Academic literature on the topic 'Quantum wells. Infrared detectors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum wells. Infrared detectors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum wells. Infrared detectors"

1

PERERA, A. G. U., and S. G. MATSIK. "QUANTUM STRUCTURES FOR FAR-INFRARED DETECTION." International Journal of High Speed Electronics and Systems 12, no. 03 (September 2002): 821–72. http://dx.doi.org/10.1142/s012915640200171x.

Full text
Abstract:
FIR photon detector development starting from the extrinsic detectors for LWIR to FIR wavelengths are presented. Several other types of IR detectors, including the cut-off wavelength extension into the FIR range for quantum well infrared photodetectors (QWIPs), are summarized. Efforts in developing p-GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared detectors and the most reason developments on GaAs/AlGaAs Heterojunction interfacial workfunction internal photoemission (HEIWIP) far-infrared detectors are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Graf, Marcel, Emmanuel Dupont, Hui Luo, Soufien Haffouz, Zbig R. Wasilewski, Anthony J. Spring Thorpe, Dayan Ban, and H. C. Liu. "Terahertz quantum well infrared detectors." Infrared Physics & Technology 52, no. 6 (November 2009): 289–93. http://dx.doi.org/10.1016/j.infrared.2009.05.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rutt, Harvey. "Semiconductor quantum wells and superlattices for long-wavelength infrared detectors." Optics & Laser Technology 26, no. 1 (January 1994): 74. http://dx.doi.org/10.1016/0030-3992(94)90031-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ROGALSKI, A. "QUANTUM WELL INFRARED PHOTOCONDUCTORS IN INFRARED DETECTORS TECHNOLOGY." International Journal of High Speed Electronics and Systems 12, no. 03 (September 2002): 593–658. http://dx.doi.org/10.1142/s0129156402001654.

Full text
Abstract:
Investigations of the performance of quantum well infrared photodetectors (QWIPs) as compared to other types of semiconductor infrared (IR) detectors are presented. In comparative studies both photon and thermal detectors are considered. More attention is paid to photon detectors and between them we can distinguish: HgCdTe photodiodes, InSb photodiodes, Schottky barrier photoemissive detectors, and doped silicon detectors. Special attention has been paid to competitive technologies in long wavelength IR (LWIR) and very LWIR (VLWIR) spectral ranges with emphasis on the material properties, device structure, and their impact on FPA performance. The potential performance of different materials as infrared detectors is examined utilizing the α/G ratio, where α is the absorption coefficient and G is the thermal generation. From the discussion results, LWIR QWIP cannot compete with HgCdTe photodiode as the single device especially at higher temperature operation(> 70 K) due to fundamental limitations associated with intersubband transitions. However, the advantage of HgCdTe is less distinct in the temperature range below 50 K due to problems involved in the HgCdTe material (p-type doping, Shockley–Read recombination, trap-assisted tunneling, surface and interface instabilities). Even though the QWIP is a photoconductor, several its properties such as high impedance, fast response time, long integration time, and low power consumption, well comply with requirements for large FPAs fabrication. Due to the high material quality at low temperature, QWIP has potential advantages over HgCdTe for VLWIR FPA applications in terms of the array size, uniformity, yield and cost of the systems. Both HgCdTe photodiodes and quantum well infrared photodetectors offer multicolor capability in the MWIR and LWIR range. Powerful possibilities of QWIP technology are connected with VLWIR FPA applications and with multicolor detection. QWIP FPAs combine the advantages of PtSi Schottky barrier arrays (high uniformity, high yield, radiation hardness, large arrays, lower cost) with the advantages of HgCdTe (high quantum efficiency and long wavelength response).
APA, Harvard, Vancouver, ISO, and other styles
5

Benaadad, Merieme, Abdelhakim Nafidi, Samir Melkoud, Driss Barkissy, and Nassima Benchtaber. "Quantum magneto transport properties of nanostructure multi quantum wells short wave Infrared detectors." Journal of Physics: Conference Series 1743 (January 2021): 012009. http://dx.doi.org/10.1088/1742-6596/1743/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ben Salem, E., R. Chaabani, and S. Jaziri. "Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells." Chinese Physics B 25, no. 9 (August 30, 2016): 098101. http://dx.doi.org/10.1088/1674-1056/25/9/098101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ZAŁUŻNY, M., and W. ZIETKOWSKI. "ELECTRODYNAMIC RESPONSE OF MULTIPLE QUANTUM WELLS: THE INTERSUBBAND RESONANCE REGION." International Journal of High Speed Electronics and Systems 12, no. 03 (September 2002): 907–24. http://dx.doi.org/10.1142/s0129156402001745.

Full text
Abstract:
The electrodynamic properties of multiple quantum wells (MQWs) associated with intersubband transitions are discussed in context of infrared detectors. The effective medium approach is used for modeling of MQW structures. The usefulness of the concept of the radiative intersubband plasmon-polaritons in the description of the complex behavior of grazing-angle absorption spectra is also demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
8

Jollivet, A., B. Hinkov, S. Pirotta, H. Hoang, S. Derelle, J. Jaeck, M. Tchernycheva, et al. "Short infrared wavelength quantum cascade detectors based on m-plane ZnO/ZnMgO quantum wells." Applied Physics Letters 113, no. 25 (December 17, 2018): 251104. http://dx.doi.org/10.1063/1.5058120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hagston, W. E., T. Stirner, and F. Rasul. "Quantum theory of infrared detectors based on intrasubband transitions in III–V quantum wells." Journal of Applied Physics 89, no. 2 (January 15, 2001): 1087–100. http://dx.doi.org/10.1063/1.1333032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hainey, Mel F., Takaaki Mano, Takeshi Kasaya, Tetsuyuki Ochiai, Hirotaka Osato, Kazuhiro Watanabe, Yoshimasa Sugimoto, et al. "Systematic studies for improving device performance of quantum well infrared stripe photodetectors." Nanophotonics 9, no. 10 (July 4, 2020): 3373–84. http://dx.doi.org/10.1515/nanoph-2020-0095.

Full text
Abstract:
AbstractThe integration of quantum well infrared photodetectors with plasmonic cavities has allowed for demonstration of sensitive photodetectors in the mid-infrared up to room-temperature operating conditions. However, clear guidelines for optimizing device structure for these detectors have not been developed. Using simple stripe cavity detectors as a model system, we clarify the fundamental factors that improve photodetector performance. By etching semiconductor material between the stripes, the cavity resonance wavelength was expected to blue-shift, and the electric field was predicted to strongly increase, resulting in higher responsivity than unetched stripe detectors. Contrary to our predictions, etched stripe detectors showed lower responsivities, indicating surface effects at the sidewalls and reduced absorption. Nevertheless, etching led to higher detectivity due to significantly reduced detector dark current. These results suggest that etched structures are the superior photodetector design, and that appropriate sidewall surface treatments could further improve device performance. Finally, through polarization and incidence angle dependence measurements of the stripe detectors, we clarify how the design of previously demonstrated wired patch antennas led to improved device performance. These results are widely applicable for cavity designs over a broad range of wavelengths within the infrared, and can serve as a roadmap for improving next-generation infrared photodetectors.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum wells. Infrared detectors"

1

Psarakis, Eftychios V. "Simulation of performance of quantum well infrared photocetectors." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Jun%5FPsarakis.pdf.

Full text
Abstract:
Thesis (M.S. in Applied Physics and M.S. in Electrical Engineering)--Naval Postgraduate School, June 2005.
Thesis Advisor(s): Gamani Karunasiri, James Luscombe, Robert Hutchins, John Powers. Includes bibliographical references (p. 129-131). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Lin. "Investigation of a novel multicolor quantum well infrared photodetector and advanced quantum dot infrared photodetectors." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0001249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Touse, Michael P. "Demonstration of a near and mid-infrared detector using multiple step quantum wells." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FTouse.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sim, Koon-hung Steven, and 沈觀洪. "Antimonide based quantum-well and its application in infrared photodetector." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31223345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoang, Vu D. "Charge transport study of InGaAs QWIPs /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FHoang.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, June 2004.
Thesis advisor(s): Nancy M. Haegel, John Powers. Includes bibliographical references (p. 53-54). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
6

Hanson, Nathan A. "Characterization and analysis of a multicolor quantum well infrared photodetector." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FHanson.pdf.

Full text
Abstract:
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, June 2006.
Thesis Advisor(s): Gamani Karunasiri, James H. Luscombe. "June 2006." Includes bibliographical references (p. 49-50). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
7

Lantz, Kevin R. "Two color photodetector using an asymmetric quantum well structure." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FLantz.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Konukbay, Atakan. "Design of a voltage tunable broadband quantum well infrared photodetector." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FKonukbay.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palaferri, Danièle. "Antenna resonators for quantum infrared detectors and fast heterodyne receivers." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC083/document.

Full text
Abstract:
Ce travail de thèse porte sur la conception et la réalisation de méta-structures pour l’amelioration des performances de détecteurs dans les gammes spectrales du moyen infrarouge et du térahertz (THz). Ces méta-structures sont des matrices de résonateurs métalliques qui actent aussi comme antennes, permettant une meilleure collection des photons et un plus fort confinement du champ électrique. Dans ce manuscrit, j’examine les résultats expérimentaux concernant deux photo-detecteurs infrarouges à puits quantiques (QWIP) résonants à une longueur d'onde de 55.5 µm (5.4 THz) et de 8.6 µm, implémentés dans des réseaux d’antennes patch. La responsivité, la détectivité et les performances thermiques des dispositifs en microcavité sont systématiquement comparées au même détecteur fabriqué en géométrie standard ‘mesa’, pour lequel le rayonnement infrarouge est couplé par le substrat. La cohérence du modèle est évaluée en comparant le gain photoconducteur de chaque structure QWIP. Dans le moyen infrarouge, le fonctionnement à température ambiante avec une source de radiation thermique est démontré pour la première fois. De plus, en exploitant la courte durée de vie des porteurs dans la zone de QWIP, une détection hétérodyne à température ambiante a été démontrée jusqu’aux fréquences de quelques GHz, limitée uniquement par la fréquence de coupure du circuit externe. Dans la dernière partie de ce manuscrit, plusieurs perspectives sont discutées concernant des structures de détecteurs quantiques couplés à la géométrie de résonateurs patch et des architectures inspirées des métamateriaux, avec la perspective d’améliorer davantage les performances des photodétécteurs
The present thesis manuscript is about the conception and the realisation of metastructures for the improvement of detector performances in the mid-infrared and terahertz (THz) spectral ranges. These meta-structures are arrays of metal resonators that also act as antennas, allowing a better collection of photons and a stronger confinement of the electric field. In this manuscript, I examine the experimental results regarding a 55.5 µm (5.4 THz) and a 8.6 µm quantum well infrared photodetectors (QWIP), implemented into patch-antennae arrays. The responsivity, the specific detectivity and the thermal performances of the antenna-coupled devices are systematically compared to the same detector processed in standard substrate-coupled ‘mesa’ geometry. In the mid-infrared, the room temperature operation using a thermal radiation source is reported for the first time. Moreover, exploiting the short carrier lifetime in semiconductor quantum wells, a room temperature heterodyne detection is demonstrated, at frequencies up to few GHz, limited only by the cut-off frequency of the external circuit. In the last part of this work, several perspectives are discussed, regarding alternative quantum detector structures coupled to the patch resonators geometry and innovative circuit-like plasmonic architectures, envisioning orders of magnitude improvement in photodetector performances
APA, Harvard, Vancouver, ISO, and other styles
10

Yeo, Hwee Tiong. "High responsivity tunable step quantum well infrared photodetector." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FYeo.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum wells. Infrared detectors"

1

C, Liu H., ed. Quantum well infrared photodetectors: Physics and applications. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The physics of quantum well infrared photodetectors. River Edge, NJ: World Scientific, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schneider, H. Quantum well infrared photodetectors: Physics and applications. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shi, Wei. Quantum well structures for infrared photodetection. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shi, Wei. Quantum well structures for infrared photodetection. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Symposium on Long Wavelength Infrared Detectors and Arrays, Physics and Applications (2nd 1994 Miami Beach, Fla.). Proceedings of the Second International Conference on Long Wavelength Infrared Dectectors and Arrays, Physics and Applications. Pennington, NJ: Electrochemical Society, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Symposium on Long Wavelength Infrared Detectors and Arrays: Physics and Applications (5th 1997 Paris, France). Proceedings of the Fifth International Symposium on Long Wavelength Infrared Detectors and Arrays: Physics and Applications. Pennington, NJ: Electrochemical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

International, Symposium on Long Wavelength Infrared Detectors and Arrays: Physics and Applications (6th 1998 Boston Mass ). Proceedings of the Sixth International Symposium on Long Wavelength Infrared Detectors and Arrays: Physics and Applications. Pennington, New Jersey: Electrochemical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Symposium on Long Wavelength Infrared Detectors and Arrays: Physics and Applications (3rd 1995 Chicago, Ill.). Proceedings of the Third International Symposium on Long Wavelength Infrared Detectors and Arrays: Physics and Applications III. Pennington, NJ: Electrochemical Society, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Electro-optical imaging system performance. 5th ed. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum wells. Infrared detectors"

1

Kane, M. J. "Quantum Well Infra-Red Detectors." In Infrared Detectors and Emitters: Materials and Devices, 423–56. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1607-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sarov, G. A. "Preparation of Quantum Structures: Quantum Well Infrared Detectors." In Fabrication, Properties and Applications of Low-Dimensional Semiconductors, 59–95. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0089-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosencher, E., Ph Bois, and J. Y. Duboz. "The Physics of Quantum Well Infrared Detectors." In Devices Based on Low-Dimensional Semiconductor Structures, 99–113. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0289-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andersson, J. Y., L. Lundqvist, J. Borglind, and D. Haga. "Performance of Grating Coupled AiGaAs/GaAs Quantum Well Infrared Detectors and Detector Arrays." In Quantum Well Intersubband Transition Physics and Devices, 13–27. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dupont, E., P. B. Corkum, P. W. Dooley, H. C. Liu, P. H. Wilson, M. Lamm, M. Buchanan, and Z. R. Wasilewski. "Non-Resonant Two-Photon Absorption in Quantum Well Infrared Detectors." In Quantum Well Intersubband Transition Physics and Devices, 493–500. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schneider, Harald, Stefan Ehret, Eric C. Larkins, John D. Ralston, and Peter Koidl. "A Novel Transport Mechanism for Photovoltaic Quantum well Intersubband Infrared Detectors." In Quantum Well Intersubband Transition Physics and Devices, 187–96. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Little, J. W., and F. J. Towner. "Intersubband Stark-Ladder Transitions in Miniband-Transport Quantum-Well Infrared Detectors." In Quantum Well Intersubband Transition Physics and Devices, 197–206. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Whitney, R. L., F. W. Adams, and K. F. Cuff. "Modeled Performance of Multiple Quantum well Infrared Detectors in IR Sensor Systems." In Quantum Well Intersubband Transition Physics and Devices, 69–85. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whitney, R. L., F. W. Adams, and K. F. Cuff. "Application of Multiple-Quantum-Well Infrared Detectors to Present and Future Infrared Sensor Systems." In NATO ASI Series, 93–103. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3346-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kruck, Peter, Manfred Helm, Günther Bauer, Joachim F. Nützel, and Gerhard Abstreiter. "Normal-Incidence p-Type Si/SiGe Mid-Infrared Detector with Background-Limited Performance up to 85 K." In Intersubband Transitions in Quantum Wells: Physics and Devices, 122–26. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5759-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum wells. Infrared detectors"

1

Gouider, F., Yu B. Vasilyev, J. Konemann, C. Brune, H. Buhmann, P. D. Buckle, and G. Nachtwei. "THz detectors with HgTe and InSb quantum wells." In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andersson, Jan Y., Lennart Lundqvist, Z. F. Paska, Klaus P. Streubel, and Johan Wallin. "Long-wavelength quantum-well infrared detectors based on intersubband transitions in InGaAs/InP quantum wells." In San Diego '92, edited by Bjorn F. Andresen and Freeman D. Shepherd. SPIE, 1993. http://dx.doi.org/10.1117/12.138964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rogalski, A. "Quantum well infrared photoconductors in infrared detectors technology." In SPIE Proceedings, edited by Anatoly M. Filachev and Alexander I. Dirochka. SPIE, 2003. http://dx.doi.org/10.1117/12.517304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Wen-Gang, Liqiu Cui, De Sheng Jiang, Wei Liu, and Chunying Song. "Optically coupled quantum well infrared detectors." In Photonics China '96, edited by William G. D. Frederick, Junhong Su, and Marc Wigdor. SPIE, 1996. http://dx.doi.org/10.1117/12.252084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jollivet, Arnaud, François H. Julien, Borislav Hinkov, Stefano Pirotta, Sophie Derelle, Julien Jaeck, Maria Tchernycheva, et al. "Short infrared wavelength quantum cascade detectors based on non-polar ZnO/ZnMgO quantum wells." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2507768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bois, Philippe F., Eric M. Costard, Jean-Yves Duboz, and Julien Nagle. "Technology of multiple quantum well infrared detectors." In AeroSense '97. SPIE, 1997. http://dx.doi.org/10.1117/12.280395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karunasiri, Gamani. "Recent progress in quantum well infrared detectors." In International Conference on Fiber Optics and Photonics: Selected Papers from Photonics India '96, edited by J. P. Raina and P. R. Vaya. SPIE, 1998. http://dx.doi.org/10.1117/12.345379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yavorskiy, D., S. Chusnutdinow, G. Karczewski, T. Wojtowicz, J. Lusakowski, M. Szola, K. Karpierz, et al. "Terahertz Detectors Based on Plasmonic Excitations in Double CdTe/CdMgTe Quantum Wells." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rogalski, Antoni, and R. Panowicz. "GaAs/AlGaAs quantum well infrared detectors among the other types of semiconductor infrared detectors." In Solid State Crystals: Materials Science and Applications, edited by Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.224981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Hui C. "Recent results on quantum-well intersubband infrared detectors." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Bjorn F. Andresen. SPIE, 1994. http://dx.doi.org/10.1117/12.188631.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum wells. Infrared detectors"

1

Beck, William A., Mark S. Mirotznik, and Thomas S. Faska. Antenna Structures for Optical Coupling in Quantum-Well Infrared Detectors. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada342154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Qing. Far-Infrared (THz) Lasers Using Multiple Quantum Wells. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Little, J. W., S. W. Kennedy, R. P. Leavitt, M. L. Lucas, and K. A. Olver. A New Two-Color Infrared Photodetector Design Using INGAAS/INALAS Coupled Quantum Wells. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada393876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography