Academic literature on the topic 'Quantum trajectories'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum trajectories.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum trajectories"

1

Błaszak, Maciej, and Ziemowit Domański. "Quantum trajectories." Physics Letters A 376, no. 47-48 (November 2012): 3593–98. http://dx.doi.org/10.1016/j.physleta.2012.10.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dorsselaer, F. E. van, and G. Nienhuis. "Quantum trajectories." Journal of Optics B: Quantum and Semiclassical Optics 2, no. 4 (June 21, 2000): R25—R33. http://dx.doi.org/10.1088/1464-4266/2/4/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dorsselaer, F. E. van, and G. Nienhuis. "Quantum trajectories generalized." Journal of Optics B: Quantum and Semiclassical Optics 2, no. 3 (May 11, 2000): L5—L9. http://dx.doi.org/10.1088/1464-4266/2/3/101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wiseman, H. M. "Quantum trajectories and quantum measurement theory." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, no. 1 (February 1996): 205–22. http://dx.doi.org/10.1088/1355-5111/8/1/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spiller, T. P., T. D. Clark, R. J. Prance, H. Prance, and D. A. Poulton. "Coherent quantum oscillation trajectories." Foundations of Physics Letters 4, no. 1 (February 1991): 19–35. http://dx.doi.org/10.1007/bf00666414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Polzik, Eugene S., and Klemens Hammerer. "Trajectories without quantum uncertainties." Annalen der Physik 527, no. 1-2 (November 11, 2014): A15—A20. http://dx.doi.org/10.1002/andp.201400099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Ciann-Dong, and Shih-Ming Huang. "Electronic quantum trajectories in a quantum dot." International Journal of Quantum Chemistry 114, no. 14 (April 22, 2014): 920–30. http://dx.doi.org/10.1002/qua.24692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Viotti, Ludmila, Ana Laura Gramajo, Paula I. Villar, Fernando C. Lombardo, and Rosario Fazio. "Geometric phases along quantum trajectories." Quantum 7 (June 2, 2023): 1029. http://dx.doi.org/10.22331/q-2023-06-02-1029.

Full text
Abstract:
A monitored quantum system undergoing a cyclic evolution of the parameters governing its Hamiltonian accumulates a geometric phase that depends on the quantum trajectory followed by the system on its evolution. The phase value will be determined both by the unitary dynamics and by the interaction of the system with the environment. Consequently, the geometric phase will acquire a stochastic character due to the occurrence of random quantum jumps. Here we study the distribution function of geometric phases in monitored quantum systems and discuss when/if different quantities, proposed to measure geometric phases in open quantum systems, are representative of the distribution. We also consider a monitored echo protocol and discuss in which cases the distribution of the interference pattern extracted in the experiment is linked to the geometric phase. Furthermore, we unveil, for the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle and show how this critical behavior can be observed in an echo protocol. For the same parameters, the density matrix does not show any singularity. We illustrate all our main results by considering a paradigmatic case, a spin-1/2 immersed in time-varying a magnetic field in presence of an external environment. The major outcomes of our analysis are however quite general and do not depend, in their qualitative features, on the choice of the model studied.
APA, Harvard, Vancouver, ISO, and other styles
9

Peter, Patrick. "Using Trajectories in Quantum Cosmology." Universe 4, no. 8 (August 15, 2018): 89. http://dx.doi.org/10.3390/universe4080089.

Full text
Abstract:
Quantum cosmology based on the Wheeler De Witt equation represents a simple way to implement plausible quantum effects in a gravitational setup. In its minisuperspace version wherein one restricts attention to FLRW metrics with a single scale factor and only a few degrees of freedom describing matter, one can obtain exact solutions and thus acquire full knowledge of the wave function. Although this is the usual way to treat a quantum mechanical system, it turns out however to be essentially meaningless in a cosmological framework. Turning to a trajectory approach then provides an effective means of deriving physical consequences.
APA, Harvard, Vancouver, ISO, and other styles
10

Hiley, Basil, and Peter Van Reeth. "Quantum Trajectories: Real or Surreal?" Entropy 20, no. 5 (May 8, 2018): 353. http://dx.doi.org/10.3390/e20050353.

Full text
Abstract:
The claim of Kocsis et al. to have experimentally determined “photon trajectories” calls for a re-examination of the meaning of “quantum trajectories”. We will review the arguments that have been assumed to have established that a trajectory has no meaning in the context of quantum mechanics. We show that the conclusion that the Bohm trajectories should be called “surreal” because they are at “variance with the actual observed track” of a particle is wrong as it is based on a false argument. We also present the results of a numerical investigation of a double Stern-Gerlach experiment which shows clearly the role of the spin within the Bohm formalism and discuss situations where the appearance of the quantum potential is open to direct experimental exploration.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum trajectories"

1

Weber, Steven Joseph. "Quantum Trajectories of a Superconducting Qubit." Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686046.

Full text
Abstract:

In quantum mechanics, the process of measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. An accurate measurement record documents this stochastic evolution and can be used to reconstruct the quantum trajectory of the system state in a single experimental iteration. We use weak measurements to track the individual quantum trajectories of a superconducting qubit that evolves under the competing influences of continuous weak measurement and Rabi drive. We analyze large ensembles of such trajectories to examine their characteristics and determine their statistical properties. For example, by considering only the subset of trajectories that evolve between any chosen initial and final states, we can deduce the most probable path through quantum state space. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wavefunction collapse, and unitary evolution. Our results provide insight into the dynamics of open quantum systems and may enable new methods of quantum state tomography, quantum state steering through measurement, and active quantum control.

APA, Harvard, Vancouver, ISO, and other styles
2

Warszawski, Prahlad. "Quantum Trajectories For, and As, Understanding." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24237.

Full text
Abstract:
Quantum trajectories provide a fundamental description of the measurement of individual quantum systems. As such, they have wide impact, and application, in the emerging field of quantum technology. Importantly, they also give a mechanism for developing our understanding of the nature of quantum mechanics. In Part I of this thesis, we develop and apply quantum trajectory methods, with a focus upon experimentally relevant optomechanical systems. By solving the stochastic master equation for sufficiently simple bosonic systems, and subsequently finding the positive operator-valued measure (POVM), we are able to conduct a detailed study of the use of parametric amplification for quantum state tomography of nonclassical optomechanical states of motion. Homodyne tomography is a cornerstone experimental tool, and an analysis of its convergence is carried out in the presence of realistic imperfections. We complete Part I by conducting a detailed preparatory analysis of superfluid optomechanical systems possessing vorticity. Part II of this thesis investigates the correspondence between open classical and open quantum systems. We prove a result shows that open quantum systems are, in general, harder to track than open classical systems. We couch this result in terms of physically realisable ensembles (PREs), which can describe the dynamics of a monitored, $D$-dimensional, quantum system obeying a master equation that has reached equilibrium. Associated with the PRE is a measurement scheme that leads to quantum trajectories in which the system evolution consists purely of jumps between the states that are members of the PRE. The occupation of the $K$, generally non-orthogonal, states in the ensemble can be used to track the system. The number of states in the ensemble, $K$, represents the amount of memory that is required to do so. In comparison, a classical $D$-dimensional system requires occupation of the $D$ states to be tracked. After first developing analysis tools that make feasible the discovery of PREs in $D>2$, we prove our main result that there are quantum systems that have a minimal sized PRE with $K>D$.
APA, Harvard, Vancouver, ISO, and other styles
3

Buercklin, Samuel Adam. "Optimal trajectories for fast quantum harmonic transport." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121733.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 85-88).
The transport of atomic ions trapped within a harmonic potential arises necessarily in the course of building a trapped ion quantum computer. We may define this problem in terms of a differential equation and its corresponding boundary conditions to satisfy which are sufficient to guarantee the motional quantum state of the ion is unaltered. However, the solution space to this problem is uncountably large, and the various solutions differ in many qualitative and quantitative aspects. We present an easily-computed functional of transport trajectories with intuitively interpretable terms which may be used to compare solutions to the quantum harmonic transport problem, but does not require an expensive quantum-mechanical simulation of the ion dynamics. Furthermore, we prove the convexity of this cost function under easily satisfied conditions in a Fourier Series parameterization of the problem. We then numerically optimize the cost function to discover optimal trajectories for the quantum harmonic transport problem.
by Samuel Adam Buercklin.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
4

Koch, Werner. "Non-Markovian Dissipative Quantum Mechanics with Stochastic Trajectories." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63671.

Full text
Abstract:
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called "the environment" may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until thermalization is reached - is shown to be possible with the presented approach. The properties of the thermalized density are determined and they are ascertained to be independent of the system's initial state. Furthermore, the dependence on the bath's temperature and coupling strength is analyzed and it is demonstrated how a change of the bath parameters can be used to tune the system from the dissociative to the bound regime. A second investigation is conducted for a dissipative tunneling scenario in which a wave packet impinges on a barrier. The dependence of the transmission probability on the initial state's kinetic energy as well as the bath's temperature and coupling strength is computed. For both systems, a comparison with the high-temperature Markovian quantum Brownian limit is performed. The importance of a full non-Markovian treatment is demonstrated as deviations are shown to exist between the two descriptions both in the low temperature cases where they are expected and in some of the high temperature cases where their appearance might not be anticipated as easily.
APA, Harvard, Vancouver, ISO, and other styles
5

Kuipers, Jack Anton. "Correlated Trajectories in Semiclassical Approaches to Quantum Chaos." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486392.

Full text
Abstract:
This thesis is concerned with the application and extension of semiclassical methods, involving correlated trajectories, that were recently developed to explain the observed universal statistics of classically chaotic quantum systems. First we consider systems that depend on an external parameter that does not change the symmetry of the system. 'Ve study correlations between the spectra at different values of the param~ter, a scaled distance x apart, via the parametric spectral form factor K(r, x). Using a semiclassical periodic orbit expansion, we obtain a small r expansion that agrees with random matrix theory for systems with and without time reversal symmetry. Then we consider correlations of the Wigner time delay in open systems. We study a form factor K (r, x, y, M) that depends on the number of scattering channels M, the non-symmetry breaking parameter difference x and also a symmetry breaking parameter y. TheWigner time delay can be expressed semiclassically in terms of the trapped periodic orbits of the system, and using a periodic orbit expansion we obtain several terms in the small r expansion of the form factor that are identical to those calculated from random matrix theory. The Wigner time delay can also be expressed in terms of scattering trajectories that enter and leave the system. Starting from this picture, we derive all terms in the periodic orbit formula and therefore show how the two pictures of the time delay are related on a semiclassical level. A new type of trajectory correlation is derived which recreates the terms from the trapped periodic orbits. This involves two trajectories approaching the same trapped periodic orbit closely - one trajectory approaches the orbit and follows it for several traversals, while its partner approaches in almost the same way but follows the periodic orbit an additional number of times.
APA, Harvard, Vancouver, ISO, and other styles
6

Sutcliffe, Julia H. "Quantum studies of molecular dynamics." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hemphill, Patrick A. "Intensity auto- and cross-correlations and other properties of a 85Rb atom coupled to a driven, damped two-mode optical cavity." Oxford, Ohio : Miami University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1248371234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oriols, Pladevall Xavier. "Quantum Monte Carlo simulation of tunnelling devices using wavepackets and Bohm trajectories." Doctoral thesis, Universitat Autònoma de Barcelona, 1999. http://hdl.handle.net/10803/5353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alarcón, Pardo Alfonso. "Quantum many-particle electron transport in time-dependent systems with Bohmian trajectories." Doctoral thesis, Universitat Autònoma de Barcelona, 2011. http://hdl.handle.net/10803/42002.

Full text
Abstract:
Es conocido que a escalas nanométricas se debe tratar con en el problema de muchas partículas a la hora de estudiar dispositivos electrónicos. Es estos escenarios, la ecuación de Schrödinger dependiente del tiempo para muchas partículas solo se puede resolver para unos pocos grados de libertad. En este sentido, diferentes formalismos han sido desarrollados en la literatura (tales como time-dependent Density Functional Theory, Green's functions técnicas o Quantum Monte Carlo técnicas) para tratar sistemas cuánticos de muchos electrones. Estas aproximaciones modelizan de forma razonable el transporte electrónico en sistemas de muchas partículas. Una propuesta alternativa ha sido desarrollada por el Dr. Oriols para descomponer la ecuación de Schrödinger de N-partículas en un sistema de N-ecuaciones de Schrödinger para una sola partícula usando trayectorias (cuánticas) de Bohm. Basado en esta propuesta se presenta un 3D, general, versátil y dependiente del tiempo simulador de transporte de dispositivos electrónicos llamado BITLLES (Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures). Las novedades que aporta el simulador BITLLES se basan en dos puntos. El primero, éste representa un modelo de transporte cuántico de electrones para muchas partículas en el cual se tiene en cuenta de forma explicita las correlaciones de Coulomb y de intercambio entre electrones usando trayectorias de Bohm. En segundo lugar, el simulador proporciona una completa información de los momentos de la corriente (i.e., DC, AC, fluctuaciones o incluso momentos mayores). A continuación resumimos las contribuciones que esta tesis aporta al desarrollo del simulador BITLLES. De esta forma, introducimos de forma explicita la interacción de intercambio entre electrones. En este contexto, mostramos como la interacción de intercambio es la responsable final para determinar la corriente total a través del sistema. Además presentamos una nueva aproximación para estudiar sistemas de muchas partículas donde los espines de los electrones tienen diferente orientación. Hasta donde llega nuestro conocimiento, es la primera vez que la interacción de intercambio es introducida de forma práctica en un simulador de transporte de electrones. Además presentamos la computación de la corriente total dependiente del tiempo en un contexto de alta frecuencia donde se tienen que tener en cuenta las variaciones del campo eléctrico dependientes del tiempo (i.e., la corriente de desplazamiento) para asegurar la conservación de la corriente. También discutimos el cálculo de la corriente total (conducción más desplazamiento) usando los teoremas de Ramo-Shockley-Pellegrini. Diferentes capacidades del simulador BITLLES como AC y fluctuaciones de la corriente se presentan para el diodo túnel resonante. También hemos usado el simulador BITLLES para testear un nuevo tipo de dispositivo nanoeléctronico diseñado para procesar señales dentro del espectro de los THz. Hemos llamado a este dispositivo Driven Tunneling Device. Se trata de un dispositivo de tres terminales donde la conductancia entre el drain y el source se controla por el terminal del gate el cual oscila a frecuencias de THz. También presentamos ejemplos prácticos de la funcionalidad de este dispositivo como un rectificador y un multiplicador de frecuencia. Finalmente, hemos desarrollado una aproximación numérica para resolver la ecuación de Schrödinger usando el modelo de tight-binding con el propósito de mejorar la descripción de la estructura de bandas del simulador BITLLES.
It is known that at nanoscale regime we must deal with the many-particle problem in order to study electronic devices. In this scenario, the time-dependent many-particle Schrödinger equation is only directly solvable for very few degrees of freedom. However, there are many electrons (degrees of freedom) in any electron device. In this sense, many-particle quantum electron formalisms (such as time-dependent Density Functional Theory, Green's functions techniques or Quantum Monte Carlo techniques) have been developed in the literature to provide reasonable approximations to model many-particle electron transport. An alternative proposal has been developed by Dr. Oriols to decompose the N-particle Schrödinger equation into a N-single particle Schrödinger equation using Bohmian trajectories. Based on this proposal a general, versatile and time-dependent 3D electron transport simulator for nanoelectronic devices, named BITLLES (Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures) is presented. The novelty of the BITLLES simulator is based on two points. First, it presents a many-particle quantum electron transport model taking into account explicitly the Coulomb and exchange correlations among electrons using Bohmian trajectories. Second, it provides full information of the all current distribution moments (i.e. DC, AC, fluctuations and even higher moments). We summarize the important contributions of this thesis to the development of BITLLES simulator. Thus, we introduce explicitly the exchange correlations among electrons. In this context, we show how exchange interaction is the final responsible for determining the total current across the system. We also present a new approximation to study many-particle systems with spin of different orientations. Some practical examples are studied taking into account the exchange interaction. To the best of our knowledge, it is the first time that the exchange interaction is introduced explicitly (imposing the exchange symmetry properties directly into the many-particle wavefunction) in practical electron transport simulators. We present the computation of the time-dependent total current in the high-frequency regime where one has to compute time-dependent variations of the electric field (i.e. the displacement current) to assure current conservation. We discuss the computation of the total (conduction plus displacement) current using Bohmian trajectories and the Ramo-Shockley-Pellegrini theorems. Different capabilities of BITLLES simulator such as AC and current fluctuations are presented for Resonant Tunneling Devices. We have used the BITLLES simulator to test a new type of nanoelectronic device designed to process signals at THz regime named Driven Tunneling Device. It is a three terminal device where the drain-source conductance is controlled by a gate terminal that can oscillate at THz frequencies. We also present practical examples on the functionality of this device such as rectifier and frequency multiplier. Finally, we have developed a numerical approximation to solve the Schrödinger equation using tight-binding model to improve the band structure description of the BITLLES simulator.
APA, Harvard, Vancouver, ISO, and other styles
10

Benoist, Tristan. "Open quantum systems and quantum stochastic processes." Thesis, Paris, Ecole normale supérieure, 2014. http://www.theses.fr/2014ENSU0006/document.

Full text
Abstract:
De nombreux phénomènes de physique quantique ne peuvent être compris que par l'analyse des systèmes ouverts. Un appareil de mesure, par exemple, est un système macroscopique en contact avec un système quantique. Ainsi, tout modèle d'expérience doit prendre en compte les dynamiques propres aux systèmes ouverts. Ces dynamiques peuvent être complexes : l'interaction du système avec son environnement peut modifier ses propriétés, l'interaction peu créer des effets de mémoire dans l'évolution du système, . . . Ces dynamiques sont particulièrement importantes dans l'étude des expériences d'optique quantique. Nous sommes aujourd'hui capables de manipuler individuellement des particules. Pour cela la compréhension et le contrôle de l'influence de l'environnement est crucial. Dans cette thèse nous étudions d'un point de vue théorique quelques procédures communément utilisées en optique quantique. Avant la présentation de nos résultats, nous introduisons et motivons l'utilisation de la description markovienne des systèmes quantiques ouverts. Nous présentons a la fois les équations maîtresses et le calcul stochastique quantique. Nous introduisons ensuite la notion de trajectoire quantique pour la description des mesures indirectes continues. C'est dans ce contexte que l'on présente les résultats obtenus au cours de cette thèse. Dans un premier temps, nous étudions la convergence des mesures non destructives. Nous montrons qu'elles reproduisent la réduction du paquet d'onde du système mesuré. Nous montrons que cette convergence est exponentielle avec un taux fixe. Nous bornons le temps moyen de convergence. Dans ce cadre, en utilisant les techniques de changement de mesure par martingale, nous obtenons la limite continue des trajectoires quantiques discrètes. Dans un second temps, nous étudions l'influence de l'enregistrement des résultats de mesure sur la préparation d'état par ingénierie de réservoir. Nous montrons que l'enregistrement des résultats de mesure n'a pas d'influence sur la convergence proprement dite. Cependant, nous trouvons que l'enregistrement des résultats de mesure modifie le comportement du système avant la convergence. Nous retrouvons une convergence exponentielle avec un taux équivalent au taux sans enregistrement. Mais nous trouvons aussi un nouveau taux de convergence correspondant a une stabilité asymptotique. Ce dernier taux est interprété comme une mesure non destructive ajoutée. Ainsi l'état du système ne converge qu'après un temps aléatoire. A partir de ce temps la convergence peut être bien plus rapide. Nous obtenons aussi une borne sur le temps moyen de convergence
Many quantum physics phenomena can only be understood in the context of open system analysis. For example a measurement apparatus is a macroscopic system in contact with a quantum system. Therefore any experiment model needs to take into account open system behaviors. These behaviors can be complex: the interaction of the system with its environment might modify its properties, the interaction may induce memory effects in the system evolution, ... These dynamics are particularly important when studying quantum optic experiments. We are now able to manipulate individual particles. Understanding and controlling the environment influence is therefore crucial. In this thesis we investigate at a theoretical level some commonly used quantum optic procedures. Before the presentation of our results, we introduce and motivate the Markovian approach to open quantum systems. We present both the usual master equation and quantum stochastic calculus. We then introduce the notion of quantum trajectory for the description of continuous indirect measurements. It is in this context that we present the results obtained during this thesis. First, we study the convergence of non demolition measurements. We show that they reproduce the system wave function collapse. We show that this convergence is exponential with a fixed rate. We bound the mean convergence time. In this context, we obtain the continuous time limit of discrete quantum trajectories using martingale change of measure techniques. Second, we investigate the influence of measurement outcome recording on state preparation using reservoir engineering techniques. We show that measurement outcome recording does not influence the convergence itself. Nevertheless, we find that measurement outcome recording modifies the system behavior before the convergence. We recover an exponential convergence with a rate equivalent to the rate without measurement outcome recording. But we also find a new convergence rate corresponding to an asymptotic stability. This last rate is interpreted as an added non demolition measurement. Hence, the system state converges only after a random time. At this time the convergence can be much faster. We also find a bound on the mean convergence time
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum trajectories"

1

Barchielli, Alberto, and Matteo Gregoratti. Quantum Trajectories and Measurements in Continuous Time. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01298-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orszag, Miguel. Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orszag, Miguel. Quantum optics: Including noise reduction, trapped ions, quantum trajectories, and decoherence. Berlin: Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

(Matteo), Gregoratti M., and SpringerLink (Online service), eds. Quantum trajectories and measurements in continuous time: The diffusive case. Berlin: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ceresole, A. Tullio Regge: An eclectic genius : from quantum gravity to computer play. Edited by Frè P. editor. Singapore: World Scientific Publishing Co. Pte. Ltd., 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Ranfagni, ed. Trajectories and rays: The path-summation in quantum mechanics and optics. Singapore: World Scientific, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chattaraj, Pratim Kumar. Quantum Trajectories. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chattaraj, Pratim Kumar. Quantum Trajectories. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chattaraj, Pratim Kumar. Quantum Trajectories. Taylor & Francis Group, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chattaraj, Pratim Kumar. Quantum Trajectories. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum trajectories"

1

Orszag, Miguel. "Quantum Trajectories." In Quantum Optics, 249–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orszag, Miguel. "Quantum Trajectories." In Quantum Optics, 205–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orszag, Miguel. "Quantum Trajectories." In Quantum Optics, 251–80. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-54853-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dürr, Detlef, and Dustin Lazarovici. "Weak Measurements of Trajectories." In Understanding Quantum Mechanics, 149–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40068-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Milburn, G. J., J. K. Breslin, and H. M. Wiseman. "Quantum Trajectories for Quantum Optical Systems." In Quantum Communications and Measurement, 251–64. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1391-3_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sanz, Ángel S., and Salvador Miret-Artés. "Quantum Mechanics with Trajectories." In A Trajectory Description of Quantum Processes. I. Fundamentals, 187–230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-18092-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brun, Todd A. "Decoherence and Quantum Trajectories." In Decoherence and Entropy in Complex Systems, 239–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-40968-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barker, John R. "Trajectories in Quantum Transport." In Quantum Transport in Ultrasmall Devices, 171–80. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1967-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maassen, Hans, and Burkhard Kümmerer. "Purification of quantum trajectories." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 252–61. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2006. http://dx.doi.org/10.1214/lnms/1196285826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hegerfeldt, Gerhard C. "The Quantum Jump Approach and Quantum Trajectories." In Irreversible Quantum Dynamics, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44874-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum trajectories"

1

Dasari, Durga B. Rao, Sen Yang, Jörg Wrachtrup, and Nikolas Abt. "A repository for quantum measurement trajectories." In Quantum Communications and Quantum Imaging XV, edited by Ronald E. Meyers, Yanhua Shih, and Keith S. Deacon. SPIE, 2017. http://dx.doi.org/10.1117/12.2274755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orszag, Miguel. "Quantum trajectories: physical interpretation." In 3rd Iberoamerican Optics Meeting and 6th Latin American Meeting on Optics, Lasers, and Their Applications, edited by Angela M. Guzman. SPIE, 1999. http://dx.doi.org/10.1117/12.358423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carmichael, H. J., L. Tian, and P. Kochan. "Decay of quantum coherence using quantum trajectories." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mff4.

Full text
Abstract:
In the quantum trajectory approach an open quantum system is represented by a stochastic pure-state wave function. The mixed-state density operator that satisfies the usual master equation is recovered from the quantum trajectories by performing either an ensemble average or, for stationary systems, an average over time. This unraveling of the master equation dynamics into pure-state trajectories provides new insight into the decay of quantum coherence in systems that are open to the environment. Under some conditions macroscopic superposition states are preserved as macroscopic superposition states along individual trajectories, but are reduced to mixtures by the trajectory average. Under other conditions one of the states in a macroscopic superposition becomes dominant (in amplitude) over the other along each quantum trajectory. We discuss the mechanisms that produce these dynamics and assess the implications for the observation of Schrodinger cat states in optics experiments. We present results for some specific examples of macroscopic superposition states generated by a cavity QED system. The system involves a small collection of atoms in an optical cavity driven by a coherent laser field. Under strong-coupling conditions this system produces a variety of Schrodinger cat states whose precise form depends on the number of atoms, the method of excitation (through a cavity mirror or from the side), the initial state of the atoms, and the position of the atoms in the cavity.
APA, Harvard, Vancouver, ISO, and other styles
4

BARKER, J. R. "BOHM TRAJECTORIES IN QUANTUM TRANSPORT." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705129_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SJÖSTRAND, Johannes. "Quantum Resonances and Trapped Trajectories." In Proceedings of the Bologna APTEX International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812794598_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ralph, Jason F., Simon Maskell, Michael Ransom, and Hendrik Ulbricht. "Classical Tracking for Quantum Trajectories." In 2021 IEEE 24th International Conference on Information Fusion (FUSION). IEEE, 2021. http://dx.doi.org/10.23919/fusion49465.2021.9626966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Ting. "Approaches to Non-Markovian Quantum Open Systems: From Quantum Trajectories to Master Equations." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.nmd3.

Full text
Abstract:
In this tutorial, I will review some recent progresses in non-Markovian dynamics of quantum open systems. I will be focused with non-Markovian quantum trajectories and non-Markovian master equation approaches. In particular, I will show how to derive an exact non-Markovian master equation from the corresponding quantum trajectories. I will also show how to use quantum trajectories to derive the well-known Kraus operators for pure dephasing noise. The applications of quantum trajectories to quantum information and decoherence will be briefly reviewed.
APA, Harvard, Vancouver, ISO, and other styles
8

Murch, Kater, Mahdi Naghiloo, Dian Tan, Philippe Lewalle, and Andrew Jordan. "Resonance Fluorescence Trajectories of a Superconducting Qubit." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf5a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

REBOLLEDO, ROLANDO. "OPEN QUANTUM SYSTEMS AND CLASSICAL TRAJECTORIES." In Proceedings of the Mathematical Legacy of R P Feynman & Proceedings of the Open Systems and Quantum Statistical Mechanics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702364_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Greenfield, Elad, Mordechai Segev, and Oren Raz. "Accelerating Light Beams Along Arbitrary Trajectories." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/qels.2011.qma2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography