Academic literature on the topic 'Quantum optimal control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum optimal control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum optimal control"
James, M. R. "Optimal Quantum Control Theory." Annual Review of Control, Robotics, and Autonomous Systems 4, no. 1 (May 3, 2021): 343–67. http://dx.doi.org/10.1146/annurev-control-061520-010444.
Full textWerschnik, J., and E. K. U. Gross. "Quantum optimal control theory." Journal of Physics B: Atomic, Molecular and Optical Physics 40, no. 18 (September 4, 2007): R175—R211. http://dx.doi.org/10.1088/0953-4075/40/18/r01.
Full textFriesecke, Gero, Felix Henneke, and Karl Kunisch. "Frequency-sparse optimal quantum control." Mathematical Control & Related Fields 8, no. 1 (2018): 155–76. http://dx.doi.org/10.3934/mcrf.2018007.
Full textCALARCO, T., M. A. CIRONE, M. COZZINI, A. NEGRETTI, A. RECATI, and E. CHARRON. "QUANTUM CONTROL THEORY FOR DECOHERENCE SUPPRESSION IN QUANTUM GATES." International Journal of Quantum Information 05, no. 01n02 (February 2007): 207–13. http://dx.doi.org/10.1142/s0219749907002645.
Full textAtia, Yosi, Yuval Elias, Tal Mor, and Yossi Weinstein. "Quantum computing gates via optimal control." International Journal of Quantum Information 12, no. 05 (August 2014): 1450031. http://dx.doi.org/10.1142/s0219749914500312.
Full textGeremia, J. M., and H. Rabitz. "Optimal Hamiltonian identification: The synthesis of quantum optimal control and quantum inversion." Journal of Chemical Physics 118, no. 12 (March 22, 2003): 5369–82. http://dx.doi.org/10.1063/1.1538242.
Full textGoerz, Michael H., Sebastián C. Carrasco, and Vladimir S. Malinovsky. "Quantum Optimal Control via Semi-Automatic Differentiation." Quantum 6 (December 7, 2022): 871. http://dx.doi.org/10.22331/q-2022-12-07-871.
Full textRabitz, Herschel, Michael Hsieh, and Carey Rosenthal. "Optimal control landscapes for quantum observables." Journal of Chemical Physics 124, no. 20 (May 28, 2006): 204107. http://dx.doi.org/10.1063/1.2198837.
Full textArtamonov, Maxim, Tak-San Ho, and Herschel Rabitz. "Quantum optimal control of HCN isomerization." Chemical Physics 328, no. 1-3 (September 2006): 147–55. http://dx.doi.org/10.1016/j.chemphys.2006.06.021.
Full textArtamonov, Maxim, Tak-San Ho, and Herschel Rabitz. "Quantum optimal control of ozone isomerization." Chemical Physics 305, no. 1-3 (October 2004): 213–22. http://dx.doi.org/10.1016/j.chemphys.2004.06.061.
Full textDissertations / Theses on the topic "Quantum optimal control"
Edwards, Simon C. "Optimal feedback control of quantum states." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435452.
Full textHaddadfarshi, Farhang. "Optimal control of dissipative quantum dynamics." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49425.
Full textPeng, Yuchen. "Quantum gate and quantum state preparation through neighboring optimal control." Thesis, University of Maryland, College Park, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10159056.
Full textSuccessful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4.
After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β 01〉 = 1/√2(|01〉 + |10〉). I show that for ideal (non-ideal) control, an approximate |β01〉 state could be prepared with error probability &epsis; ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β 01〉 state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.
Bartels, Björn [Verfasser], and Florian [Akademischer Betreuer] Mintert. "Smooth optimal control of coherent quantum dynamics." Freiburg : Universität, 2015. http://d-nb.info/1119327296/34.
Full textFarzamfar, Marzieh. "Optimal control for molecular quantum wave-packet revivals." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-185278.
Full textSafaei, Shabnam. "Quantum Optimal Control of Josephson Junction-Based Circuits." Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85839.
Full textPeter, Natalie [Verfasser]. "Optimal quantum control of atomic wave packets in optical lattices / Natalie Peter." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1188731165/34.
Full textBasilewitsch, Daniel [Verfasser]. "Optimal control of quantum information tasks in open quantum systems / Daniel Basilewitsch." Kassel : Universitätsbibliothek Kassel, 2021. http://d-nb.info/1232368407/34.
Full textRau, Sebastian [Verfasser]. "Optimal Control of interacting Quantum Particle Systems / Sebastian Rau." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042308470/34.
Full textSantos, Ludovic. "Using quantum optimal control to drive intramolecular vibrational redistribution and to perform quantum computing." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/261328.
Full textLa théorie du contrôle optimal quantique est utilisée pour trouver des impulsions optimales permettant de contrôler la dynamique d'un atome et d'une molécule les menant d'un état initial à un état final. Les équations d'évolution obtenues grâce au contrôle optimal limitent l'intensité maximale de l'impulsion et sont résolues itérativement grâce à l'algorithme de Zhu--Rabitz. Le contrôle optimal est utilisé pour réaliser deux objectifs. Le premier est la préparation d'états vibrationnels de l'acétylène qui sont généralement inaccessibles par transition au départ de l'état vibrationnel fondamental. Ces états, appelés états sombres, sont les états cibles de la simulation. Ils appartiennent à la polyade Ns=1, Nr=5 de l'acétylène qui en contient deux ainsi qu'un état, dit brillant, qui lui est accessible depuis l'état fondamental. Les énergies des états du système et les moments de transitions dipolaires sont déterminés à partir d'un Hamiltonien très précis qui confère une précision inhabituelle à la simulation. Un des états sombres apparaît être un candidat potentiel pour une réalisation expérimentale car la population moyenne de cet état reste élevée après l'application de l'impulsion.Les niveaux rotationnels des états vibrationnels sont également pris en compte.Les impulsions optimales obtenues ont une fidélité élevée et leur spectre en fréquence présente des pics résolus.Le deuxième objectif est de proposer la réalisation expérimentale d'un dispositif microscopique capable de simuler une dynamique quantique. Ce travail montre qu'on peut utiliser les états de mouvement d'un ion de Cd^+ piégé dans un potentiel anharmonique pour réaliser la propagation d'un paquet d'onde dans un potentiel harmonique. Ce dispositif stocke l'information de la dynamique simulée grâce aux états de mouvements et l'impulsion optimale manipule l'information pour réaliser les propagations. En effet, démarrant d'un état quantique initial, l'impulsion agit sur le système en modifiant les états de mouvements de l'ion de telle sorte que la superposition finale des états de mouvements corresponde aux résultats de la dynamique. De la dissipation est incluse pour tester la robustesse de l'impulsion face à des perturbations du potentiel anharmonique. Les impulsions optimales obtenues ont une fidélité élevée ce qui montre que le système a correctement réalisé la simulation de dynamique quantique.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Books on the topic "Quantum optimal control"
Pardalos, P. M. Optimization and control of bilinear systems: Theory, algorithms, and applications. New York: Springer, 2008.
Find full textSlavcheva, Gabriela, and Philippe Roussignol, eds. Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12491-4.
Full text1927-, Thirring Walter E., ed. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb. 4th ed. Berlin: Springer, 2005.
Find full textLieb, Elliott H. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb. Berlin: Springer-Verlag, 1991.
Find full textLieb, Elliott H. The stability of matter: From atoms to stars. Berlin: Springer-Verlag, 1991.
Find full text1927-, Thirring Walter E., ed. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb. 3rd ed. Berlin: Springer, 2001.
Find full textPötz, Walter. Coherent Control in Atoms, Molecules, and Semiconductors. Dordrecht: Springer Netherlands, 1999.
Find full textKocaman, Serdar. On-chip Group and Phase Velocity Control for Classical and Quantum Optical Devices. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textservice), SpringerLink (Online, ed. Geometry and Physics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Find full textNev.) International Conference on Scientific Computing and Applications (8th 2012 Las Vegas. Recent advances in scientific computing and applications: Eigth International Conference on Scientific Computing and Applications, April 1-4, 2012, University of Nevada, Las Vegas, Nevada. Edited by Li, Jichun, editor of compilation, Yang, Hongtao, 1962- editor of compilation, and Machorro, Eric A. (Eric Alexander), 1969- editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textBook chapters on the topic "Quantum optimal control"
Castro, Alberto, and Eberhard K. U. Gross. "Quantum Optimal Control." In Fundamentals of Time-Dependent Density Functional Theory, 265–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23518-4_13.
Full textD'Alessandro, Domenico. "Optimal Control of Quantum Systems." In Introduction to Quantum Control and Dynamics, 199–238. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003051268-7.
Full textButkovskiy, A. G., and Yu I. Samoilenko. "Optimal Control of Quantum-Mechanical Processes." In Mathematics and Its Applications, 101–16. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1994-5_4.
Full textParthasarathy, Harish. "Quantum Gravity, Lie Groups in Robotics, Field of Robots, Quantum Robots, Quantum Transmission Lines, Quantum Optimal Control." In Electromagnetics, Control and Robotics, 187–216. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003345046-5.
Full textIvanović, Igor D. "Optimal State Determination: A Conjecture." In Information Complexity and Control in Quantum Physics, 65–76. Vienna: Springer Vienna, 1987. http://dx.doi.org/10.1007/978-3-7091-2971-5_4.
Full textSugny, Dominique. "Geometric Optimal Control of Simple Quantum Systems." In Advances in Chemical Physics, 127–212. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118135242.ch3.
Full textNarayanan, Sri Hari Krishna, Thomas Propson, Marcelo Bongarti, Jan Hückelheim, and Paul Hovland. "Reducing Memory Requirements of Quantum Optimal Control." In Computational Science – ICCS 2022, 129–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08760-8_11.
Full textParthasarathy, Harish. "Master-slave Robots, Optimal Control, Quantum Mechanics and Informationlds." In Electromagnetics, Control and Robotics, 1–53. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003345046-1.
Full textde Vivie-Riedle, Regina, and Carmen M. Tesch. "Molecular quantum computing: Implementation of global quantum gates applying optimal control theory." In Ultrafast Phenomena XIII, 76–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_22.
Full textLiu, Haiwei, Yaoxiong Wang, and Feng Shuang. "Optimal Single Quantum Measurement of Multi-level Quantum Systems between Pure State and Mixed State." In Informatics in Control, Automation and Robotics, 351–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_48.
Full textConference papers on the topic "Quantum optimal control"
Vašinka, Dominik, Martin Bielak, Michal Neset, and Miroslav Ježek. "Bidirectional Quantum Control." In Quantum 2.0, QTu3A.45. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qtu3a.45.
Full textJing, Hang, and Yan Li. "Integrating Quantum Computing into Optimal Control for Optimality and Stability in Microgrids." In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10689028.
Full textCorreia, Franck, Godefroy Bichon, Mohamed Guessoum, Charbel Cherfan, Rémi Geiger, Arnaud Landragin, and Franck Pereira Dos Santos. "Quantum Optimal Control for Atom Interferometry." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw4c.7.
Full textRabitz, Herschel. "Optimal control of quantum dynamical systems." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mdd2.
Full textBELAVKIN, VIACHESLAV P., and SIMON EDWARDS. "Quantum Filtering and Optimal Control." In Quantum Stochastics and Information - Statistics, Filtering and Control. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812832962_0009.
Full textTitum, Paraj, Kevin M. Schultz, Alireza Seif, Gregory D. Quiroz, and B. D. Clader. "Optimal control protocols for single qubit quantum detectors." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qtu8a.20.
Full textHuang, Tsung-Wei, Wei-Chen Chien, and Ching-Ray Chang. "Using Quantum Algorithms to Solve Optimal Control Problems." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qw6a.19.
Full textCARLINI, ALBERTO, AKIO HOSOYA, TATSUHIKO KOIKE, and YOSUKE OKUDAIRA. "TIME OPTIMAL QUANTUM CONTROL OF MIXED STATES." In Quantum Bio-Informatics — From Quantum Information to Bio-Informatics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793171_0005.
Full textGamouras, Angela, Reuble Mathew, Sabine Freisem, Dennis Deppe, and Kimberley C. Hall. "Optimal Two-Qubit Quantum Control in InAs Quantum Dots." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qm4b.8.
Full textRai, Renuka. "Optimal quantum control: Designing lasers for controlling quantum systems." In 2014 Recent Advances in Engineering and Computational Sciences (RAECS). IEEE, 2014. http://dx.doi.org/10.1109/raecs.2014.6799567.
Full textReports on the topic "Quantum optimal control"
Petersson, N. A. Quantum Optimal Control Using High Performance Computing. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1573147.
Full textSteel, Duncan G. The Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada437780.
Full textSteel, Duncan G. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada402598.
Full textApkarian, V. A. Quantum Computing and Control by Optical Manipulation of Molecular Coherences: Towards Scalability. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada478483.
Full textSteel, Duncan G. Working Beyond Moore's Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ad1003429.
Full text