Dissertations / Theses on the topic 'Quantum Transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Quantum Transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Walschaers, Mattia [Verfasser], Andreas [Akademischer Betreuer] Buchleitner, and Mark [Akademischer Betreuer] Fannes. "Efficient quantum transport." Freiburg : Universität, 2016. http://d-nb.info/1122647247/34.
Full textShin, Ghi Ryang. "Quantum transport theory." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186508.
Full textTodorov, Tchavdar N. "Quantum transport in nanostructures." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334909.
Full textMurphy, Helen Marie. "Quantum transport in superlattice and quantum dot structures." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364637.
Full textTenasini, Giulia. "Quantum transport in monolayer WTe2." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14897/.
Full textRomeike, Christian Jörg Rudolf. "Quantum transport through single molecules." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981938566.
Full textWu, Jinshan. "Quantum transport through open systems." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33955.
Full textHarb, Mohammed. "Quantum transport modeling with GPUs." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114417.
Full textDans cette thèse, nous présentons un logiciel qui effectue des calculs de transport quantique en utilisant conjointement la théorie des fonctions de Green hors équilibre (non equilibrium Green function, NEGF) et le modèle des liens étroits (tight-binding model, TB). Notre logiciel tire avantage du parallélisme inhérent aux algorithmes utilisés en plus d'être accéléré grâce à l'utilisation de processeurs graphiques (GPU). Nous abordons également les problèmes théoriques, géométriques et numériques qui se posent lors de l'implémentation du code NEGF-TB. Nous démontrons ensuite qu'une implémentation hétérogène utilisant des CPU et des GPU est supérieure aux implémentations à processeur unique, à celles à processeurs multiples, et même aux implémentations massivement parallèles n'utilisant que des CPU. Le GPU-Matlab Interface (GMI) présenté dans cette thèse fut développé pour des fins de calculs de transport quantique NEGF-TB. Néanmoins, les capacités de GMI ne se limitent pas à l'utilisation que nous en faisons ici et GMI peut être utilisé par des chercheurs de tous les domaines n'ayant pas de connaissances préalables de la programmation GPU ou de la programmation "multi-thread". Nous démontrons également que GMI compétitionne avantageusement avec des logiciels commerciaux similaires.Enfin, nous utilisons notre logiciel NEGF-TB pour étudier certaines propriétés de transport électronique de nanofils de Si et de Nanobeams. Nous examinons l'effet de plusieurs sortes de lacunes sur la conductance de ces structures et démontrons que notre méthode peut étudier des systèmes de plus de 200 000 atomes en un temps raisonnable en utilisant de un à quatre GPU sur un seul poste de travail.
Papadopoulos, Theodoros. "Quantum transport in molecular wires." Thesis, Lancaster University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445487.
Full textBarbosa, Jose Camilo. "Quantum transport in semiconductor nanostructures." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263288.
Full textVon, Oertzen Detlof Wilhelm. "Transport coefficients in quantum chromodynamics." Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/22057.
Full textMadison, Kirk William. "Quantum transport in optical lattices /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textSchaeverbeke, Quentin. "Photon emission and quantum transport in nanoplasmonic cavities." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0097.
Full textThe study of light–matter interaction has drawn through the years more and more interest. With the improvement of the techniques used for building electromagnetic cavities, it is now possible to couple cavities with nanocircuits merging the fields of quantum optics and nanoelectronics.Not only that, but some experiments also reported the possibility to use a scanning tunneling microscope as a plasmonic cavity coupled with electronic transport. In this thesis a theoretical framework is proposed, based on mesoscopic quantum electrodynamics, for studying the coupling between electronic transport in a molecular junction and the electromagnetic field of a cavity. This thesis focuses on the sequential tunneling regime for the electrons and use density matrix approach. This allows to derive the master equation as well as a computational scheme to compute electronic current and the photon statistic when it is not possible to obtain analytical results. First, a single–level model for the molecule in the junction is studied. Indeed the electronic current induces a fluctuation of the charge on the molecule that couples with the electromagnetic field in the cavity. The investigations on this system are done in the experimentally relevant limit of large damping rate κ for the cavity mode and arbitrary strong light–matter coupling strength. This model shows the equivalence between the electron–photon coupling for a single level and the electron– phonon coupling that has long been studied in nanoelectronics known as the Franck–Condon principle. The current–voltage characteristics show steps, each separated by the energy of a photon, as the electron tunneling dissipate some energy in the cavity mode. In this work a formula has been derived for the electronic current taking into account the damping of the cavity. This allows to show that the width of the current’s steps are controlled by κ rather than the temperature. The single-level junction shows interesting light–emission regimes. At large bias voltage this theory predicts strong photon bunching of the order κ/Γ where Γ is the electronic tunneling rate. However, at the first inelastic threshold the theory predicts current–driven non–classical light emission from the single–level junction. Finally the investigation of the effect of a strong external drive of the cavity on the electronic current shows a quantization of the current that is linked to the Franck–Condon effect. Finally the theory is applied to a double–level model for the molecular junction inspired by quantum optics. In this scenario, the cavity mode couples to the electronic transition between the two states of the molecule. The effect of the charge fluctuations for each single electronic level is neglected. Therefore the coupling is a dipolar coupling in this case. The focus is mainly on the weak coupling regime. The electronic current shows the Rabi splitting due to the hybridization of the cavity mode and the molecule. Electronic tunneling can occur into these hybridized states and is responsible for light emission in the cavity in a iii single tunneling process. Light antibunching is seen in the weak coupling regime since our model predicts that only single photon emission is possible during a tunneling event in this case. Though the intermediate coupling regime is only briefly treated, the strong coupling regime is shown to be similar to two independent single level
El estudio de las interacciones entre luz y materia ha atraído un interés creciente a lo largo de los años. La mejora de las técnicas de fabricación de las cavidades electromagnéticas permite hoy conjugar las cavidades con nanocircuitos, combinando así los campos de la óptica cuántica y de la nanoelectrónica. Se añade a eso la posibilidad de usar un microscopio con efecto túnel a modo de cavidad plasmónica combinada con el transporte electrónico que fue demostrado en numerosas experiencias. Esa tesis propone un cuadro teórico basado en la electrodinámica mesoscópica, permitiendo el estudio de la combinación del transporte electrónico dentro de una unión molecular con el campo electromagnético de una cavidad. El foco se centra en el régimen túnel secuencial de los electrones, a cual está apto el uso de la matriz densidad para los cálculos. Ese régimen permite establecer ecuaciones claves que rigen el desarrollo temporal de la matriz densidad, tal como un esquema de cálculo numérico de la corriente electrónica y de la estadística de los fotones en la cavidad cuando no es posible obtener un resultado analítico. Primero se estudia un modelo de un solo nivel electrónico para la molécula. En efecto, la existencia de una corriente electrónica significa que la carga en la molécula fluctúa y esa fluctuación se combina con el campo electromagnético de la cavidad. El estudio de ese sistema se hace en el limite, experimentalmente pertinente, del ratio alto de la amortiguación κ del modo de la cavidad y del acoplo luz–materia arbitrariamente alto. Ese modelo demuestra la equivalencia del acoplo electrón– fotón para un nivel electrónico y el acoplo electrón–fonón que se ha estudiado desde hace mucho tiempo en el campo de la nanoelectrónica bajo el nombre del principio de Franck–Condon. La característica corriente– tensión del circuito hace aparecer una evolución de escalones, cada uno separado por la energía de un fotón. Eso corresponde a una disipación de energía por parte de los electrones al modo de la cavidad durante el proceso de transporte. En ese trabajo se derivó una ecuación para la corriente electrónica que toma en cuenta el efecto de la amortiguación de la cavidad. Esto demuestra que la anchura de los saltos en la corriente está controlada por κ más que por la temperatura. El modelo de un solo nivel muestra también regímenes inesperados de emisión de luz. En el límite de voltaje alto entre los electrodos de la unión molecular, la teoría predice una agrupación («bunching») de los fotones emitidos dentro de la cavidad. La correlación entre dos fotones emitidos alcanza un valor del orden de κ/Γ donde Γ es el ratio de tunelamiento de los electrones. Sin embargo, en el primer umbral de transferencia inelástica esa teoría iv predice una emisión de luz no-clásica provocada por la corriente electrónica. Por fin, el estudio del impacto de una fuerte excitación externa del modo de la cavidad muestra también una cuantización de la corriente relacionada al efecto Franck–Condon. Finalmente, la teoría desarrollada en esta tesis está aplicada también a una unión molecular de dos niveles electrónicos inspirada de la óptica cuántica. En ese escenario el modo de la cavidad está acoplado con la transición electrónica entre dos orbitales moleculares. El efecto de fluctuaciones de carga en cada orbital no se tiene en cuenta. Entonces en ese marco el acoplo es solo dipolar. Se centra la atención principalmente en el régimen del acoplo débil. La corriente electrónica muestra la huella de oscilaciones de Rabi como resultado de la hibridación del modo de la cavidad con la molécula. El transporte de electrones se puede ocurrir mediante estos estados híbridos. Entonces el traslado de un único electrón es responsable de la emisión de un fotón en la cavidad. Se observa el desagrupamiento («anti-bunching») de la luz emitida
Boese, Daniel. "Quantum transport through nanostructures : quantum dots, molecules, and quantum wires = Quantentransport durch Nanostrukturen /." Aachen : Shaker, 2002. http://swbplus.bsz-bw.de/bsz096321318abs.htm.
Full textNemec, Norbert. "Quantum transport in carbon-based nanostructures." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985358963.
Full textBurmeister, Björn. "Transport processes in quantum spin systems." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958235295.
Full textJones, Gregory Millington. "Quantum transport in nanoscale semiconductor devices." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3831.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Koch, Jens. "Quantum transport through single molecule devices." [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/380/index.html.
Full textHoffmann, James A. "Electron transport in interacting quantum wires." Virtual Press, 2003. http://liblink.bsu.edu/uhtbin/catkey/1259758.
Full textDepartment of Physics and Astronomy
Watling, Jeremy Richards. "Carrier transport in quantum well structures." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267463.
Full textYan, C. "Electron transport in integrated quantum systems." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1531982/.
Full textGreenbaum, Daniel. "Quantum spin transport in paramagnetic systems." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32417.
Full textIncludes bibliographical references (p. 87-90).
We have studied the transport of magnetization and energy in systems of spins 1/2 on a lattice at high temperature. This work was motivated by recent experiments which observed "spin diffusion" among the dipolar coupled nuclear spins of the insulator calcium fluoride, under conditions where it was appropriate to neglect the coupling to any heat reservoir. The dynamics under these conditions is coherent and reversible, yet signatures of irreversibility (i.e. diffusion) are typically observed. This state of affairs poses a formidable conceptual puzzle. In this thesis we present both phenomenological and microscopic models of spin diffusion, retaining the important aspects of statistical approaches to transport while incorporating relevant quantum effects. These methods allow an efficient calculation of energy diffusion for a long- range interaction, which has largely been an intractable problem. We study transport in two different limits, that where the XY term of the spin Hamiltonian is dominant, and that where it can be treated as a perturbation compared to the Ising term. In the case of dipolar couping, both limits are found to show slightly more rapid diffusion of inter spin energy than magnetization, in qualitative agreement with experiments.
by Daniel Greenbaum.
Ph.D.
Pollock, Felix Alexander. "Energy transport in open quantum systems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:41f104b5-718d-4f1c-a224-fe47c324dbbe.
Full textLiang, Dong. "Semiconductor Nanowires: Synthesis and Quantum Transport." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1327641946.
Full textChe, Shi. "Quantum Transport in Few-layer Graphene." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574864398913631.
Full textBerthe, Maxime. "Electronic transport in quantum confined systems." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-Berthe.pdf.
Full textNa, Kyungsun. "Quantum transport in an electron waveguide /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textCui, Ping. "Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202006%20CUI.
Full textBegemann, Georg. "Quantum interference phenomena in transport through molecules and multiple quantum dots." Regensburg Univ.-Verl. Regensburg, 2010. http://d-nb.info/1001179927/34.
Full textBegemann, Georg. "Quantum interference phenomena in transport through molecules and multiple quantum dots." Regensburg Univ.-Verl. Regensburg, 2009. http://d-nb.info/999764470/04.
Full textChiu, Kuei-Lin. "Transport properties of graphene nanodevices - nanoribbons, quantum dots and double quantum dots." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610526.
Full textRoh, Chung-Hee. "Electron transport through double quantum dots in an Aharonov-Bohm ring." Muncie, Ind. : Ball State University, 2008. http://cardinalscholar.bsu.edu/382.
Full textXu, Yan. "Quantum transport through a C48N12 based nanodevice." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31471183.
Full textKaufman, David Kaufman David. "Electron transport in V-groove quantum wires /." [S.l.] : [s.n.], 2000. http://library.epfl.ch/theses/?nr=2239.
Full textLuisier, Mathieu. "Quantum transport beyond the effective mass approximation /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17016.
Full textFechner, Andrea. "Frequency dependent electronic transport in quantum wires." [S.l. : s.n.], 2000. http://www.sub.uni-hamburg.de/disse/318/thesis.pdf.
Full textFilipovic, Milena [Verfasser]. "Quantum Transport Through Molecular Magnets / Milena Filipovic." Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1098136519/34.
Full textWei, Haiqing. "Coherent AC transport theory and quantum capacitance." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0026/MQ50902.pdf.
Full textSchneider, Adam. "Coherent electron transport in triple quantum dots." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32541.
Full textNous utilisons une approche d´equation quantique maîtresse pour étudier les propriétés de transport des points quantiques triples en forme d'anneau. Contrairement aux points quantiques doubles et triples en forme de chaînes, cette géométrie offre deux chemins pour le transport avec une phase quantique relative qui est sensible au flux magnétique en raison de l'effet Aharonov-Bohm. Ceci méne à un effet de piégeage de population cohérent et cela est connu sous le nom d'un "état sombre". Contrairement à d'autres techniques d'équation maîtresse qui sont seulement valides dans la limite d'un potentiel électrique élevé, notre méthode reproduit les résultats de ces derniers en plus de donner une expression analytique pour la conductance différentielle de zéro potentiel électrique. En plus de donner une optique plus robuste de la physique "d´etats sombres", notre modèle prédit une résistance différentielle négative qui est reliée au phénomène déjà prédit de rectification à potentiel élevé.
Maciejko, Joseph. "Time-dependent quantum transport in mesoscopic structures." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99346.
Full textWei, Haiqing 1970. "Coherent AC transport theory and quantum capacitance." Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20979.
Full textOne quantity of particular interest is the mesoscopic capacitance. In mesoscopic structures where the electric screening length is comparable to the geometric size, the experimentally relevant capacitance is no longer due to geometry alone but to the electro-chemical potential and the capacitance crucially depends on the density of states of the conductor. Furthermore, the phase-coherent nature of the carrier motion leads to striking asymmetric effects in the magneto-capacitance. The general theory is put forth into numerical simulations where the theory is justified.
The study of AC transport in mesoscopic structures should not only help us to better understand the physics of many-body systems, but should also provide valuable knowledge in characterizing and controlling small electronic devices which is of great technological importance.
Liebert, Alan David Lawrence. "Quantum transport in macroscopic and mesoscopic systems." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315338.
Full textSirichantaropass, Skon. "Quantum Transport in Nanowires and Molecular Structures." Thesis, Lancaster University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518142.
Full textRen, Wei, and 任偉. "Electronic transport in the nanotube quantum dot." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B2666530X.
Full textXu, Yan, and 徐艷. "Quantum transport through a C48N12 based nanodevice." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31471183.
Full textWu, Junling, and 吳峻嶺. "Frequency-dependent quantum transport through nano-devices." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B3124614X.
Full textHuang, Kun, and 黄琨. "Quantum transport properties of high-temperature superconductors." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617813.
Full textpublished_or_final_version
Physics
Doctoral
Doctor of Philosophy
Kopp, Marten H. T. "Transport and escape in quantum dynamic systems." Thesis, Lancaster University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656306.
Full textDellow, Mark Winston. "Quantum and classical transport in semiconductor nanostructures." Thesis, University of Nottingham, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334765.
Full textRodgers, Peter James. "Quantum transport in two dimensional hole systems." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241502.
Full text