Academic literature on the topic 'Quantum Transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum Transport"

1

Zweifel, Paul F., and Bruce Toomire. "Quantum transport theory." Transport Theory and Statistical Physics 27, no. 3-4 (April 1998): 347–59. http://dx.doi.org/10.1080/00411459808205630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonča, Janez, and S. A. Trugman. "Inelastic Quantum Transport." Physical Review Letters 79, no. 24 (December 15, 1997): 4874–77. http://dx.doi.org/10.1103/physrevlett.79.4874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simmonds, P. J., F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, and G. A. C. Jones. "Quantum transport in In0.75Ga0.25As quantum wires." Applied Physics Letters 92, no. 15 (April 14, 2008): 152108. http://dx.doi.org/10.1063/1.2911730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh, and D. Vasileska. "Quantum transport in ballistic quantum dots." Physica E: Low-dimensional Systems and Nanostructures 3, no. 1-3 (October 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lucignano, Procolo, Piotr Stefański, Arturo Tagliacozzo, and Bogdan R. Bułka. "Quantum transport across multilevel quantum dot." Current Applied Physics 7, no. 2 (February 2007): 198–204. http://dx.doi.org/10.1016/j.cap.2005.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Zhongshui, Junren Shi, and X. C. Xie. "Quantum ac transport through coupled quantum dots." Physical Review B 62, no. 23 (December 15, 2000): 15352–55. http://dx.doi.org/10.1103/physrevb.62.15352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wan, C. C., Ying Huang, and Hong Guo. "Dissipative quantum transport in a quantum wire." Physical Review B 53, no. 16 (April 15, 1996): 10951–72. http://dx.doi.org/10.1103/physrevb.53.10951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Imura, Ken-ichiro, and Naoto Nagaosa. "Quantum transport in fractional quantum Hall edges." Physica B: Condensed Matter 249-251 (June 1998): 420–25. http://dx.doi.org/10.1016/s0921-4526(98)00150-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khoeini, F., A. A. Shokri, and H. Farman. "Electronic quantum transport through inhomogeneous quantum wires." Physica E: Low-dimensional Systems and Nanostructures 41, no. 8 (August 2009): 1533–38. http://dx.doi.org/10.1016/j.physe.2009.04.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hai, Guo-Qiang, and Nelson Studart. "Quantum transport in δ-doped quantum wells." Physical Review B 55, no. 11 (March 15, 1997): 6708–11. http://dx.doi.org/10.1103/physrevb.55.6708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum Transport"

1

Walschaers, Mattia [Verfasser], Andreas [Akademischer Betreuer] Buchleitner, and Mark [Akademischer Betreuer] Fannes. "Efficient quantum transport." Freiburg : Universität, 2016. http://d-nb.info/1122647247/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shin, Ghi Ryang. "Quantum transport theory." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186508.

Full text
Abstract:
Within the framework of the quantum transport theory based on the Wigner transform of the density matrix I study first in non-relativistic and subsequently in relativistic formulation a number of applications. I also develop further the recently proposed relativistic theory: the classical limit is carefully derived and the integral equations of the relativistic Wigner function derived explicitly. I show how it is possible to obtain the Schwinger like particle production rate from relativistic quantum transport equations. Noteworthy numerical results address the shape of the relativistic Wigner function of a given quantum state. Other numerical studies are primarily oriented towards the time evolution of the Wigner function--I can presently solve only the nonrelativistic case in which there is no mixing between particle production and flow phenomena: I consider numerically the fate of the muon after muon catalyzed fusion.
APA, Harvard, Vancouver, ISO, and other styles
3

Todorov, Tchavdar N. "Quantum transport in nanostructures." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Murphy, Helen Marie. "Quantum transport in superlattice and quantum dot structures." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tenasini, Giulia. "Quantum transport in monolayer WTe2." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14897/.

Full text
Abstract:
Il ditellurio di tungsteno (WTe2) appartiene alla classe dei dicalcogenuri di metalli di transizione (TMDs), che rappresentano attualmente i materiali più promettenti, insieme al grafene, nel campo di ricerca dei cristalli bidimensionali (2D). Grazie ad una caratteristica struttura stratificata, con differenti piani atomici legati da forze di van der Waals, mediante esfoliazione è possibile isolare strati di spessore quasi-atomico di TMDs, detti “monostrati”, con proprietà spesso molto diverse dal materiale bulk originario. Il WTe2 nella sua forma a monostrato, è stato recentemente oggetto di interesse scientifico, in quanto teoricamente predetto essere un isolante topologico (TI) bidimensionale. Un TI è un materiale che internamente si comporta come un isolante elettrico ma che sulla superficie manifesta stati conduttivi. Lo scopo di questa tesi è studiare le proprietà si trasporto di monostrati di WTe2 in micro-dispositivi realizzati con opportune tecniche di nanofabbricazione. L'ossidazione della superficie esterna del WTe2, dovuta ad una non-perfetta stabilità in aria, influenza significativamente il trasporto elettronico in cristalli costituiti da pochi strati atomici ed è causa di una transizione metallo-isolante. Una possibile soluzione per evitare la degradazione del materiale consiste nell' “incapsulamento” di un monostrato di WTe2 fra materiali 2D chimicamente inerti, come il nitruro di boro esagonale. A tale proposito, si è sviluppata una tecnica di “trasferimento” che permette di sollevare e allineare con precisione micrometrica strati di spessore atomico di differenti materiali, assemblando eterostrutture di van der Waals. Campioni selezionati sono studiati mediante misure di magneto-transporto a bassa temperatura (fino a 0.250 K). I dati analizzati evidenziano l'esistenza di un gap di energia in monostrati di WTe2 e la presenza di una corrente localizzata ai bordi del sistema, coerentemente con l'ipotesi di un isolante topologico 2D.
APA, Harvard, Vancouver, ISO, and other styles
6

Romeike, Christian Jörg Rudolf. "Quantum transport through single molecules." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981938566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Jinshan. "Quantum transport through open systems." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33955.

Full text
Abstract:
To study transport properties, one needs to investigate the system of interest when coupled to biased external baths. This requires solving a master equation for this open quantum system. Obtaining this solution is very challenging, especially for large systems. This limits applications of the theories of open quantum systems, especially insofar as studies of transport in large quantum systems, of interest in condensed matter, is concerned. In this thesis, I propose three efficient methods to solve the Redfield equation --- an example of such a master equation. The first is an open-system Kubo formula, valid in the limit of weak bias. The second is a solution in terms of Green's functions, based on a BBGKY (Bogoliubov--Born--Green--Kirkwood--Yvon)-like hierarchy. In the third, the Redfield equation is mapped to a generalized Fokker-Planck equation using the coherent-state representation. All three methods, but especially the latter two, have much better efficiency than direct methods such as numerical integration of the Redfield equation via the Runge-Kutta method. For a central system with a d-dimensional Hilbert space, the direct methods have complexity of d³, while that of the latter two methods is on the order of order of polynomials of log d. The first method, besides converting the task of solving the Redfield equation to solving the much easier Schrödinger's equation, also provides an even more important conceptual lesson: the standard Kubo formula is not applicable to open systems. Besides these general methodologies, I also investigate transport properties of spin systems using the framework of the Redfield equation and with direct methods. Normal energy and spin transport is found for integrable but interacting systems. This conflicts with the well-known conjecture linking anomalous conductivity to integrability, and it also contradicts the relationship, suggested by some, between gapped systems (Jz > Jxy) and normal spin conductivity. I propose a new conjecture, linking anomalous transport to the existence of a mapping of the problem to one for non-interacting particles.
APA, Harvard, Vancouver, ISO, and other styles
8

Harb, Mohammed. "Quantum transport modeling with GPUs." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114417.

Full text
Abstract:
In this thesis, we have developed a parallel GPU accelerated code for carrying out transport calculations within the Non-Equilibrium Green's Function (NEGF) framework using the Tight-Binding (TB) model. We also discuss the theoretical, modelling, and computational issues that arise in this implementation. We demonstrate that a heterogenous implementation with CPUs and GPUs is superior to single processor, multiple processor, and massively parallel CPU-only implementations. The GPU-Matlab Interface (GMI) developed in this work for use in our NEGF-TB code is not application specific and can be used by researchers in any field without previous knowledge of GPU programming or multi-threaded programming. We also demonstrate that GMI competes very well with commercial packages.Finally, we apply our heterogenous NEGF-TB code to the study of electronic transport properties of Si nanowires and nanobeams. We investigate the effect of several kinds of structural defects on the conductance of such devices and demonstrate that our method can handle systems of over 200,000 atoms in a reasonable time scale while using just 1-4 GPUs.
Dans cette thèse, nous présentons un logiciel qui effectue des calculs de transport quantique en utilisant conjointement la théorie des fonctions de Green hors équilibre (non equilibrium Green function, NEGF) et le modèle des liens étroits (tight-binding model, TB). Notre logiciel tire avantage du parallélisme inhérent aux algorithmes utilisés en plus d'être accéléré grâce à l'utilisation de processeurs graphiques (GPU). Nous abordons également les problèmes théoriques, géométriques et numériques qui se posent lors de l'implémentation du code NEGF-TB. Nous démontrons ensuite qu'une implémentation hétérogène utilisant des CPU et des GPU est supérieure aux implémentations à processeur unique, à celles à processeurs multiples, et même aux implémentations massivement parallèles n'utilisant que des CPU. Le GPU-Matlab Interface (GMI) présenté dans cette thèse fut développé pour des fins de calculs de transport quantique NEGF-TB. Néanmoins, les capacités de GMI ne se limitent pas à l'utilisation que nous en faisons ici et GMI peut être utilisé par des chercheurs de tous les domaines n'ayant pas de connaissances préalables de la programmation GPU ou de la programmation "multi-thread". Nous démontrons également que GMI compétitionne avantageusement avec des logiciels commerciaux similaires.Enfin, nous utilisons notre logiciel NEGF-TB pour étudier certaines propriétés de transport électronique de nanofils de Si et de Nanobeams. Nous examinons l'effet de plusieurs sortes de lacunes sur la conductance de ces structures et démontrons que notre méthode peut étudier des systèmes de plus de 200 000 atomes en un temps raisonnable en utilisant de un à quatre GPU sur un seul poste de travail.
APA, Harvard, Vancouver, ISO, and other styles
9

Papadopoulos, Theodoros. "Quantum transport in molecular wires." Thesis, Lancaster University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barbosa, Jose Camilo. "Quantum transport in semiconductor nanostructures." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum Transport"

1

Allaire, Grégoire, Anton Arnold, Pierre Degond, and Thomas Yizhao Hou. Quantum Transport. Edited by Naoufel Ben Abdallah and Giovanni Frosali. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79574-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferry, David K., and Carlo Jacoboni, eds. Quantum Transport in Semiconductors. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2359-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

K, Ferry David, and Jacoboni Carlo, eds. Quantum transport in semiconductors. New York: Plenum Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thomas, Dittrich, ed. Quantum transport and dissipation. Weinheim: Wiley-VCH, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nazarov, Yuli V. Quantum transport: Introduction to nanoscience. Cambridge: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferry, David K., Harold L. Grubin, Carlo Jacoboni, and Anti-Pekka Jauho, eds. Quantum Transport in Ultrasmall Devices. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1967-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bird, Jonathan P., ed. Electron Transport in Quantum Dots. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0437-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Magnus, Wim, and Wim Schoenmaker. Quantum Transport in Submicron Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56133-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

1967-, Blanter Yaroslav M., ed. Quantum transport: Introduction to nanoscience. Cambridge: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Young, Andrea Franchini. Quantum transport in graphene heterostructures. [New York, N.Y.?]: [publisher not identified], 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum Transport"

1

Razeghi, Manijeh. "Quantum Transport." In Fundamentals of Solid State Engineering, 513–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75708-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raza, Hassan. "Quantum Transport." In Nanoelectronics Fundamentals, 79–138. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32573-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamamoto, Y. "Quantum Optics." In Mesoscopic Electron Transport, 617–56. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cini, Michele. "Quantum Transport and Quantum Pumping." In UNITEXT for Physics, 373–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71330-4_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cini, Michele. "Quantum Transport and Quantum Pumping." In UNITEXT for Physics, 453–84. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-65441-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jauho, A. P. "Quantum transport theory." In Theory of Transport Properties of Semiconductor Nanostructures, 127–71. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5807-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bandyopadhyay, Supriyo. "Quantum Transport Formalisms." In Physics of Nanostructured Solid State Devices, 395–490. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1141-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barker, John R. "Quantum Transport Modelling." In Semiconductor Device Modelling, 207–26. London: Springer London, 1989. http://dx.doi.org/10.1007/978-1-4471-1033-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Levinson, Y. B. "Quantum Ballistic Transport." In NATO ASI Series, 205–18. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5961-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jacoboni, Carlo, and Fausto Rossi. "Quantum Transient Transport." In Ultrashort Processes in Condensed Matter, 287–335. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2954-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum Transport"

1

Shin, Gwangjin, and Q.-Han Park. "Quantum Anti-Reflection for Electron Transport." In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elze, Hans-Thomas. "Relativistic Quantum Transport Theory." In NEW STATES OF MATTER IN HADRONIC INTERACTIONS:Pan American Advanced Study Institute. AIP, 2002. http://dx.doi.org/10.1063/1.1513683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alfassi, Barak, Tal Schwartz, and Mordechai Segev. "Soliton Transport in Random Potential." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.itug3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sachrajda, A. S. "Quantum Chaos and Transport Phenomena in Quantum Dots." In Proceedings of Nobel Symposium 116. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811004_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

AARTS, GERT, and JOSE M. MARTINEZ RESCO. "TRANSPORT COEFFICIENTS AND QUANTUM FIELDS." In Proceedings of the SEWM2002 Meeting. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704498_0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BARKER, J. R. "BOHM TRAJECTORIES IN QUANTUM TRANSPORT." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705129_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reddy, G. Gangadhar, A. Ramakanth, S. K. Ghatak, Shyamalendu M. Bose, S. N. Behera, and B. K. Roul. "Electrical Transport in Quantum Dot." In MESOSCOPIC, NANOSCOPIC AND MACROSCOPIC MATERIALS: Proceedings of the International Workshop on Mesoscopic, Nanoscopic and Macroscopic Materials (IWMNMM-2008). AIP, 2008. http://dx.doi.org/10.1063/1.3027180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GRAF, G. M., A. ELGART, L. SADUN, and K. SCHNEE. "Transport in adiabatic quantum pumps." In XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wysokiński, K. I., T. Domański, B. Szukiewicz, Grzegorz Michałek, and Bogdan R. Bułka. "QUANTUM TRANSPORT IN HYBRID NANOSTRUCTURES." In 11th International School on Theoretical Physics. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814740371_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KATSUMOTO, S., M. SATO, H. AIKAWA, and Y. IYE. "COHERENT TRANSPORT THROUGH QUANTUM DOTS." In Proceedings of the 8th International Symposium. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773210_0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum Transport"

1

Ferry, David K. Quantum Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, Shechao. Quantum transport in mesoscopic systems. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6800327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hone, James. Quantum Transport in 2D Semiconductors. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2204858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Washburn, Sean. Quantum Transport in Si/SiGe Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada395028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Robert C. Quantum Noise in Mesoscopic Electron Transport. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada298817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iafrate, Gerald J. Quantum Transport in Solids: Two-Electron Processes. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada299431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iafrate, Gerald J. Quantum Transport in Solids: Two-Electron Processes. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada299878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grubin, H. L., and T. R. Govindan. Transport Via Moments of Quantum Distribution Functions. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada231182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferry, David K. Advanced Research Workshop on Quantum Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada400380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography