To see the other types of publications on this topic, follow the link: Quantum theory. Quantum optics.

Dissertations / Theses on the topic 'Quantum theory. Quantum optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Quantum theory. Quantum optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pope, Damian. "Contrasting quantum mechanics to local hidden variables theories in quantum optics and quantum information science /." [St. Luica, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16765.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HOLM, DAVID ALLEN. "QUANTUM THEORY OF MULTIWAVE MIXING (RESONANCE FLUORESCENCE, SATURATION SPECTROSCOPY, MODULATION, PHASE CONJUGATION, QUANTUM NOISE)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187980.

Full text
Abstract:
This dissertation formulates and applies a theory describing how one or two strong classical waves and one or two weak quantum mechanical waves interact in a two-level medium. The theory unifies many topics in quantum optics, such as resonance fluorescence, saturation spectroscopy, modulation spectroscopy, the build up of laser and optical bistability instabilities, and phase conjugation. The theory is based on a quantum population pulsation approach that resembles the semiclassical theories, but is substantially more detailed. Calculations are performed to include the effects of inhomogeneous broadening, spatial hole burning, and Gaussian transverse variations. The resonance fluorescence spectrum in a high finesse optical cavity is analyzed in detail, demonstrating how stimulated emission and multiwave processes alter the spectrum from the usual three peaks. The effects of quantum noise during the propagation of weak signal and conjugate fields in phase conjugation and modulation spectroscopy are studied. Our analysis demonstrates that quantum noise affects not only the intensities of the signal and conjugate, but also their relative phase, and in particular we determine a quantum limit to the semiclassical theory of FM modulation spectroscopy. Finally, we derive the corresponding theory for the two-photon, two-level medium. This yields the first calculation of the two-photon resonance fluorescence spectrum. Because of the greater number of possible interactions in the two-photon two-level model, the theoretical formalism is considerably more complex, and many effects arise that are absent in the one-photon problem. We discuss the role of the Stark shifts on the emission spectrum and show how the Rayleigh scattering is markedly different.
APA, Harvard, Vancouver, ISO, and other styles
3

Jenkins, Stewart David. "Theory of light -atomic ensemble interactions entanglement, storage, and retrieval /." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09252006-175848/.

Full text
Abstract:
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2007.<br>Kennedy, T. A. Brian, Committee Chair ; Kuzmich, Alex, Committee Member ; Chapman, Michael S., Committee Member ; Raman, Chandra, Committee Member ; Morley, Thomas D., Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
4

Dorier, Vincent. "Quantum theory of light in linear media : applications to quantum optics and quantum plasmonics." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK006.

Full text
Abstract:
Nous développons une méthode de quantification du champ électromagnétique en interaction linéaire avec les milieux passifs d'une part, et les milieux actifs (plasmoniques) d'autre part. Cette méthode repose sur la construction d'une structure Hamiltonienne compatible avec les équations de Maxwell, puis sur un principe de correspondence et la définition d'un espace de Fock des états quantiques. Nous utilisons les résultats de la théorie quantique pour étudier la propagation de photons dans des environnements diéléctriques et l'émission de plasmons uniques<br>We develop a method of quantization of the electromagnetic field interacting with passive media on one hand, and active (plasmonic) media on the other hand. This method relies on the construction of a Hamiltonian structure compatible with the Maxwell equations, and then on a principle of correspondence and the definition of a Fock space of quantum states. We use the results of the quantum theory to study the propagation of photons in dielectric environments and the emission of single plasmons
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Xunmimg. "Nonlinear dynamics in quantum optics /." St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17835.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mertens, Christopher J. "Many-body theory of dissipative quantum optical systems." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/30316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Menzies, David. "Procrustean entanglement concentration, weak measurements and optimized state preparation for continuous-variable quantum optics." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kennedy, Thomas Albert Brian. "Theory of fluctuations and collisions in quantum optics." Thesis, Queen's University Belfast, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clemens, James Peter. "Collective spontaneous emission in the framework of quantum trajectory theory /." view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3102158.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2003.<br>Typescript. Includes vita and abstract. Includes bibliographical references (leaves 129-135). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
10

Devitt, Simon John. "Quantum information engineering : concepts to quantum technologies /." Connect to thesis, 2007. http://eprints.unimelb.edu.au/archive/00003925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Funk, Andrew Christopher. "Cryptography using two-mode quantum mechanically squeezed optical pulses /." view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3120623.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2004.<br>Typescript. Includes vita and abstract. Includes bibliographical references (leaves 204-209). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
12

Matloob, Mohammad Reza. "Theory of electromagnetic field quantization in material media." Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kok, Pieter. "State preparation and some applications in quantum optics within the context of quantum information theory." Thesis, Bangor University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jen, Hsiang-Hua. "Theory of light-matter interactions in cascade and diamond type atomic ensembles." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37288.

Full text
Abstract:
In this thesis, we investigate the quantum mechanical interaction of light with matter in the form of a gas of ultracold atoms: the atomic ensemble. We present a theoretical analysis of two problems, which involve the interaction of quantized electromagnetic fields (called signal and idler) with the atomic ensemble (i) cascade two-photon emission in an atomic ladder configuration, and (ii) photon frequency conversion in an atomic diamond configuration. The motivation of these studies comes from potential applications in long-distance quantum communication where it is desirable to generate quantum correlations between telecommunication wavelength light fields and ground level atomic coherences. In the two systems of interest, the light field produced in the upper arm of an atomic Rb level scheme is chosen to lie in the telecom window. The other field, resonant on a ground level transition, is in the near-infrared region of the spectrum. Telecom light is useful as it minimizes losses in the optical fiber transmission links of any two long-distance quantum communication device. We develop a theory of correlated signal-idler pair correlation. The analysis is complicated by the possible generation of multiple excitations in the atomic ensemble. An analytical treatment is given in the limit of a single excitation assuming adiabatic laser excitations. The analysis predicts superradiant timescales in the idler emission in agreement with experimental observation. To relax the restriction of a single excitation, we develop a different theory of cascade emission, which is solved by numerical simulation of classical stochastic differential equation using the theory of open quantum systems. The simulations are in good qualitative agreement with the analytical theory of superradiant timescales. We further analyze the feasibility of this two-photn source to realize the DLCZ protocol of the quantum repeater communication system. We provide a quantum theory of near-infrared to telecom wavelength conversion in the diamond configuration. The system provides a crucial part of a quantum-repeater memory element, which enables a "stored" near-infrared photon to be converted to a telecom wavelength for transmission without the destruction of light-atom quantum correlation. We calculate the theoretical conversion efficiency, analyzing the role of optical depth of the ensemble, pulse length, and quantum fluctuations on the process.
APA, Harvard, Vancouver, ISO, and other styles
15

Hu, Yuan Zheng. "Theory of electron-hole pair excitations in semiconductor quantum dots." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185516.

Full text
Abstract:
This dissertation considers one- and two-electron-hole-pair excitations in ideally spherical semiconductor quantum dots with infinite or finite confinement potentials. The optical absorption edge of the semiconductor micsrocrystallites is found to be higher than that in the corresponding bulk semiconductor. This blue shift is approximately proportional to 1/R², where R is the radius of the semiconductor microspheres. For small quantum dots with infinite confinement potential, the energies and wave-functions of quantum confined excitons and biexcitons are computed using a numerical matrix diagonalization method. Both numerical matrix digaonalization and perturbative calculations prove that the binding energy of biexcitons is strictly positive regardless of material parameters. A general formula for the optical susceptibility of quantum dots is derived, from which, optical spectra are computed. The theoretical results qualitatively agree with recent experimental observations. Some novel optical properties of quantum dots are revealed by this study, such as the existence of excited biexciton states energetically above the exciton ground state resonance and modified optical nonlinearities. Extending our numerical scheme, we compute the effects of impurities or crystal defects in a simple model. The calculation shows that charge defects or impurities have only a small influence on the optical spectra of quantum dots. The details of the quantum confinement conditions, such as the finite value of the quantum confinement potential and different electron-hole masses inside and outside the dot, are studied within the framework of the variational scheme. Finally, we extend the numerical matrix diagonalization method to investigate the valence band coupling effect in quantum dots by including the Luttinger Hamiltonian. It is found that the concept of heavy- and light-hole has to be modified to describe the hole states in semiconductor quantum dots. Also, the valence band mixing due to spin-orbit interaction changes significantly the optical selection rules and consequently influences the allowed optical excitations in quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
16

An, Sunghyuck. "Theory of multiwave mixing in two- and three-level media." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184560.

Full text
Abstract:
This dissertation presents theories of multiwave mixing in two- and three-level media. The first part of the dissertation treats the semiclassical theories in two-level media. Chapter 2 gives the simple semiclassical theory of four-wave mixing when the two pump frequences differ by more than the reciprocal of the population-difference lifetime. This difference washes out the pump spatial holes as well as one of the two reflection gratings. We compare the results to the degenerate treatment of Abrams and Lind and find significant differences in the reflection coefficient spectra. Chapter 3 presents the semiclassical theory of multiwave in a squeezed vacuum characterized by unequal in-phase and in-quadrature dipole decay times. For a highly squeezed vacuum, we find sharp resonances in both probe absorption and reflection coefficients, which provide sensitive ways to measure the amount of squeezing in the vacuum. The second part of the dissertation treats the quantum theories in two- and three-level media. Chapter 4 develops the fourth-order quantum theory of multiwave mixing to describe the effects of sidemode saturation in two-level media. We derive explicit formulas for the fourth-order quantum coefficients and show that the fourth-order quantum theory reproduces the third-order semiclassical coefficient obtained by truncating a continued fraction. We apply the results to cavity problems and find significant differences in the sideband spectra given by the second- and fourth-order treatments, particularly as the sidemode approaches the laser threshold. The final chapter presents a quantum theory of multiwave mixing in three-level cascades with a two-photon pump. The explicit formulas for the resonance fluorescence spectrum and the quantum combination-tone source term are derived. The theory is applied to the generation of squeezed states of light. We find almost perfect squeezing for some strong pump intensities and good broad-band squeezing for low pump intensities.
APA, Harvard, Vancouver, ISO, and other styles
17

Fearn, H. "Non-classical effects in optics." Thesis, University of Essex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Crimin, Frances. "Quantum theory of the Penning trap : an exploration of the low temperature regime." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/74654/.

Full text
Abstract:
The objective of this thesis is to develop the quantum theory of the motional degrees of freedom of a charged particle in a Penning trap. The theory is treated within the formalism of quantum optics, and explores the use of dressed-atom methods by exploiting the threefold SU(N) algebraic structure of the problem. The quantum form of the experimental techniques of sideband coupling and driving to the ultra-elliptical regime are examined in this context, and resulting future applications considered. Interpretation of the quantum dynamics of the separate x and y motions of an electron is discussed, motivated by the desire to modify the trapping potential without changing the basic experimental configuration. A detailed discussion of operator methods which exploit the algebraic structure of the problem is given. This results in a clearer understanding of the physical manifestations of a range of unitary transformations upon a general three-dimensional system, and a novel interpretation of the mapping between canonical angular momentum components of isotropic and anisotropic trapping systems. The results highly promote future use of these methods in Penning trap theory, detailing a robust formulation of unitary operations which can be used to prepare the quantum state of a charged particle. The majority of the results can be applied to any Penning trap, but the theory is based throughout upon the “Geonium Chip" trap at Sussex; the scalability and planar design of this trap promotes it as natural candidate in experimental quantum optics and Gaussian quantum information studies. The work in this thesis aims to provide framework for such future applications.
APA, Harvard, Vancouver, ISO, and other styles
19

Yang, Zhenshan. "Theory of excitonic optical properties of semiconductor quantum wells and Bragg structures." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/282892.

Full text
Abstract:
This dissertation addresses both fundamental aspects of the coherent exciton kinetics in single semiconductor quantum wells and more application-oriented aspects of the collective excitonic optical properties in quantum well Bragg structures. We use a bosonic theory to investigate the ultrafast coherent exciton dynamics after an optical excitation in a single semiconductor quantum well. It is shown that, on intermediate time scales, nonlinear mean-field interactions between excitons lead to a coherent, wave-like evolution in the momentum distribution of optically inactive excitons, which can survive for some time before dephasing sets in. Driven by two-exciton correlations, this coherent quantum kinetic effect bridges the well-known kinetics associated with optical excitation on the one hand and incoherent relaxation on the other. We also study more general dynamical properties of bosonic mean field systems with N-species of excitons (in a single semiconductor quantum well). We find that the momentum-conserving exciton mean field equations, including the coupling to external fields and fermionic corrections, have the dynamical structure su(N,N). We show that one can define a non-real generalized "Bloch vector" and a non-hermitian "density matrix" description, which allow us to explicitly obtain all the constants of motion associated with the su(N,N) symmetry. The many-body effects and correlations of excitons in a single quantum well are mainly induced by the Coulomb interactions. In the case of a semiconductor quantum well Bragg structure, the light induced coupling between different quantum wells also dramatically affects the excitons' behavior, especially through the collective excitations of excitons in the whole structure. We investigate the linear excitonic optical properties of the quantum well Bragg structure induced by the collective excitations using the transfer matrix approach. We show that the so called "intermediate band" (IB) created by the exciton resonance, which does not exist in conventional photonic crystals, can be used for the stopping, storing and releasing of light, which is important in information processing devices. We also discuss the compensation of the dispersive distortion in the light delay process through reversing the IB band structure. Other conceptual and practical issues such as the decay rate of the IB modes and the generalized anti-reflection coating are also investigated.
APA, Harvard, Vancouver, ISO, and other styles
20

Lai, Yinchieh. "Quantum theory of optical solitons." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42512.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1991.<br>Includes bibliographical references (leaves 93-98).<br>v by Yinchieh Lai.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
21

Ambrose, Bradley Scott. "Investigation of student understanding of the wave-like properties of light and matter /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/9696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Folland, Thomas. "Frequency control of terahertz quantum cascade lasers : theory and measurement." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/frequency-control-of-terahertz-quantum-cascade-lasers-theory-and-measurement(d4c55769-f053-4b79-aed3-e2fec575adde).html.

Full text
Abstract:
Terahertz (THz) technology stands to solve a number of problems in everyday life, from next generation wireless communication to spectroscopic identification and imaging. However it is technically challenging to make a high power, compact source for terahertz radiation. The Quantum Cascade Laser (QCL), which produces gain at THz frequencies by exploiting inter-sub-band transitions in quantum wells, offers one solution to this problem. However controlling and detecting the emission from such sources remains a major challenge. This thesis investigates the theory and measurement of emission frequencies from aperiodic lattice THz QCLs. Crucially, realising both frequency control and detection provides a complete system for coherent THz characterisation of devices at precise, user defined frequencies. The author starts by studying the emission frequencies and threshold of discretely tuned aperiodic lattice lasers. This is achieved using a numerical transfer matrix method (TMM), which allows the calculation of the aperiodic lattice threshold spectrum for the first time. Calculations reveal that the low threshold modes of aperiodic lattice lasers form at peaks in the electromagnetic density of modes. This shows that lasing in aperiodic lattices arises from slow light propagation induced by multiple photonic band gaps, leading to both band edge and defect laser modes. Frequency selective lasing is maintained even under the influence of external facet feedback, albeit at the cost of precise knowledge of the mode frequency. Importantly this framework allows the understanding of essentially any aperiodic lattice laser system. Most significantly, the TMM is exploited in order to understand how graphene can be used to control a THz laser. Graphene interacts strongly with THz waves, and can be easily integrated with semiconductor structures such as lasers and waveguides. Here, numerical calculations reveal that graphene can be introduced into the waveguide of a THz QCL, generating electrically tunable THz surface plasmons. Such surface plasmons couple into an aperiodic lattice to change the scattering strength of each individual grating element. The TMM reveals that this change in scattering strength controls the modal selectivity of an aperiodic lattice THz QCL. This hypothesis successfully explains both earlier experiments and those performed by the author. Crucially, this model was central to a publication in the journal Science. Finally, this thesis demonstrates a novel coherent detection system for the characterisation of THz QCL emission. The technique exploits non-linear up-conversion of THz waves to a telecoms frequency side-band, a process shown to be sensitive to THz waveguide dispersion. By mixing the up-converted THz wave with a near infra-red local oscillator laser, coherent detection of QCL emission using all fibre coupled components is demonstrated for the first time. This measurement allows for the characterisation of laser emission with high frequency and temporal resolution. Specifically sub-microsecond pulses of THz emission and transients can be detected. When taken as a whole, the work of this thesis constitutes a major step towards realising cost effective THz characterisation and spectroscopy using QCLs.
APA, Harvard, Vancouver, ISO, and other styles
23

Valley, John Francis. "Nonlinear optical experiments in sodium vapor and comparison with Doppler-broadened two-level-atom theory." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184930.

Full text
Abstract:
Two spectral regions of gain exist for a weak probe beam propagating through a medium of two-level-atoms pumped by a strong near-resonance field. Experimentally a cw ring-dye laser is used to explore this gain at the Na D₂ resonance in a vapor. Plane-wave calculations of probe-gain spectra which include the Doppler broadening inherent in a vapor agree well with experimental spectra obtained with a Fabry-Perot interferometer. Such two-beam-coupling gain might have applications as optical pre- or power amplifiers. The gain is also the primary step in four-wave-mixing. Mixing of the pump and sideband which experiences gain produces the medium polarization from which the fourth-wave arises. For phase-matched propagation the fourth-wave, which is at a frequency that experiences little or negative probe-gain (i.e., absorption), grows at nearly the same rate as the primary sideband. Together the two sidebands extract far more than twice as much energy from the pump than does the primary sideband acting alone. Experimentally four-wave-mixing which arises from noise at the gain-sideband-frequency is sometimes accompanied by conical emission at the fourth-wave sideband. Since this sideband is also seen on axis the explanation cannot be simply phase-matching. Simulations which include the full transverse nature of the experiment are currently running on a CRAY supercomputer. These simulations indicate that the radial variation of the medium index of refraction is responsible for conical emission.
APA, Harvard, Vancouver, ISO, and other styles
24

Madison, Kirk William. "Quantum transport in optical lattices /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Henkel, Carsten. "Coherence theory of atomic de Broglie waves and electromagnetic near fields." Thesis, [S.l. : s.n.], 2004. http://pub.ub.uni-potsdam.de/2004/0027/henkel.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ohliger, Matthias. "Characterizing and measuring properties of continuous-variable quantum states." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6292/.

Full text
Abstract:
We investigate properties of quantum mechanical systems in the light of quantum information theory. We put an emphasize on systems with infinite-dimensional Hilbert spaces, so-called continuous-variable systems'', which are needed to describe quantum optics beyond the single photon regime and other Bosonic quantum systems. We present methods to obtain a description of such systems from a series of measurements in an efficient manner and demonstrate the performance in realistic situations by means of numerical simulations. We consider both unconditional quantum state tomography, which is applicable to arbitrary systems, and tomography of matrix product states. The latter allows for the tomography of many-body systems because the necessary number of measurements scales merely polynomially with the particle number, compared to an exponential scaling in the generic case. We also present a method to realize such a tomography scheme for a system of ultra-cold atoms in optical lattices. Furthermore, we discuss in detail the possibilities and limitations of using continuous-variable systems for measurement-based quantum computing. We will see that the distinction between Gaussian and non-Gaussian quantum states and measurements plays an crucial role. We also provide an algorithm to solve the large and interesting class of naturally occurring Hamiltonians, namely frustration free ones, efficiently and use this insight to obtain a simple approximation method for slightly frustrated systems. To achieve this goals, we make use of, among various other techniques, the well developed theory of matrix product states, tensor networks, semi-definite programming, and matrix analysis.<br>Die stürmische Entwicklung der Quanteninformationstheorie in den letzten Jahren brachte einen neuen Blickwinkel auf quantenmechanische Probleme. Insbesondere die fundamentale Eigenschaft der Verschränkung von Quantenzuständen spielt hierbei eine Schlüsselrolle. Einstein, Podolsky und Rosen haben 1935 versucht die Unvollständigkeit der Quantenmechanik zu demonstrieren, indem sie zeigten, dass sie keine lokale, realistische Therie ist und der Ausgang einer Messung an einem Ort von Messungen abhängen kann, die an beliebig weit entfernten Orten gemacht wurden. John Bell stellte 1964 eine, später nach ihm benannte, Ungleichung auf, die eine Grenze an mögliche Korrelationen von Messergebnissen in lokalen, realistischen Theorien gibt. Die Vorhersagen der Quatenmechanik verletzen diese Ungleichung, eine Tatsache, die 1981 von Alain Aspect und anderen auch experimentell bestätigt wurde. Solche nicht-lokalen Quantenzustände werden verschränkt'' genannt. In neuerer Zeit wurde Verschränkung nicht mehr nur als mysteriöse Eigenschaft der Quantenmechanik sondern auch als Resource für Aufgaben der Informationsverarbeitung gesehen. Ein Computer, der sich diese Eigenschaften der Quantenmechanik zu nutze macht, ein sogenannter Quantencomputer, würde es erlauben gewisse Aufgaben schnell zu lösen für die normale'' Computer zu lange brauchen. Das wichtigste Beispiel hierfür ist die Zerlegung von großen Zahlen in ihre Primfaktoren, für die Shor 1993 einen Quantenalgorithmus präsentierte. In dieser Arbeit haben wir uns mit den Eigenschaften von Quantensystemen, die durch sogenannte kontinuierliche Variablen beschrieben werden, beschäftigt. Diese sind nicht nur theoretisch sonder auch experimentell von besonderem Interesse, da sie quantenoptische Systeme beschreiben, die sich verhältnismäßig leicht im Labor präparieren, manipulieren und messen lassen. Wenn man eine vollständige Beschreibung eines Quantenzustandes erhalten will, braucht man, auf Grund der Heisenberg'schen Unschärferelation, mehrere Kopien von ihm an denen man dann Messungen durchführt. Wir haben eine Methode, compressed-sensing genannt, eingeführt um die Anzahl der nötigen Messungen substantiell zu reduzieren. Wir haben die theoretische Effizienz dieser Methode bewiesen und durch numerische Simulationen auch ihre Praktikabilität demonstriert. Desweiteren haben wir beschrieben, wie man compressed-sensing für die schon erwähnten optischen Systemen sowie für ultrakalte Atome experimentell realisieren kann. Ein zweites Hauptthema dieser Arbeit war messbasiertes Quantenrechnen. Das Standardmodell des Quantenrechnens basiert auf sogenannten Gattern, die eine genaue Kontrolle der Wechselwirkung zwischen den Bestandteilen des Quantencomputers erfordern. Messbasiertes Quantenrechnen hingegen kommt mit der Präparation eines geeigneten Quantenzustands, Resource genannt, gefolgt von einfachen Messungen auf diesem Zustand aus. Wir haben gezeigt, dass Systeme mit kontinuierlichen Variablen eine vorteilhafte Realisierung eines Quantencomputers in diesem Paradigma erlauben, es jedoch auch wichtige Beschränkungen gibt, die kompliziertere Zustandspräparationen und Messungen nötig machen.
APA, Harvard, Vancouver, ISO, and other styles
27

Webb, James Engineering &amp Information Technology Australian Defence Force Academy UNSW. "The measurement, creation and manipulation of quantum optical states via photodetection." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43686.

Full text
Abstract:
In this thesis, we demonstrate an array of photodetection theory and techniques bridging the traditional discrete and continuous variable experimental domains. In quantum optics, the creation and measurement of states of light are intertwined and we present experimental architectures considering both aspects. We describe the measurement of mean photon numbers at optical sideband frequencies using homodyne detection. We use our technique to provide a direct comparison to photon-counting measurements and observe that our technique exhibits superior speed, dynamic range and mode selectivity compared to photon counters. Our analysis also rejects a semiclassical description of the vacuum state, with our observations supporting the quantum mechanical model. We create a new means of describing the detection ???signatures??? of multi-port networks of non-photon-number discriminating detectors. Our model includes the practical effects of loss and dark counts. We use this model to analyse the performance of the loopand balanced- time-division-multiplexed detector architectures in a projective measurement role. Our analysis leads us to describe a prescriptive recipe for the optimisation of each architecture. In light of contemporary technology, we conclude the balanced TDM detector is the better architecture. Our analysis is then extended to the tomographic reconstruction of an unknown optical state using multi-port photon-counting networks. Our new approach is successfully applied to the reconstruction of the photon statistics of weak coherent states and demonstrates reduced error and sensitivity to experimental parameter variations than established techniques. We report the development of a source of quadrature squeezed vacuum at 1550 nm, and characterise the squeezing observed at the first 3 free spectral ranges of the downconversion cavity. This is then used as a source of frequency-entangled photons for a projective photon subtraction operation described by our earlier theory. We propose a new hybrid time/frequency domain approach to homodyne detection and illustrate its application in characterising the prepared state. Our output state has a statistically significant single photon contribution and permits future experimentation in frequency basis quantum information.
APA, Harvard, Vancouver, ISO, and other styles
28

Ley, M. D. "The quantum theory of linear optical amplifiers, saturable absorption and optical interference experiments." Thesis, University of Essex, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hussain, N. A. "The quantum theory of optical parametric amplification." Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Starvrou, Vasilios N. "Theory of electron-optical phonon interactions in quantum wells and quantum well laser structures." Thesis, University of Essex, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rådmark, Magnus. "Photonic quantum information and experimental tests of foundations of quantum mechanics." Doctoral thesis, Stockholms universitet, Fysikum, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-37464.

Full text
Abstract:
Entanglement is a key resource in many quantum information schemes and in the last years the research on multi-qubit entanglement has drawn lots of attention. In this thesis the experimental generation and characterisation of multi-qubit entanglement is presented. Specifically we have prepared entangled states of up to six qubits. The qubits were implemented in the polarisation degree of freedom of single photons. We emphasise that one type of states that we produce are rotationally invariant states, remaining unchanged under simultaneous identical unitary transformations of all their individual constituents. Such states can be applied to e.g. decoherence-free encoding, quantum communication without sharing a common reference frame, quantum telecloning, secret sharing and remote state preparation schemes. They also have properties which are interesting in studies of foundations of quantum mechanics. In the experimental implementation we use a single source of entangled photon pairs, based on parametric down-conversion, and extract the first, second and third order events. Our experimental setup is completely free from interferometric overlaps, making it robust and contributing to a high fidelity of the generated states. To our knowledge, the achieved fidelity is the highest that has been observed for six-qubit entangled states and our measurement results are in very good agreement with predictions of quantum theory. We have also performed another novel test of the foundations of quantum mechanics. It is based on an inequality that is fulfilled by any non-contextual hidden variable theory, but can be violated by quantum mechanics. This test is similar to Bell inequality tests, which rule out local hidden variable theories as possible completions of quantum mechanics. Here, however, we show that non-contextual hidden variable theories cannot explain certain experimental results, which are consistent with quantum mechanics. Hence, neither of these theories can be used to make quantum mechanics complete.
APA, Harvard, Vancouver, ISO, and other styles
32

Zheng, Yindong. "Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4824/.

Full text
Abstract:
The de Broglie-Bohm (BB) approach to quantum mechanics gives trajectories similar to classical trajectories except that they are also determined by a quantum potential. The quantum potential is a "fictitious potential" in the sense that it is part of the quantum kinetic energy. We use quantum trajectories to treat quantum chaos in a manner similar to classical chaos. For the kicked rotor, which is a bounded system, we use the Benettin et al. method to calculate both classical and quantum Lyapunov exponents as a function of control parameter K and find chaos in both cases. Within the chaotic sea we find in both cases nonchaotic stability regions for K equal to multiples of π. For even multiples of π the stability regions are associated with classical accelerator mode islands and for odd multiples of π they are associated with new oscillator modes. We examine the structure of these regions. Momentum diffusion of the quantum kicked rotor is studied with both BB and standard quantum mechanics (SQM). A general analytical expression is given for the momentum diffusion at quantum resonance of both BB and SQM. We obtain agreement between the two approaches in numerical experiments. For the case of nonresonance the quantum potential is not zero and must be included as part of the quantum kinetic energy for agreement. The numerical data for momentum diffusion of classical kicked rotor is well fit by a power law DNβ in the number of kicks N. In the anomalous momentum diffusion regions due to accelerator modes the exponent β(K) is slightly less than quadratic, except for a slight dip, in agreement with an upper bound (K2/2)N2. The corresponding coefficient D(K) in these regions has three distinct sections, most likely due to accelerator modes with period greater than one. We also show that the local Lyapunov exponent of the classical kicked rotor has a plateau for a duration that depends on the initial separation and then decreases asymptotically as O(t-1lnt), where t is the time. This behavior is consistent with an upper bound that is determined analytically.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Ligang. "Wave propagation in dispersive media and one-dimensional photonic crystals." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schafer, Joachim. "Information transmission through bosonic gaussian channels." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209420.

Full text
Abstract:
In this thesis we study the information transmission through Gaussian quantum channels. Gaussian quantum channels model physical communication links, such as free space communication or optical fibers and therefore, may be considered as the most relevant quantum channels. One of the central characteristics of any communication channel is its capacity. In this work we are interested in the classical capacity, which is the maximal number of bits that can be reliably transmitted per channel use. An important lower bound on the classical capacity is given by the Gaussian capacity, which is the maximal transmission rate with the restriction that only Gaussian encodings are allowed: input messages are encoded in so-called Gaussian states for which the mean field amplitudes are Gaussian distributed.<p><p>We focus in this work mainly on the Gaussian capacity for the following reasons. First, Gaussian encodings are easily accessible experimentally. Second, the difficulty of studying the classical capacity, which arises due to an optimization problem in an infinite dimensional Hilbert space, is greatly reduced when considering only Gaussian input encodings. Third, the Gaussian capacity is conjectured to coincide with the classical capacity, even though this longstanding conjecture is unsolved until today.<p><p>We start with the investigation of the capacities of the single-mode Gaussian channel. We show that the most general case can be reduced to a simple, fiducial Gaussian channel which depends only on three parameters: its transmissivity (or gain), the added noise variance and the squeezing of the noise. Above a certain input energy threshold, the optimal input variances are given by a quantum water-filling solution, which implies that the optimal modulated output state is a thermal state. This is a quantum extension (or generalization) of the well-known classical water-filling solution for parallel Gaussian channels. Below the energy threshold the solution is given by a transcendental equation and only the less noisy quadrature is modulated. We characterize in detail the dependence of the Gaussian capacity on its channel parameters. In particular, we show that the Gaussian capacity is a non-monotonous function of the noise squeezing and analytically specify the regions where it exhibits one maximum, a maximum and a minimum, a saddle point or no extrema. <p><p>Then, we investigate the case of n-mode channels with noise correlations (i.e. memory), where we focus in particular on the classical additive noise channel. We consider memory models for which the noise correlations can be unraveled by a passive symplectic transformation. Therefore, we can simplify the problem to the study of the Gaussian capacity in an uncorrelated basis, which corresponds to the Gaussian capacity of n single-mode channels with a common input energy constraint. Above an input energy threshold the solutions is given by a global quantum water-filling solution, which implies that all modulated single-mode output states are thermal states with the same temperature. Below the threshold the channels are divided into three sets: i) those that are excluded from information transmission, ii) those for which only the less noisy quadrature is modulated, and iii) those for which the quantum water-filling solution is satisfied. As an example we consider a Gauss-Markov correlated noise, which in the uncorrelated basis corresponds to a collection of single-mode classical additive noise channels. When rotating the collection of optimal single-mode input states back to the original, correlated basis the optimal multi-mode input state becomes a highly entangled state. We then compare the performance of the optimal input state with a simple coherent state encoding and conclude that one gains up to 10% by using the optimal encoding.<p><p>Since the preparation of the optimal input state may be very challenging we consider sub-optimal Gaussian-matrix product states (GMPS) as input states as well. GMPS have a known experimental setup and, though being heavily entangled, can be generated sequentially. We demonstrate that for the Markovian correlated noise as well as for a non-Markovian noise model in a wide range of channel parameters, a nearest-neighbor correlated GMPS achieves more than 99.9% of the Gaussian capacity. At last, we introduce a new noise model for which the GMPS is the exact optimal input state. Since GMPS are known to be ground states of quadratic Hamiltonians this suggests a starting point to develop links between optimization problems of quantum communication and many body physics.<br>Doctorat en Sciences de l'ingénieur<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
35

Guha, Saikat 1980. "Multiple-user quantum information theory for optical communication channels." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44413.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.<br>Includes bibliographical references (p. 231-239).<br>Research in the past decade has established capacity theorems for point-to-point bosonic channels with additive thermal noise, under the presumption of a conjecture on the minimum output von Neumann entropy. In the first part of this thesis, we evaluate the optimum capacity for free-space line-of-sight optical communication using Gaussian-attenuation apertures. Optimal power allocation across all the spatiotemporal modes is studied, in both the far-field and near-field propagation regimes. We establish the gap between ultimate capacity and data rates achievable using classical encoding states and structured receivers. The remainder of the thesis addresses the ultimate capacity of bosonic broadcast channels, i.e., when one transmitter is used to send information to more than one receiver. We show that when coherent-state encoding is employed in conjunction with coherent detection, the bosonic broadcast channel is equivalent to the classical degraded Gaussian broadcast channel whose capacity region is known. We draw upon recent work on the capacity region of the two-user degraded quantum broadcast channel to establish the ultimate capacity region for the bosonic broadcast channel, under the presumption of another conjecture on the minimum output entropy. We also generalize the degraded broadcast channel capacity theorem to more than two receivers, and prove that if the above conjecture is true, then the rate region achievable using a coherent-state encoding with optimal joint-detection measurement at the receivers would be the ultimate capacity region of the bosonic broadcast channel with loss and additive thermal noise. We show that the minimum output entropy conjectures restated for Wehrl entropy, are immediate consequences of the entropy power inequality (EPI).<br>(cont.) We then show that an EPI-like inequality for von Neumann entropy would imply all the minimum output entropy conjectures needed for our channel capacity results. We call this new conjectured result the Entropy Photon-Number Inequality (EPnI).<br>by Saikat Guha.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
36

Thwaite, Simon James. "Simulations of systems of cold Rydberg atoms." Thesis, University of Oxford, 2012. https://ora.ox.ac.uk/objects/uuid:454e438d-2a3c-4c91-b1d4-2c594cbab2ce.

Full text
Abstract:
The past three decades have seen extraordinary progress in the manipulation of neutral atoms with laser light, to the point where it is now routine to trap and cool both individual atoms and entire atomic clouds to temperatures of only a few tens of nanoKelvin in a controlled and repeatable fashion. In this thesis we study several applications of Rydberg atoms - atoms with an electron in a highly excited state - within such ultracold atomic systems. Due to their highly-excited electron, Rydberg atoms have a number of exaggerated properties: in addition to being physically large, they have long radiative lifetimes, and interact strongly both with one another and with applied external fields. Rydberg atoms consequently find many interesting applications within ultracold atomic physics. We begin this thesis by analysing the way in which a rubidium atom prepared in an excited Rydberg state decays to the ground state. Using quantum defect theory to model the wavefunction of the excited electron, we compute branching ratios for the various decay channels that lead out of the Rydberg states of rubidium. By using these results to carry out detailed simulations of the radiative cascade process, we show that the dynamics of spontaneous emission from Rydberg states cannot be adequately described by a truncated atomic level structure. We then investigate the stability of ultra-large diatomic molecules formed by pairs of Rydberg atoms. Using quantum defect theory to model the electronic wavefunctions, we apply molecular integral techniques to calculate the equilibrium distance and binding energy of these molecular Rydberg states. Our results indicate that these Ryberg macro-dimers are predicted to show a potential minimum, with equilibrium distances of up to several hundred nanometres. In the second half of this thesis, we present a new method of symbolically evaluating functions of matrices. This method, which we term the method of path-sums, has applications to the simulation of strongly-correlated many-body Rydberg systems, and is based on the combination of a mapping between matrix multiplications and walks on weighted directed graphs with a universal result on the structure of such walks. After presenting and proving this universal graph theoretic result, we develop the path-sum approach to matrix functions. We discuss the application of path-sums to the simulation of strongly-correlated many-body quantum systems, and indicate future directions for the method.
APA, Harvard, Vancouver, ISO, and other styles
37

Ong, Beng Seong. "Spectral problems of optical waveguides and quantum graphs." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4352.

Full text
Abstract:
In this dissertation, we consider some spectral problems of optical waveguide and quantum graph theories. We study spectral problems that arise when considerating optical waveguides in photonic band-gap (PBG) materials. Specifically, we address the issue of the existence of modes guided by linear defects in photonic crystals. Such modes can be created for frequencies in the spectral gaps of the bulk material and thus are evanescent in the bulk (i.e., confined to the guide). In the quantum graph part we prove the validity of the limiting absorption principle for finite graphs with infinite leads attached. In particular, this leads to the absence of a singular continuous spectrum. Another problem in quantum graph theory that we consider involves opening gaps in the spectrum of a quantum graph by replacing each vertex of the original graph with a finite graph. We show that such "decorations" can be used to create spectral gaps.
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Soo Y. "Cold single atoms for cavity QED experiments." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26581.

Full text
Abstract:
Thesis (Ph.D)--Physics, Georgia Institute of Technology, 2009.<br>Committee Chair: Chapman, Michael; Committee Member: Citrin, David; Committee Member: Kennedy, T. A. Brian; Committee Member: Kuzmich, Alexander; Committee Member: Raman, Chandra. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
39

Jacobson, David. "Spectral modulation, gravity and time-dependent correlations in neutron interferometry /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9720550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Allcock, Philip. "A microscopic quantum electrodynamical theory of novel nonlinear optical processes." Thesis, University of East Anglia, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jogenfors, Jonathan. "Breaking the Unbreakable : Exploiting Loopholes in Bell’s Theorem to Hack Quantum Cryptography." Doctoral thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140912.

Full text
Abstract:
In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established. Quantum key distribution is in part based on the profound no-cloning theorem, which prevents physical states to be copied at a microscopic level. This important property of quantum mechanics can be seen as Nature's own copy-protection, and can also be used to create a currency based on quantummechanics, i.e., quantum money. Here, the traditional copy-protection mechanisms of traditional coins and banknotes can be abandoned in favor of the laws of quantum physics. Previously, quantum money assumes a traditional hierarchy where a central, trusted bank controls the economy. We show how quantum money together with a blockchain allows for Quantum Bitcoin, a novel hybrid currency that promises fast transactions, extensive scalability, and full anonymity.<br>En viktig konsekvens av kvantmekaniken är att okända kvanttillstånd inte kan klonas. Denna insikt har gett upphov till kvantkryptering, en metod för två parter att med perfekt säkerhet kommunicera hemligheter. Ett komplett bevis för denna säkerhet har dock låtit vänta på sig eftersom en attackerare i hemlighet kan manipulera utrustningen så att den läcker information. Som ett svar på detta utvecklades apparatsoberoende kvantkryptering som i teorin är immun mot sådana attacker. Apparatsoberoende kvantkryptering har en mycket högre grad av säkerhet än vanlig kvantkryptering, men det finns fortfarande ett par luckor som en attackerare kan utnyttja. Dessa kryphål har tidigare inte tagits på allvar, men denna avhandling visar hur även små svagheter i säkerhetsmodellen läcker information till en attackerare. Vi demonstrerar en praktisk attack där attackeraren aldrig upptäcks trots att denne helt kontrollerar systemet. Vi visar också hur kryphålen kan förhindras med starkare säkerhetsbevis. En annan tillämpning av kvantmekanikens förbud mot kloning är pengar som använder detta naturens egna kopieringsskydd. Dessa kvantpengar har helt andra egenskaper än vanliga mynt, sedlar eller digitala banköverföringar. Vi visar hur man kan kombinera kvantpengar med en blockkedja, och man får då man en slags "kvant-Bitcoin". Detta nya betalningsmedel har fördelar över alla andra betalsystem, men nackdelen är att det krävs en kvantdator.
APA, Harvard, Vancouver, ISO, and other styles
42

Amselem, Elias. "Dynamics of Quantum Correlations with Photons : Experiments on bound entanglement and contextuality for application in quantum information." Doctoral thesis, Stockholms universitet, Fysikum, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-66469.

Full text
Abstract:
The rapidly developing interdisciplinary field of quantum information, which merges quantum and information science, studies non-classical aspects of quantum systems. These studies are motivated by the promise that the non-classicality can be used to solve tasks more efficiently than classical methods would allow. In many quantum informational studies, non-classical behaviour is attributed to the notion of entanglement. In this thesis we use photons to experimentally investigate fundamental questions such as: What happens to the entanglement in a system when it is affected by noise? In our study of noisy entanglement we pursue the challenging task of creating bound entanglement. Bound entangled states are created through an irreversible process that requires entanglement. Once in the bound regime, entanglement cannot be distilled out through local operations assisted by classical communication. We show that it is possible to experimentally produce four-photon bound entangled states and that a violation of a Bell inequality can be achieved. Moreover, we demonstrate an entanglement-unlocking protocol by relaxing the condition of local operations. We also explore the non-classical nature of quantum mechanics in several single-photon experiments. In these experiments, we show the violation of various inequalities that were derived under the assumption of non-contextuality. Using qutrits we construct and demonstrate the simplest possible test that offers a discrepancy between classical and quantum theory. Furthermore, we perform an experiment in the spirit of the Kochen-Specker theorem to illustrate the state-independence of this theorem. Here, we investigate whether or not measurement outcomes exhibit fully contextual correlations. That is, no part of the correlations can be attributed to the non-contextual theory. Our results show that only a small part of the experimental generated correlations are amenable to a non-contextual interpretation.<br><p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 5: Submitted. Paper 6: Submitted.</p>
APA, Harvard, Vancouver, ISO, and other styles
43

Niset, Julien. "Quantum information with optical continuous variables: nonlocality, entanglement, and error correction." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210459.

Full text
Abstract:
L'objectif de ce travail de recherche est l'étude des posibilités offertes par une nouvelle approche de l'information quantique basée sur des variables quantiques continues. Lorsque ces variables continues sont portées par le champs éléctromagnétique, un grand nombre de protocoles d'information quantique peuvent être implémentés à l'aide de lasers et d'éléments d'optique linéaire standards. Cette simplicité expérimentale rend cette approche très intéressantes d'un point de vue pratique, en particulier pour le développement des futurs réseaux de communications quantiques.<p><p>Le travail peut se diviser en deux parties complémentaires. Dans la première partie, plus fondamentale, la relation complexe qui existe entre l'intrication et la nonlocalité de la mécanique quantique est étudiée sur base des variables optiques continues. Ces deux ressources étant essentielles pour l'information quantique, il est nécessaire de bien les comprendre et de bien les caractériser. Dans la seconde partie, orientée vers des applications concrètes, le problème de la correction d'erreur à variables continues est étudié. Pouvoir transmettre et manipuler l'information sans erreurs est nécessaire au bon développemnent de l'information quantique, mais, en pratique, les erreurs sont inévitables. Les codes correcteurs d'erreurs permettent de détecter et corriger ces erreures de manière efficace.<p><br>Doctorat en Sciences de l'ingénieur<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
44

Jeffers, John Richard. "Quantum theory of amplification and detection of travelling-wave optical fields." Thesis, University of Essex, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Meney, Alistair Thomas. "Theory of the optical properties of III-V semiconductor quantum wells." Thesis, Connect to e-thesis, 1992. http://theses.gla.ac.uk/881/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Arciniegas, Carlos Andres Gonzalez. "Geração de estados não clássicos do campo eletromagnético através do processo de mistura de quatro ondas em meios atômicos." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-07102014-171411/.

Full text
Abstract:
Estudamos teoricamente a geração de estados emaranhados do campo eletromagnético através do processo de mistura de quatro ondas em uma nuvem de átomos frios em configuração duplo- trabalhando perto da ressonância. Mostra-se que neste caso é possível gerar emaranhamento com uma potência de bombeio muito menor do que na situação em que temos átomos quentes [17]. Baseando-se nos parâmetros da armadilha de átomos de rubídio de nosso laboratório, calcula-se uma violação de 46.5 % do limite imposto pela desigualdade DGCZ [59] para uma frequência de Rabi dos bombeios de =0.8 MHz (neste caso, equivalente a uma potência de 0.3 µW) e uma dessintonia de =20 MHz para uma transição enquanto a outra permanece ressonante. Também foi analisado o emaranhamento entre as bandas laterais dos feixes de prova e conjugado, estudando a estrutura do emaranhamento entre estes quatro modos através do critério positividade sobre transposição parcial em variáveis continuas. Nesta análise, se observaram correlações quânticas entre pares de campos (a banda superior do feixe de prova e a banda inferior do feixe conjugado, e a banda inferior do feixe de prova e a banda superior do feixe conjugado). Estas evidências, junto com as equações de evolução dos feixes, sugerem que a mistura de quatro ondas, dentro das considerações supostas neste trabalho, gera estados nos quais o emaranhamento é exclusivo entre as bandas laterais superior de um feixe com a inferior do outro. [17] Vincent Boyer et al. Science, 321-544 (2008). [59] Lu-Ming Duan et al. Phys. Rev. Lett 84-2722 (2000)<br>We have theoretically studied the generation of entangled states of the electromagnetic field through the four wave mixing (FWM) process in a cold atomic cloud in a double-, close to resonance configuration. It is shown that in this case it possible to generate entanglement with a pump power much weaker than in the situation which we have hot atoms [17]. Based in the parameters obtained in the magneto-optical trap (MOT) with rubidium at our laboratory, we calculated a violation of 46.5 % of the limit imposed by the DGCZ inequality [59] at a Rabi frequency of the pump fields of =0.8 MHz (in this case, this is equivalent to a pump power of 0.3 µW) and a detuning of =20 MHz in one of the transition, while the other one remains resonant. We also analysed the entanglement between the side bands of the probe and conjugate beams. Using the positive partial transpose criterion in continuous variables, we studied the structure of entanglement within these side bands. In this analysis we observed quantum correlations between pairs of fields (the upper side band of the probe beam with the lower side band of the conjugate beam, and the lower side band of the probe beam with the upper side band of the conjugate beam). These evidences, together with the evolution equations of the beams, suggest that the 4WM process, within the considerations made in this work, generates states where the entanglement is exclusive between the upper side band of one beam and the lower side band of the other. [17] Vincent Boyer et al. Science, 321-544 (2008). [59] Lu-Ming Duan et al. Phys. Rev. Lett 84-2722 (2000).
APA, Harvard, Vancouver, ISO, and other styles
47

Lamoureux, Louis-Philippe. "Theoretical and experimental aspects of quantum cryptographic protocols." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210776.

Full text
Abstract:
La mécanique quantique est sans aucun doute la théorie la mieux vérifiée qui n’a jamais existée. En se retournant vers le passé, nous constatons qu’un siècle de théorie quantique a non seulement changé la perception que nous avons de l’univers dans lequel nous vivons mais aussi est responsable de plusieurs concepts technologiques qui ont le potentiel de révolutionner notre monde.<p> <p>La présente dissertation a pour but de mettre en avance ces potentiels, tant dans le domaine théorique qu’expérimental. Plus précisément, dans un premier temps, nous étudierons des protocoles de communication quantique et démontrerons que ces protocoles offrent des avantages de sécurité qui n’ont pas d’égaux en communication classique. Dans un deuxième temps nous étudierons trois problèmes spécifiques en clonage quantique ou chaque solution<p>apportée pourrait, à sa façon, être exploitée dans un problème de communication quantique.<p><p>Nous débuterons par décrire de façon théorique le premier protocole de communication quantique qui a pour but la distribution d’une clé secrète entre deux parties éloignées. Ce chapitre nous permettra d’introduire plusieurs concepts et outils théoriques qui seront nécessaires dans les chapitres successifs. Le chapitre suivant servira aussi d’introduction, mais cette fois-ci penché plutôt vers le côté expériemental. Nous présenterons une élégante technique qui nous permettra d’implémenter des protocoles de communication quantique de façon simple. Nous décrirons ensuite des expériences originales de communication quantique basées sur cette technique. Plus précisément, nous introduirons le concept de filtration d’erreur et utiliserons cette technique afin d’implémenter une distribution de clé quantique bruyante qui ne pourrait pas être sécurisé sans cette technique. Nous démontrerons ensuite des expériences implémentant le tirage au sort quantique et d’identification quantique.<p><p>Dans un deuxième temps nous étudierons des problèmes de clonage quantique basé sur le formalisme introduit dans le chapitre d’introduction. Puisqu’il ne sera pas toujours possible de prouver l’optimalité de nos solutions, nous introduirons une technique numérique qui nous<p>permettra de mettre en valeur nos résultats.<p> <p><br>Doctorat en sciences, Spécialisation physique<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
48

Carberry, David Michael. "Optical tweezers : experimental demonstrations of the fluctuation theorem /." View thesis entry in Australian Digital Theses Program, 2005. http://thesis.anu.edu.au/public/adt-ANU20060410.122727/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jacquet, Maxime J. "Negative frequency at the horizon : scattering of light at a refractive index front." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/11780.

Full text
Abstract:
This thesis considers the problem of calculating and observing the mixing of modes of positive and negative frequency in inhomogeneous, dispersive media. Scattering of vacuum modes of the electromagnetic field at a moving interface in the refractive index of a dielectric medium is discussed. Kinematics arguments are used to demonstrate that this interface may, in a regime of linear dispersion, act as the analogue of the event horizon of a black hole to modes of the field. Furthermore, a study of the dispersion of the dielectric shows that five distinct configurations of modes of the inhomogeneous medium at the interface exist as a function of frequency. Thus it is shown that the interface is simultaneously a black- and white-hole horizon-like and horizonless emitter. The role, and importance, of negative-frequency modes of the field in mode conversion at the horizon is established and yields a calculation of the spontaneous photonic flux at the interface. An algorithm to calculate the scattering of vacuum modes at the interface is introduced. Spectra of the photonic flux in the moving and laboratory frame, for all modes and all realisable increase in the refractive index at the interface are computed. As a result of the various mode configurations, the spectra are highly structured in intervals with black-hole, white-hole and no horizon. The spectra are dominated by a negative-frequency mode, which is the partner in any Hawking-type emission. An experiment in which an incoming positive-frequency wave is populated with photons is assembled to observe the transfer of energy to outgoing waves of positive and negative frequency at the horizon. The effect of mode conversion at the interface is clearly shown to be a feature of horizon physics. This is a classical version of the quantum experiment that aims at validating the mechanism of Hawking radiation.
APA, Harvard, Vancouver, ISO, and other styles
50

Garcia-Patron, Sanchez Raul. "Quantum information with optical continuous variables: from Bell tests to key distribution." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210655.

Full text
Abstract:
In this thesis we have studied different aspects of the novel field of quantum information with continuous variables. The higher efficiency and bandwidth of homodyne detection combined with the easiness of generation and manipulation of Gaussian states makes continuous-variable quantum information a promising and flourishing field of research. This dissertation is divided in two parts. The first part explores two applications of the “photon subtraction” operation; Firstly, a technique to generate highly non-Gaussian single-mode states of light; Secondly, an experimental setup capable of realizing a loophole-free Bell test. The second part of this dissertation develops a detailed analysis of an important family of continuous-variable quantum key distribution protocols, namely those based on Gaussian modulation of Gaussian states./Dans cette thèse on a étudié différents aspects de l'information quantique à variables continues. Les meilleures efficacité et bande passante de la détection homodyne combinées à la simplicité de génération et de manipulation d'états gaussiens rend l'information quantique à variables continues un domaine de recherche très prometteur, qui est actuellement en plein essor. La dissertation est divisée en deux parties. La première explore deux applications de l'opération “soustraction de photon”; en premier lieu on présente une nouvelle technique capable de générer des états mono-modaux de la lumière hautement non-gaussiens; deuxiemement on présente un schéma expérimental capable de réaliser un test de Bell sans faille logique. La deuxième partie de cette dissertation développe une étude détaillée d'une famille très importante de protocoles de distribution quantique de clé à variables continues, ceux basés sur la modulation gaussienne d'états gaussiens.<br>Doctorat en Sciences de l'ingénieur<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!