Academic literature on the topic 'Quantum Reinforcement Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Reinforcement Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum Reinforcement Learning"
Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. "Quantum Reinforcement Learning." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38, no. 5 (2008): 1207–20. http://dx.doi.org/10.1109/tsmcb.2008.925743.
Full textLamata, Lucas. "Quantum Reinforcement Learning with Quantum Photonics." Photonics 8, no. 2 (2021): 33. http://dx.doi.org/10.3390/photonics8020033.
Full textMartín-Guerrero, José D., and Lucas Lamata. "Reinforcement Learning and Physics." Applied Sciences 11, no. 18 (2021): 8589. http://dx.doi.org/10.3390/app11188589.
Full textLockwood, Owen, and Mei Si. "Reinforcement Learning with Quantum Variational Circuit." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 16, no. 1 (2020): 245–51. http://dx.doi.org/10.1609/aiide.v16i1.7437.
Full textChen, Samuel Yen-Chi, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan, and Ying-Jer Kao. "Variational quantum reinforcement learning via evolutionary optimization." Machine Learning: Science and Technology 3, no. 1 (2022): 015025. http://dx.doi.org/10.1088/2632-2153/ac4559.
Full textCrawford, Daniel, Anna Levit, Navid Ghadermarzy, Jaspreet S. Oberoi, and Pooya Ronagh. "Reinforcement learning using quantum Boltzmann machines." Quantum Information and Computation 18, no. 1&2 (2018): 51–74. http://dx.doi.org/10.26421/qic18.1-2-3.
Full textYun, Won Joon, Jihong Park, and Joongheon Kim. "Quantum Multi-Agent Meta Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 11087–95. http://dx.doi.org/10.1609/aaai.v37i9.26313.
Full textWu, Shaojun, Shan Jin, Dingding Wen, Donghong Han, and Xiaoting Wang. "Quantum reinforcement learning in continuous action space." Quantum 9 (March 12, 2025): 1660. https://doi.org/10.22331/q-2025-03-12-1660.
Full textPasupuleti, Murali Krishna. "Intelligent Quantum Control Systems Based on Superalgebraic Hamiltonians." International Journal of Academic and Industrial Research Innovations(IJAIRI) 05, no. 04 (2025): 76–90. https://doi.org/10.62311/nesx/rp0625.
Full textAndrés, Eva, Manuel Pegalajar Cuéllar, and Gabriel Navarro. "Brain-Inspired Agents for Quantum Reinforcement Learning." Mathematics 12, no. 8 (2024): 1230. http://dx.doi.org/10.3390/math12081230.
Full textDissertations / Theses on the topic "Quantum Reinforcement Learning"
Nuuman, Sinan. "Quantum reinforcement learning for dynamic spectrum access in cognitive radio networks." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/15617/.
Full textTeixeira, Miguel Alexandre Brandão. "Quantum Reinforcement Learning applied to Games." Master's thesis, 2021. https://hdl.handle.net/10216/135628.
Full textTeixeira, Miguel Alexandre Brandão. "Quantum Reinforcement Learning applied to Games." Dissertação, 2021. https://hdl.handle.net/10216/135628.
Full textBooks on the topic "Quantum Reinforcement Learning"
Kunczik, Leonhard. Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context. Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37616-1.
Full textKunczik, Leonhard. Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context. Springer Fachmedien Wiesbaden GmbH, 2022.
Find full textHeng, Liao, and Bill McColl, eds. Mathematics for Future Computing and Communications. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781009070218.
Full textBusemeyer, Jerome R., Zheng Wang, James T. Townsend, and Ami Eidels, eds. The Oxford Handbook of Computational and Mathematical Psychology. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.001.0001.
Full textBook chapters on the topic "Quantum Reinforcement Learning"
Dong, Daoyi, Chunlin Chen, and Zonghai Chen. "Quantum Reinforcement Learning." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539117_97.
Full textKunczik, Leonhard. "Quantum Reinforcement Learning—Connecting Reinforcement Learning and Quantum Computing." In Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context. Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37616-1_4.
Full textRajagopal, K., Q. Zhang, S. N. Balakrishnan, P. Fakhari, and J. R. Busemeyer. "Quantum Amplitude Amplification for Reinforcement Learning." In Handbook of Reinforcement Learning and Control. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60990-0_26.
Full textSeetohul, Ved, Hamid Jahankhani, Stefan Kendzierskyj, and Isuru Sandakelum Will Arachchige. "Quantum Reinforcement Learning: Advancing AI Agents Through Quantum Computing." In Space Law and Policy. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64045-2_4.
Full textKunczik, Leonhard. "Evaluating Quantum REINFORCE on IBM’s Quantum Hardware." In Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context. Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37616-1_8.
Full textMohan, Arjun, Sudharsan Jayabalan, and Archana Mohan. "Autonomous Quantum Reinforcement Learning for Robot Navigation." In Proceedings of 2nd International Conference on Intelligent Computing and Applications. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1645-5_29.
Full textKim, Joongheon. "Quantum Reinforcement Learning: Concepts, Models, and Applications." In Lecture Notes on Data Engineering and Communications Technologies. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-75593-4_1.
Full textKunczik, Leonhard. "Approximation in Quantum Computing." In Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context. Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37616-1_5.
Full textNeumann, Niels M. P., Paolo B. U. L. de Heer, Irina Chiscop, and Frank Phillipson. "Multi-agent Reinforcement Learning Using Simulated Quantum Annealing." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50433-5_43.
Full textKunczik, Leonhard. "Reinforcement Learning and Bellman’s Principle of Optimality." In Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context. Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37616-1_3.
Full textConference papers on the topic "Quantum Reinforcement Learning"
Kruse, Georg, Rodrigo Coelho, Andreas Rosskopf, Robert Wille, and Jeanette-Miriam Lorenz. "Benchmarking Quantum Reinforcement Learning." In Workshop on Quantum Artificial Intelligence and Optimization 2025. SCITEPRESS - Science and Technology Publications, 2025. https://doi.org/10.5220/0013393200003890.
Full textKim, Gyu Seon, Soohyun Park, and Joongheon Kim. "Quantum Reinforcement Learning: An Overview." In 2024 15th International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2024. https://doi.org/10.1109/ictc62082.2024.10826656.
Full textMpofu, K. T., and P. Mthunzi-Kufa. "Parametrized Quantum Circuits for Reinforcement Learning." In 2024 4th International Multidisciplinary Information Technology and Engineering Conference (IMITEC). IEEE, 2024. https://doi.org/10.1109/imitec60221.2024.10850927.
Full textMeyer, Jan, Kay Glatting, Sigurd Huber, and Gerhard Krieger. "Quantum Reinforcement Learning for Cognitive SAR." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10642330.
Full textEisenmann, Simon, Daniel Hein, Steffen Udluft, and Thomas A. Runkler. "Model-Based Offline Quantum Reinforcement Learning." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00175.
Full textMuscalagiu, Anca-Ioana. "Quantum Neural Network Design via Quantum Deep Reinforcement Learning." In 16th International Conference on Neural Computation Theory and Applications. SCITEPRESS - Science and Technology Publications, 2024. http://dx.doi.org/10.5220/0012997500003837.
Full textChen, Samuel Yen-Chi. "Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00178.
Full textLiu, Chen-Yu, Chu-Hsuan Abraham Lin, Chao-Han Huck Yang, Kuan-Cheng Chen, and Min-Hsiu Hsieh. "QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2024. https://doi.org/10.1109/qce60285.2024.10299.
Full textPark, Junghoon, Jiook Cha, Samuel Yen-Chi Chen, Shinjae Yoo, and Huan-Hsin Tseng. "Over the Quantum Rainbow: Explaining Hybrid Quantum Reinforcement Learning." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00185.
Full textBraniff, Austin, Fengqi You, and Yuhe Tian. "Enhanced Reinforcement Learning-driven Process Design via Quantum Machine Learning." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.149501.
Full textReports on the topic "Quantum Reinforcement Learning"
Pasupuleti, Murali Krishna. Quantum Intelligence: Machine Learning Algorithms for Secure Quantum Networks. National Education Services, 2025. https://doi.org/10.62311/nesx/rr925.
Full textPasupuleti, Murali Krishna. Quantum-Enhanced Machine Learning: Harnessing Quantum Computing for Next-Generation AI Systems. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv125.
Full textGuy, Khalil, and Gabriel Perdue. Using Reinforcement Learning to Optimize Quantum Circuits in thePresence of Noise. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1661681.
Full textPasupuleti, Murali Krishna. AI in Global Strategy: Harnessing Game Theory and Reinforcement Learning for Diplomatic Innovation. National Education Services, 2025. https://doi.org/10.62311/nesx/rr125.
Full textPasupuleti, Murali Krishna. Automated Smart Contracts: AI-powered Blockchain Technologies for Secure and Intelligent Decentralized Governance. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv425.
Full textPasupuleti, Murali Krishna. Smart Nanomaterials and AI-Integrated Grids for Sustainable Renewable Energy. National Education Services, 2025. https://doi.org/10.62311/nesx/rr1025.
Full text