Journal articles on the topic 'Quasi-brittle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quasi-brittle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
de With, G. "Environment induced failure of brittle and quasi-brittle materials." Materials Chemistry and Physics 75, no. 1-3 (April 2002): 229–34. http://dx.doi.org/10.1016/s0254-0584(02)00067-6.
Full textBerto, Filippo, Liviu Marsavina, Majid R. Ayatollahi, Sergei V. Panin, and Konstantinos I. Tserpes. "Brittle or Quasi-Brittle Fracture of Engineering Materials 2016." Advances in Materials Science and Engineering 2016 (2016): 1–2. http://dx.doi.org/10.1155/2016/7094298.
Full textZhang, Liang, and Wenbin Yu. "Constitutive modeling of damageable brittle and quasi-brittle materials." International Journal of Solids and Structures 117 (June 2017): 80–90. http://dx.doi.org/10.1016/j.ijsolstr.2017.04.002.
Full textKornev, V. M., and A. A. Zinov’ev. "Quasi-brittle rock failure model." Journal of Mining Science 49, no. 4 (July 2013): 576–82. http://dx.doi.org/10.1134/s1062739149040084.
Full textChen, Tielin, Chao Li, and Dingli Zhang. "A Numerical Simulation of Effects of Softening and Heterogeneity on the Stress Intensity Factor of Quasi-Brittle Material." Advances in Mechanical Engineering 6 (January 1, 2014): 586472. http://dx.doi.org/10.1155/2014/586472.
Full textVala, Jiří. "Numerical approaches to the modelling of quasi-brittle crack propagation." Archivum Mathematicum, no. 3 (2023): 295–303. http://dx.doi.org/10.5817/am2023-3-295.
Full textKarpas, E., and F. Kun. "Disorder-induced brittle–to–quasi-brittle transition in fiber bundles." EPL (Europhysics Letters) 95, no. 1 (June 21, 2011): 16004. http://dx.doi.org/10.1209/0295-5075/95/16004.
Full textZhao, Yishu. "Bi-parametric criterion applied to brittle and quasi-brittle fracture." Engineering Fracture Mechanics 49, no. 1 (September 1994): 133–41. http://dx.doi.org/10.1016/0013-7944(94)90117-1.
Full textMalkin, A. I., F. A. Kulikov-Kostyushko, and T. A. Shumikhin. "Statistical kinetics of quasi-brittle fracture." Technical Physics 53, no. 3 (March 2008): 334–42. http://dx.doi.org/10.1134/s1063784208030080.
Full textShah, S. P., and C. Ouyang. "Toughening Mechanisms in Quasi-Brittle Materials." Journal of Engineering Materials and Technology 115, no. 3 (July 1, 1993): 300–307. http://dx.doi.org/10.1115/1.2904222.
Full textDavydova, Marina, Sergey Uvarov, and Vasiliy Chudinov. "Scaling Law of Quasi Brittle Fragmentation." Procedia Materials Science 3 (2014): 580–85. http://dx.doi.org/10.1016/j.mspro.2014.06.096.
Full textLabuz, J. F., and L. Biolzi. "Characteristic strength of quasi-brittle materials." International Journal of Solids and Structures 35, no. 31-32 (November 1998): 4191–203. http://dx.doi.org/10.1016/s0020-7683(97)00309-0.
Full textImachi, Michiya, Hiroki Takahashi, and Satoyuki Tanaka. "Quasi-brittle fracture model in peridynamics." Proceedings of The Computational Mechanics Conference 2019.32 (2019): 281. http://dx.doi.org/10.1299/jsmecmd.2019.32.281.
Full textMalkin, A. I., F. A. Kulikov-Kostyushko, and T. A. Shumikhin. "Statistical kinetics of quasi-brittle fracture." Doklady Physical Chemistry 406, no. 2 (February 2006): 33–37. http://dx.doi.org/10.1134/s0012501606020035.
Full textPelissou, Céline, and Frédéric Lebon. "Asymptotic modeling of quasi-brittle interfaces." Computers & Structures 87, no. 19-20 (October 2009): 1216–23. http://dx.doi.org/10.1016/j.compstruc.2008.12.002.
Full textKarihaloo, B. L., and X. Huang. "Tensile response of quasi-brittle materials." Pure and Applied Geophysics PAGEOPH 137, no. 4 (1991): 461–87. http://dx.doi.org/10.1007/bf00879045.
Full textYu, Zhiwu, Zhi Shan, and Jianfeng Mao. "Fatigue deterioration of quasi-brittle materials." International Journal of Fatigue 118 (January 2019): 185–91. http://dx.doi.org/10.1016/j.ijfatigue.2018.09.006.
Full textRay, Purusattam. "Statistical physics perspective of fracture in brittle and quasi-brittle materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2136 (November 26, 2018): 20170396. http://dx.doi.org/10.1098/rsta.2017.0396.
Full textMudunuru, Maruti Kumar, Nishant Panda, Satish Karra, Gowri Srinivasan, Viet T. Chau, Esteban Rougier, Abigail Hunter, and Hari S. Viswanathan. "Surrogate Models for Estimating Failure in Brittle and Quasi-Brittle Materials." Applied Sciences 9, no. 13 (July 3, 2019): 2706. http://dx.doi.org/10.3390/app9132706.
Full textHeard, P. J., and Peter E. J. Flewitt. "Study of Reticulated Vitreous Carbon Foam as a Quasi-Brittle Material." Key Engineering Materials 665 (September 2015): 229–32. http://dx.doi.org/10.4028/www.scientific.net/kem.665.229.
Full textShen, Xin Pu, and Xiao Chun Wang. "Comparative Studies on Mixed Mode Cohesive Interface Cracks of Quasi-Brittle Materials." Applied Mechanics and Materials 584-586 (July 2014): 1780–88. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.1780.
Full textSkripnyak, Vladimir V., Evgeniya G. Skripnyak, Vladimir A. Skripnyak, Irina K. Vaganova, Anatoly M. Bragov, Andrei K. Lomunov, and Leonid A. Igumnov. "Multiscale Simulation of Porous Quasi-Brittle Ceramics Fracture." Applied Mechanics and Materials 756 (April 2015): 196–204. http://dx.doi.org/10.4028/www.scientific.net/amm.756.196.
Full textSuknev, Sergey. "Nonlocal Criteria for Brittle and Quasi-Brittle Fracture of Geomaterials and Rocks." E3S Web of Conferences 56 (2018): 02003. http://dx.doi.org/10.1051/e3sconf/20185602003.
Full textPetrov, Yuri V., and Vladimir Bratov. "Multiscale Fracture Model for Quasi-Brittle Materials." Applied Mechanics and Materials 82 (July 2011): 160–65. http://dx.doi.org/10.4028/www.scientific.net/amm.82.160.
Full textLiang, Robert Y., and Yuan-Neng Li. "Fracture Energy Determination of Quasi-Brittle Materials." Journal of Materials in Civil Engineering 7, no. 3 (August 1995): 168–73. http://dx.doi.org/10.1061/(asce)0899-1561(1995)7:3(168).
Full textGarroni, Adriana, and Christopher J. Larsen. "Threshold-based Quasi-static Brittle Damage Evolution." Archive for Rational Mechanics and Analysis 194, no. 2 (October 2, 2008): 585–609. http://dx.doi.org/10.1007/s00205-008-0174-9.
Full textChallamel, Noël, Christophe Lanos, and Charles Casandjian. "Creep damage modelling for quasi-brittle materials." European Journal of Mechanics - A/Solids 24, no. 4 (July 2005): 593–613. http://dx.doi.org/10.1016/j.euromechsol.2005.05.003.
Full textOstertag, Claudia P., and ChongKu Yi. "Quasi-brittle behavior of cementitious matrix composites." Materials Science and Engineering: A 278, no. 1-2 (February 2000): 88–95. http://dx.doi.org/10.1016/s0921-5093(99)00588-2.
Full textHack, J. E., S. P. Chen, and D. J. Srolovitz. "A kinetic criterion for quasi-brittle fracture." Acta Metallurgica 37, no. 7 (July 1989): 1957–70. http://dx.doi.org/10.1016/0001-6160(89)90080-1.
Full textMcMahon, C. J., J. A. Pfaendtner, and R. C. Muthiah. "Quasi-static intergranular brittle fracture: Dynamic embrittlement." Czechoslovak Journal of Physics 45, no. 11 (November 1995): 965–78. http://dx.doi.org/10.1007/bf01692013.
Full textOu, Zhuo-Cheng, Yi-Bo Ju, Jing-Yan Li, Zhuo-Ping Duan, and Feng-Lei Huang. "Ubiquitiformal Crack Extension in Quasi-Brittle Materials." Acta Mechanica Solida Sinica 33, no. 5 (July 8, 2020): 674–91. http://dx.doi.org/10.1007/s10338-020-00171-2.
Full textPEERLINGS, R. H. J., R. DE BORST, W. A. M. BREKELMANS, and J. H. P. DE VREE. "GRADIENT ENHANCED DAMAGE FOR QUASI-BRITTLE MATERIALS." International Journal for Numerical Methods in Engineering 39, no. 19 (October 15, 1996): 3391–403. http://dx.doi.org/10.1002/(sici)1097-0207(19961015)39:19<3391::aid-nme7>3.0.co;2-d.
Full textRaina, Arun. "Volume dependent fracture energy and brittle to quasi-brittle transition in intermetallic alloys." Engineering Fracture Mechanics 264 (April 2022): 108312. http://dx.doi.org/10.1016/j.engfracmech.2022.108312.
Full textBerto, F., M. Elices, M. R. Ayatollahi, S. V. Panin, and K. Tserpes. "Brittle or Quasi-Brittle Fracture of Engineering Materials: Recent Developments and New Challenges." Advances in Materials Science and Engineering 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/347485.
Full textSuknev, S. V. "Brittle and Quasi-Brittle Fracture of Geomaterials with Circular Hole in Nonuniform Compression." Journal of Mining Science 56, no. 2 (March 2020): 174–83. http://dx.doi.org/10.1134/s1062739120026625.
Full textKawai, M. "Anisotropic size effect law for notched strength of unidirectional carbon/epoxy laminates – Part 1: Formulation." Journal of Composite Materials 51, no. 5 (July 28, 2016): 593–602. http://dx.doi.org/10.1177/0021998316651481.
Full textSuknev, Sergey V. "THE USE OF NONLOCAL CRITERIA IN FORECASTING FRACTURE OF QUASI-BRITTLE MATERIAL WITH A HOLE UNDER COMPRESSION." Industrial laboratory. Diagnostics of materials 85, no. 4 (May 15, 2019): 50–56. http://dx.doi.org/10.26896/1028-6861-2019-85-4-50-56.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials." Materials 15, no. 20 (October 21, 2022): 7401. http://dx.doi.org/10.3390/ma15207401.
Full textYakin, H. N., M. R. M. Rejab, Nur Hashim, and N. Nikabdullah. "A new quasi-brittle damage model implemented under quasi-static condition using bond-based peridynamics theory for progressive failure." Theoretical and Applied Mechanics, no. 00 (2023): 6. http://dx.doi.org/10.2298/tam230404006y.
Full textQing, Longbang, Yang Li, Yimeng Su, and Guowei Ma. "Maximum resistance rate principle for quasi-brittle fracture." International Journal of Solids and Structures 248 (July 2022): 111654. http://dx.doi.org/10.1016/j.ijsolstr.2022.111654.
Full textQing, Longbang, Yang Li, Yimeng Su, and Guowei Ma. "Maximum resistance rate principle for quasi-brittle fracture." International Journal of Solids and Structures 248 (July 2022): 111654. http://dx.doi.org/10.1016/j.ijsolstr.2022.111654.
Full textQing, Longbang, Yang Li, Yimeng Su, and Guowei Ma. "Maximum resistance rate principle for quasi-brittle fracture." International Journal of Solids and Structures 248 (July 2022): 111654. http://dx.doi.org/10.1016/j.ijsolstr.2022.111654.
Full textSmith, G. E., Peter E. J. Flewitt, and A. Hodgkins. "Modelling Porosity in Quasi-Brittle Reactor Core Graphite." Key Engineering Materials 577-578 (September 2013): 337–40. http://dx.doi.org/10.4028/www.scientific.net/kem.577-578.337.
Full textYu, Rena C., Luis Saucedo, and Gonzalo Ruiz. "A Probabilistic Fatigue Model for Quasi-Brittle Materials." Advanced Materials Research 875-877 (February 2014): 1239–42. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1239.
Full text