Statistics, Filtering and Control. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812832962_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Titum, Paraj, Kevin M. Schultz, Alireza Seif, Gregory D. Quiroz, and B. D. Clader. "Optimal control protocols for single qubit quantum detectors." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qtu8a.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Tsung-Wei, Wei-Chen Chien, and Ching-Ray Chang. "Using Quantum Algorithms to Solve Optimal Control Problems." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qw6a.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

CARLINI, ALBERTO, AKIO HOSOYA, TATSUHIKO KOIKE, and YOSUKE OKUDAIRA. "TIME OPTIMAL QUANTUM CONTROL OF MIXED STATES." In Quantum Bio-Informatics — From Quantum Information to Bio-Informatics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793171_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gamouras, Angela, Reuble Mathew, Sabine Freisem, Dennis Deppe, and Kimberley C. Hall. "Optimal Two-Qubit Quantum Control in InAs Quantum Dots." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qm4b.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rai, Renuka. "Optimal quantum control: Designing lasers for controlling quantum systems." In 2014 Recent Advances in Engineering and Computational Sciences (RAECS). IEEE, 2014. http://dx.doi.org/10.1109/raecs.2014.6799567.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum optimal control"

1

Petersson, N. A. Quantum Optimal Control Using High Performance Computing. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1573147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steel, Duncan G. The Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada437780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steel, Duncan G. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada402598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Apkarian, V. A. Quantum Computing and Control by Optical Manipulation of Molecular Coherences: Towards Scalability. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada478483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steel, Duncan G. Working Beyond Moore's Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ad1003429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography