Academic literature on the topic 'Quartz microbalance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quartz microbalance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quartz microbalance"

1

Tatsuma, Tetsu, Yoshihito Watanabe, Noboru Oyama, Kaoru Kitakizaki, and Masanori Haba. "Multichannel Quartz Crystal Microbalance." Analytical Chemistry 71, no. 17 (September 1999): 3632–36. http://dx.doi.org/10.1021/ac9904260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dunham, Glen C., Nicholas H. Benson, Danuta Petelenz, and Jiri Janata. "Dual Quartz Crystal Microbalance." Analytical Chemistry 67, no. 2 (January 15, 1995): 267–72. http://dx.doi.org/10.1021/ac00098a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goka, Shigeyoshi, Kiwamu Okabe, Yasuaki Watanabe, and Hitoshi Sekimoto. "Multimode Quartz Crystal Microbalance." Japanese Journal of Applied Physics 39, Part 1, No. 5B (May 30, 2000): 3073–75. http://dx.doi.org/10.1143/jjap.39.3073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Naoi, Katsuhiko, Mary M. Lien, and William H. Smyrl. "Quartz crystal microbalance analysis." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 272, no. 1-2 (November 1989): 273–75. http://dx.doi.org/10.1016/0022-0728(89)87088-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ivanov, A. Yu, and A. M. Plokhotnichenko. "A low-temperature quartz microbalance." Instruments and Experimental Techniques 52, no. 2 (March 2009): 308–11. http://dx.doi.org/10.1134/s0020441209020341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pierce, D. E., Yoonkee Kim, and J. R. Vig. "A temperature insensitive quartz microbalance." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 45, no. 5 (September 1998): 1238–45. http://dx.doi.org/10.1109/58.726449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

K��linger, C., S. Drost, F. Aberl, and H. Wolf. "Quartz crystal microbalance for immunosensing." Fresenius' Journal of Analytical Chemistry 349, no. 5 (1994): 349–54. http://dx.doi.org/10.1007/bf00326598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bizet, K., C. Gabrielli, and H. Perrot. "Immunodetection by Quartz Crystal Microbalance." Applied Biochemistry and Biotechnology 89, no. 2-3 (2000): 139–50. http://dx.doi.org/10.1385/abab:89:2-3:139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Owen, Valerie M. "France — Electrochemical quartz crystal microbalance." Biosensors and Bioelectronics 11, no. 4 (January 1996): xiv. http://dx.doi.org/10.1016/0956-5663(96)82761-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohlsson, Gabriel, Christoph Langhammer, Igor Zorić, and Bengt Kasemo. "A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing." Review of Scientific Instruments 80, no. 8 (August 2009): 083905. http://dx.doi.org/10.1063/1.3202207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quartz microbalance"

1

Yu, George Yang. "Magnetic quartz crystal microbalance." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24615.

Full text
Abstract:
Thesis (Ph.D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Janata, Jiri; Committee Co-Chair: Hunt, William; Committee Member: Allen, Mark; Committee Member: Brand, Oliver; Committee Member: Ferguson, Ian; Committee Member: Lyon, Andrew
APA, Harvard, Vancouver, ISO, and other styles
2

Ozkan, Berrin. "Growth Of Gold Films On Quartz Surfaces For Quartz Crystal Microbalance Application." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612198/index.pdf.

Full text
Abstract:
In this study, we have investigated the effect of substrate temperature, use of adhesive layer, deposition rate, annealing and substrate prebaking on the morphology of gold films deposited onto quartz surfaces. For the film growth, physical vapor deposition methods namely electron beam and thermal depositions have been used. Surface morphology of the films have been characterized with atomic force microscopy. Our aim was to confirm the general trends observed for these parameters in our evaporator system for a limited working range in order to produce gold films which are suitable to be used simultaneously for quartz crystal microbalance and helium atom diffraction measurements. At the end of this study, we confirmed the general trends regarding the effect of these parameters stated in literature except annealing process. We obtained a minimum 170 nm2 atomically flat surface with a roughness value smaller than 0.200 nm by thermal deposition method.
APA, Harvard, Vancouver, ISO, and other styles
3

Narine, Suresh. "A high-resolution quartz microbalance for surface studies." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0004/MQ30227.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ash, Dean Christopher. "The liquid droplet quartz crystal microbalance micro viscometer." Thesis, Lancaster University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423557.

Full text
Abstract:
Presented here is a novel use of the Quartz Crystal Microbalance QCM as a droplet micro-viscometer. The droplet micro-viscometer is so named as it requires only a micro litre of liquid in the form of a droplet in order to determine the liquid viscosity. The crystal operates using the inverse piezoelectric effect and the droplet is applied to one electrode of the freely oscillating crystal. Loading the crystal surface this way produces a frequency change .11 in the oscillating frequency of the crystal, as a function of the liquid viscosity. Monitoring of this frequency allows for determination of the liquid viscosity. Jointly sponsored by the EPSRC and British Nuclear Fuels plc, this research was proposed by BNFL as a way of maintaining tighter control on an important parameter of a solvent extraction nuclear fuel reprocessing process. Research in this area started with the assessment of the QCM to give meaningful results for viscosity from a single droplet of liquid, initially, alcohols whose physical parameters were well documented. Encouraging results prompted further experimentation with tri-n-butyl phosphate or TBP, diluted with odourless kerosene, OK. Wider potential was realised and motor oils and fuel oils were targeted as a potential use for this technology. Motor oil as viscosity is a first indicator of the oil condition/quality and fuel oils specifically in the identification of red diesel when diluted in white diesel.As this technology was intended for use as a sensor it was important, for financial reasons, that the sensor element in contact with the liquid could be cleaned thoroughly enough to allow re-use without degradation of the results produced. A cleaning regime is covered in this work showing that cleaning is feasible but has limits in the amount of times this can successfully be performed before a replacement QCM is required. Some simple experiments on samples of whisky were performed in pursuit of a use in the foodstuffs industry with the institute of food research. These show a possible method of identification but no further work was done on this as other research demanded the time. Results show that the QCM results clearly demonstrate the use of a liquid droplet on one face does produce meaningful results with relation to the viscosity of the liquid. Various diJutions ofTBP and OK are distinguishable from each other as are various dilutions of red diesel in white diesel and oils of varying viscosity. The droplet QCM micro viscometer has the advantage over most other methods of viscometry not in its accuracy of absolute viscosity measurement but in the very small amount of sample liquid needed for test. This is a very desirable factor in situations where repeat sampling of a fixed volume of liquid is required as the samples taken need not significantly reduce the sample volume.
APA, Harvard, Vancouver, ISO, and other styles
5

Mueller, Katherine Elisabeth. "Diffusion in polymers using quartz crystal microbalance techniques /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ojeda, Mota Oscar Ulises. "Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance (EQCM)." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4755/.

Full text
Abstract:
The electrochemical quartz crystal microbalance (EQCM) has been proven an effective mean of monitoring up to nano-scale mass changes related to electrode potential variations at its surface. The principles of operation are based on the converse piezoelectric response of quartz crystals to mass variations on the crystal surface. In this work, principles and operations of the EQCM and piezo-electrodes are discussed. A conductive oxide, ruthenium oxide (RuO2) is a promising material to be used as a diffusion barrier for metal interconnects. Characterization of copper underpotential deposition (UPD) on ruthenium and RuO2 electrodes by means of electrochemical methods and other spectroscopic methods is presented. Copper electrodeposition in platinum and ruthenium substrates is investigated at pH values higher than zero. In pH=5 solutions, the rise in local pH caused by the reduction of oxygen leads to the formation of a precipitate, characterized as posnjakite or basic copper sulfate by means of X-ray electron spectroscopy and X-ray diffraction. The mechanism of formation is studied by means of the EQCM, presenting this technique as a powerful in-situ sensing device.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Meijie. "Electrochemical Quartz Crystal Microbalance (EQCM) studies of electrocatalytic reactions." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/10302.

Full text
Abstract:
This thesis is concerned with the application of the Electrochemical Quartz Crystal Microbalance (EQCM) technique, which measures mass changes at electrode surfaces with exceptional sensitivity (submonolayer amounts), to the study of adsorption processes in electrocatalysis. Systems examined included electro-oxidations of small organic molecules (methanol, formic acid and glucose) at platinum, underpotential deposition (UPD) of metals, and the effect of UPD metal layers on such oxidations. In the first section of this thesis, the underpotential deposition of lead and bismuth has been investigated at Pt electrodes in perchloric acid. It is shown that the mass changes obtained with the EQCM provide additional, unique information about the UPD process which cannot be obtained from the voltammogram because of the partial overlap of the currents associated with removal and development of UPD deposits with those resulting from the oxidation and reduction of the electrode surface respectively. The oxidation of glucose in both acidic and alkaline media as well as the effect of UPD Pb on this oxidation in acid has also been investigated. In acid, the presence of adsorbates derived from glucose was observed in the hydrogen UPD potential region through the removal of features associated with the presence of adsorbed anions in the background electrolyte. A decrease in mass is seen in this potential region as the electrode becomes covered with poisoning species. In the presence of UPD Pb at Pt in acid, a multiple peak structure in the double layer region of potential was observed in the voltammogram at low glucose concentrations and low UPD coverages because the poison formation cannot be suppressed sufficiently. But it is changed to the more familiar single peak as UPD coverage increases. On the other hand, the presence of glucose is seen, from mass measurements, to have a large effect on changes in UPD Pb coverage in acid media. Finally, the investigation was extended to the oxidation of some simple organic molecules namely methanol and formic acid at Pt in acidic media. It is found that accumulation of strongly adsorbed species at the electrode surface during the oxidation of both organic molecules gives rise to a mass decrease, relative to that of the background electrolyte. The oxidative removal of these adsorbates causes a stepped mass increase. Mass responses also reveal that increasing amounts of methanol or formic acid in the electrolyte cause a shifting of the oxidative removal of strongly adsorbed species to more positive potentials, and a significant suppression of the irreversible oxidation of the electrode surface. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
8

Myrskog, Annica. "Self Assembled Monolayers for Quartz Crystal Microbalance based Biosensing." Licentiate thesis, Linköping : Univ., Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drake, Philip. "The development of quartz crystal microbalance based chemical sensors." Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kengne-Momo, Rosine Pélagie. "Mise en oeuvre des surfaces spécifiques en vue de la détection de bactéries pathogènes par diffusion Raman." Phd thesis, Université du Maine, 2011. http://tel.archives-ouvertes.fr/tel-00604221.

Full text
Abstract:
L'objectif de cette thèse est de synthétiser de nouvelles surfaces spécifiques nécessaires à l'immobilisation des biomolécules ; visant à développer à terme un biocapteur pour la détection de pathogènes en industrie agroalimentaire. Cette nouvelle procédure de fonctionnalisation de surface consiste d'une part à greffer des molécules organiques sur un substrat métallique à partir d'une réaction électrochimique et d'autre part de synthétiser un monomère photopolymérisable sur tout type de surface. Ces surfaces sont enfin utilisées pour immobiliser les biomolécules. Ce procédé ainsi développé permet d'éliminer les multiples étapes, l'utilisation excessive de réactifs observés dans les protocoles classiques de fonctionnalisation de surface pour la capture de microorganismes. Deux stratégies de fonctionnalisation ont été investiguées : la polymérisation sur une plaque de platine et le dépôt de monocouche sur une surface d'or. La fonctionnalisation de surfaces ainsi que l'immobilisation de biomolécules ont été caractérisées par la spectroscopie Raman, la microbalance à cristal de quartz, la microscopie à force atomique (AFM) pour le premier et en plus la microscopie à fluorescence pour le second. Les résultats de la fonctionnalisation de surfaces par dépôt de polymère ont montré, une déstabilisation du polymère en présence de l'eau. Afin d'optimiser la synthèse, nous avons travaillé en milieu inerte, sous alumine activée. De plus, on note une large couverture de la zone spectrale des biomolécules par les signaux du polymère ; Pour le dépôt de monocouche, l'on a obtenu une surface très réactive, homogène. La diffusion Raman est la principale technique de caractérisation utilisée. Elle présente l'avantage d'être une méthode de caractérisation physico-chimique non destructive et non invasive. Longtemps délaissée dans les sciences du vivant, cette méthode apparaît maintenant particulièrement prometteuse grâce à un développement récent de spectromètres intégrés performants. La diffusion Raman sur la monocouche déposée montre une intensité accrue des signaux par l'utilisation de la surface d'or et un spectre plus dégagé conduisant à l'identification aisée des biomolécules après fixation. Elle permet non seulement d'identifier les bandes de vibrations de chaque groupement mais aussi la conformation des structures. Les résultats d'immobilisation ont montré que l'accroche des biomolécules sur les surfaces fonctionnalisées était spécifique. La fonctionnalisation de surface d'or par dépôt de monocouche constitue finalement une technique très rapide à mettre en œuvre, peu coûteuse permettant d'ancrer efficacement les biomolécules et peut être utilisée pour diverses applications. La synthèse du monomère photopolymérisable a été abordée et est en cours d'investigation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quartz microbalance"

1

Hynes, Tina Marie. Quartz crystal microbalance measurements of erosion rates. Ottawa: National Library of Canada, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johannsmann, Diethelm. The Quartz Crystal Microbalance in Soft Matter Research. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-07836-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Okahata, Yoshio. Baiosenshingu no tame no suishō hasshinshi maikurobaransu-hō: Genri kara ōyōrei made = Quartz-crystal microbalance for bio-sensing, QCM. Tōkyō-to Bunkyō-ku: Kōdansha, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adarsh, Deepak, and Langley Research Center, eds. Data analysis for lidar and quartz crystal microbalance. [Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

National Aeronautics and Space Administration (NASA) Staff. Quartz Crystal Microbalance Operation and in Situ Calibration. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johannsmann, Diethelm. Quartz Crystal Microbalance in Soft Matter Research: Fundamentals and Modeling. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johannsmann, Diethelm. Quartz Crystal Microbalance in Soft Matter Research: Fundamentals and Modeling. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Johannsmann, Diethelm. The Quartz Crystal Microbalance in Soft Matter Research: Fundamentals and Modeling. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Functional Durability of a Quartz Crystal Microbalance Sensor for the Rapid Detection of Salmonella in Liquids from Poultry Packaging. Storming Media, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Biswas, S. K. Nanotribology. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.13.

Full text
Abstract:
This article provides an overview of nanotribology, with particular emphasis on the scalable regime where contact dimensions, topographical perturbations, confinement scale and molecular dimensions are of the same order. It first defines nanotribology and describes some of the instruments used to assess the physics and chemistry of materials in the contact region, including the atomic force microscope, surface force apparatus, and quartz crystal microbalance. It then considers the interfacial phenomena and interaction forces as well as the microscopic origins of friction, focusing on Amonton's Law at the single asperity, atomistic modelling of adhesion and friction, and analysis of coherence in molecular lubrication by means of the Eyring equation. The article also examines the problem of boundary lubrication in two cases: oil in confinement and self-assembled additives in confinement.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quartz microbalance"

1

Teramura, Yuji, and Madoka Takai. "Quartz Crystal Microbalance." In Compendium of Surface and Interface Analysis, 509–20. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oliveira, Osvaldo N., and Diogo Volpati. "Crystal Quartz Microbalance." In Encyclopedia of Membranes, 498. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Osvaldo N., and Diogo Volpati. "Crystal Quartz Microbalance." In Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1523-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ispas, Adriana, and Andreas Bund. "Electrochemical Quartz Crystal Microbalance." In Encyclopedia of Applied Electrochemistry, 554–68. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Boce, and Qin Wang. "Quartz Crystal Microbalance with Dissipation." In Nanotechnology Research Methods for Foods and Bioproducts, 181–94. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229347.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naal, Zeki, and Rose Mary Zumstein Georgetto Naal. "Quartz Crystal Microbalance in Bioanalysis." In Tools and Trends in Bioanalytical Chemistry, 313–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82381-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lai, Chih-Chi, Shu Jung Chen, and Chih-Hsiung Shen. "Innovative Designs for Quartz Crystal Microbalance." In Intelligent Technologies and Engineering Systems, 861–67. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6747-2_99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tseng, Ming-Chung, I.-Nan Chang, and Yen-Ho Chu. "Quartz Crystal Microbalance in Biomolecular Recognition." In Analysis and Purification Methods in Combinatorial Chemistry, 351–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471531979.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Johansson, Thomas. "Affinity Measurements Using Quartz Crystal Microbalance (QCM)." In Antibody Engineering, 683–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01144-3_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Doblhofer, Karl, and Konrad G. Weil. "Application of the Quartz Microbalance in Electrochemistry." In Methods in Physical Chemistry, 575–601. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527636839.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quartz microbalance"

1

McKeown, Daniel, William E. Corbin, and Marvin G. Fox. "Quartz crystal particle microbalance (QCPM)." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Philip T. C. Chen, Zu-Han Gu, and Alexei A. Maradudin. SPIE, 1999. http://dx.doi.org/10.1117/12.366689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sedlak, Petr, Josef Sikula, Jiri Majzner, Martin Vrnata, Filip Vyslouzil, Premysl Fitl, Dusan Kopecky, and Peter H. Handel. "Noise in quartz crystal microbalance." In 2011 21st International Conference on Noise and Fluctuations (ICNF). IEEE, 2011. http://dx.doi.org/10.1109/icnf.2011.5994336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saad, Nor Aimi, S. K. Zaaba, A. Zakaria, L. M. Kamarudin, Khairunizam Wan, and A. B. Shariman. "Quartz crystal microbalance for bacteria application review." In 2014 2nd International Conference on Electronic Design (ICED). IEEE, 2014. http://dx.doi.org/10.1109/iced.2014.7015849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hanson, Kristi L., Viswanathan Viidyanathan, and Dan V. Nicolau. "Actomyosin motility detection using quartz crystal microbalance." In Microelectronics, MEMS, and Nanotechnology, edited by Dan V. Nicolau. SPIE, 2005. http://dx.doi.org/10.1117/12.643953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Cheng, Jin Zhu, Yanping Yin, and Xiaolong Li. "Design of Quartz Crystal Microbalance with ring electrode." In IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2019. http://dx.doi.org/10.1109/iecon.2019.8927654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Han, Yan-ju, Wen-qiang Zheng, and Dong-lin Su. "Suppressing the frequency jump in quartz crystal microbalance." In 2014 Symposium on Piezoelectricity,Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2014. http://dx.doi.org/10.1109/spawda.2014.6998565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Albyn, K., and H. D. Burns. "Quartz crystal microbalance operation and in situ calibration." In SPIE Optics + Photonics, edited by O. Manuel Uy, Sharon A. Straka, John C. Fleming, and Michael G. Dittman. SPIE, 2006. http://dx.doi.org/10.1117/12.677657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Uy, O. Manuel, Russell P. Cain, Bliss G. Carkhuff, and Andrew M. Lennon. "Sticky quartz crystal microbalance as a particle monitor." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Philip T. C. Chen, Zu-Han Gu, and Alexei A. Maradudin. SPIE, 1999. http://dx.doi.org/10.1117/12.366690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shapiro, Andrew P., and Anthony J. Dean. "Quartz crystal microbalance dewpoint sensor for natural gas." In Photonics East '99, edited by Ronald E. Shaffer and Radislav A. Potyrailo. SPIE, 1999. http://dx.doi.org/10.1117/12.371286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Johnson, Ward L., and Elisabeth Mansfield. "Thermogravimetric analysis with a heated quartz crystal microbalance." In 2012 IEEE International Frequency Control Symposium (FCS). IEEE, 2012. http://dx.doi.org/10.1109/fcs.2012.6243694.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quartz microbalance"

1

Baxamusa, S. Quartz Crystal Microbalance Data. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1033737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schneider, T. W., G. C. Frye, S. J. Martin, R. J. Kottenstette, G. C. Osbourn, J. W. Bartholomew, L. Weisenbach, T. V. Bohuszewicz, and D. H. Doughty. Quartz crystal microbalance (QCM) arrays for solution analysis. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/425293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gordon, Jr., James S. Application of an Electrochemical Quartz Crystal Microbalance to the study of electrocatalytic films. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10185061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Naoi, Katsuhiko, Mary M. Lien, and William H. Smyrl. Quartz Crystal Microbalance Analysis: 1. Evidence of Anion or Cation Insertion into Electropolymerized Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada212304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ostrom, Gregory S., and Daniel A. Buttry. Quartz Crystal Microbalance Studies of Deposition and Dissolution Mechanisms of Electrochromic Films of Diheptylviologen Bromide. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada196010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bajric, Sendin. Quartz Crystal Microbalance: A tool for analyzing loss of volatile compounds, gas sorption, and curing kinetics. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1351175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rubin, Binyamin, James L. Topper, and Azer P. Yalin. Total and Differential Sputter Yields of Boron Nitride Measured by Quartz Crystal Microbalance and Weight Loss (Preprint). Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada473519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dunham, G. C. CRADA with Northwest Instrumentation Systems, Inc. and Pacific Northwest National Laboratory (PNL-070): Dual Quartz Crystal Microbalance Commercialization. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/770349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Green, K. M. Determination of ionization fraction and plasma potential in a dc magnetron sputtering system using a quartz crystal microbalance and a gridded energy analyzer. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/531049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Phillips, Diana Christine. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/883802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography