To see the other types of publications on this topic, follow the link: Quasi monochromatic.

Journal articles on the topic 'Quasi monochromatic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quasi monochromatic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mokhun, I., Yu Galushko, Ye Kharitonova, and Ju Viktorovskaya. "Energy currents for quasi-monochromatic fields." Ukrainian Journal of Physical Optics 13, no. 3 (2012): 151. http://dx.doi.org/10.3116/16091833/13/3/151/2012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brucoli, Giovanni, Patrick Bouchon, Riad Haïdar, Mondher Besbes, Henri Benisty, and Jean-Jacques Greffet. "High efficiency quasi-monochromatic infrared emitter." Applied Physics Letters 104, no. 8 (2014): 081101. http://dx.doi.org/10.1063/1.4866342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Galeana-Sánchez, Hortensia, and Rocío Rojas-Monroy. "Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments." Discussiones Mathematicae Graph Theory 28, no. 2 (2008): 285. http://dx.doi.org/10.7151/dmgt.1406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Galeana-Sánchez, Hortensia, Rocío Rojas-Monroy, and B. Zavala. "Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs." Discussiones Mathematicae Graph Theory 30, no. 4 (2010): 545. http://dx.doi.org/10.7151/dmgt.1512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahad, Lutful, Ismo Vartiainen, Tero Setälä, Ari T. Friberg, and Jari Turunen. "Quasi-monochromatic modes of quasi-stationary, pulsed scalar optical fields." Journal of the Optical Society of America A 34, no. 9 (2017): 1469. http://dx.doi.org/10.1364/josaa.34.001469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Diop, Babacar, and Vu Thien Binh. "Quasi-monochromatic field-emission x-ray source." Review of Scientific Instruments 83, no. 9 (2012): 094704. http://dx.doi.org/10.1063/1.4752406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baldelli, P., A. Taibi, A. Tuffanelli, and M. Gambaccini. "Quasi-monochromatic x-rays for diagnostic radiology." Physics in Medicine and Biology 48, no. 22 (2003): 3653–65. http://dx.doi.org/10.1088/0031-9155/48/22/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Uesugi, Kentaro, Toshihiro Sera, and Naoto Yagi. "Fast tomography using quasi-monochromatic undulator radiation." Journal of Synchrotron Radiation 13, no. 5 (2006): 403–7. http://dx.doi.org/10.1107/s0909049506023466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Savran, D., and J. Isaak. "Self-absorption with quasi-monochromatic photon beams." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 899 (August 2018): 28–31. http://dx.doi.org/10.1016/j.nima.2018.05.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Egorov, Yuriy, and Alexander Rubass. "Spin-Orbit Coupling in Quasi-Monochromatic Beams." Photonics 10, no. 3 (2023): 305. http://dx.doi.org/10.3390/photonics10030305.

Full text
Abstract:
We investigate the concept that the value of the spin-orbit coupling is the energy efficiency of energy transfer between orthogonal components. The energy efficiency changes as the beam propagates through the crystal. For a fundamental Gaussian beam, its value cannot exceed 50%, while the energy efficiency for Hermite–Gaussian and Laguerre–Gaussian beams of higher orders of the complex argument can reach a value close to 100%. For Hermite–Gauss and Laguerre–Gauss beams of higher orders of real argument, the maximum energy efficiency can only slightly exceed 50%. It is shown that zero-order Bes
APA, Harvard, Vancouver, ISO, and other styles
11

Pekur, D. V., V. M. Sorokin, Yu E. Nikolaenko, І. V. Pekur, and M. A. Minyaylo. "Determination of optical parameters in quasi-monochromatic LEDs for implementation of lighting systems with tunable correlated color temperature." Semiconductor Physics, Quantum Electronics and Optoelectronics 25, no. 3 (2022): 303–14. http://dx.doi.org/10.15407/spqeo25.03.303.

Full text
Abstract:
The paper proposes a new method for determining the optimal peak wavelengths of quasi-monochromatic LEDs, when they are combined with white broadband high-power LEDs in lighting systems with tunable correlated color temperature (CCT). Simulation of the resulting radiation spectrum was used to demonstrate the possibility to use the developed method in LED lighting systems with tunable parameters of the synthesized light. The study enables to determine the peak wavelengths of quasi-monochromatic LEDs (474 and 600 nm), which, when being combined with a basic white LED (Cree CMA 2550), allow contr
APA, Harvard, Vancouver, ISO, and other styles
12

Yoneyama, Akio, Satoshi Takeya, Thet Thet Lwin, et al. "Advanced X-ray imaging at beamline 07 of the SAGA Light Source." Journal of Synchrotron Radiation 28, no. 6 (2021): 1966–77. http://dx.doi.org/10.1107/s1600577521009553.

Full text
Abstract:
The SAGA Light Source provides X-ray imaging resources based on high-intensity synchrotron radiation (SR) emitted from the superconducting wiggler at beamline 07 (BL07). By combining quasi-monochromatic SR obtained by the newly installed water-cooled metal filter and monochromatic SR selected by a Ge double-crystal monochromator (DCM) with high-resolution lens-coupled X-ray imagers, fast and low-dose micro-computed tomography (CT), fast phase-contrast CT using grating-based X-ray interferometry, and 2D micro-X-ray absorption fine structure analysis can be performed. In addition, by combining m
APA, Harvard, Vancouver, ISO, and other styles
13

Hasegawa, Hiroaki, and Masanori Sato. "Acquisition of Quasi-Monochromatic Dual-Energy in a Microfocus X-ray Generator and Development of Applied Technology." Diagnostics 9, no. 1 (2019): 27. http://dx.doi.org/10.3390/diagnostics9010027.

Full text
Abstract:
In regenerative medicine, evaluation of bone mineral density using a microfocus X-ray generator could eventually be used to determine the degree of bone tissue regeneration. To evaluate bone mineral density against regenerated bone material, two low-energy X-rays are necessary. Herein, the acquisition of quasi-monochromatic, dual-energy soft X-ray and the subsequent medical application were examined using the K-absorption edges of two types of metal filters (i.e., zirconium and tin) in a microfocus X-ray generator. Investigation of the optimal tube voltage and filter thickness to form a quasi-
APA, Harvard, Vancouver, ISO, and other styles
14

Karataev, P., G. Naumenko, A. Potylitsyn, M. Shevelev, and K. Artyomov. "Observation of quasi-monochromatic resonant Cherenkov diffraction radiation." Results in Physics 33 (February 2022): 105079. http://dx.doi.org/10.1016/j.rinp.2021.105079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang Rui-Rong, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, and Wang Wei. "X-ray source with quasi-monochromatic parallel beam." Acta Physica Sinica 67, no. 24 (2018): 240701. http://dx.doi.org/10.7498/aps.67.20180861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Domanski, A. W., D. Budaszewski, R. Cieslak, and T. R. Wolinski. "Bandwidth Measurement Method for Quasi-Monochromatic Light Sources." IEEE Transactions on Instrumentation and Measurement 58, no. 8 (2009): 2606–10. http://dx.doi.org/10.1109/tim.2009.2015637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Omer, Mohamed, Toshiyuki Shizuma та Ryoichi Hajima. "Compton scattering of quasi-monochromatic γ-ray beam". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 951 (січень 2020): 162998. http://dx.doi.org/10.1016/j.nima.2019.162998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Migliardo, M. "Quasi-monochromatic wave modulation in anisotropic dielectric media." International Journal of Non-Linear Mechanics 30, no. 6 (1995): 879–85. http://dx.doi.org/10.1016/0020-7462(95)00029-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Le Quéau, D., and A. Roux. "Quasi-monochromatic wave-particle interactions in magnetospheric plasmas." Solar Physics 111, no. 1 (1987): 59–80. http://dx.doi.org/10.1007/bf00145441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Westphal, Maximillian S., Sara N. Lim, Sultana N. Nahar, Enam Chowdhury, and Anil K. Pradhan. "Broadband, monochromatic and quasi-monochromatic x-ray propagation in multi-Zmedia for imaging and diagnostics." Physics in Medicine & Biology 62, no. 16 (2017): 6361–78. http://dx.doi.org/10.1088/1361-6560/aa7cd6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nikitin, P. A. "Backward collinear acousto-optic diffraction of quasi-monochromatic radiation." Journal of Optical Technology 86, no. 3 (2019): 133. http://dx.doi.org/10.1364/jot.86.000133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jost, Gregor, Tristan Mensing, Sven Golfier, et al. "Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography." Medical Physics 36, no. 6Part1 (2009): 2107–17. http://dx.doi.org/10.1118/1.3125137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Budagovsky, A. V., N. V. Solovykh, O. N. Budagovskaya, and I. A. Budagovsky. "Cell response to quasi-monochromatic light with different coherence." Quantum Electronics 45, no. 4 (2015): 351–57. http://dx.doi.org/10.1070/qe2015v045n04abeh015594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Baldelli, P., M. Gambaccini, A. Taibi, A. Tuffanelli, and C. Gilardoni. "Development of a quasi-monochromatic source for mammography applications." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 518, no. 1-2 (2004): 386–88. http://dx.doi.org/10.1016/j.nima.2003.11.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Onorato, M., D. Ambrosi, A. R. Osborne, and M. Serio. "Interaction of two quasi-monochromatic waves in shallow water." Physics of Fluids 15, no. 12 (2003): 3871–74. http://dx.doi.org/10.1063/1.1622394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Vartiainen, Ismo, Jani Tervo, and Markku Kuittinen. "Depolarization of quasi-monochromatic light by thin resonant gratings." Optics Letters 34, no. 11 (2009): 1648. http://dx.doi.org/10.1364/ol.34.001648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sato, E., Y. Hayasi, R. Germer, et al. "Quasi-monochromatic parallel radiography utilizing a computed radiography system." Journal of Electron Spectroscopy and Related Phenomena 137-140 (July 2004): 705–11. http://dx.doi.org/10.1016/j.elspec.2004.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jost, Gregor, Sven Golfier, Ruediger Lawaczeck, et al. "Imaging-therapy computed tomography with quasi-monochromatic X-rays." European Journal of Radiology 68, no. 3 (2008): S63—S68. http://dx.doi.org/10.1016/j.ejrad.2008.04.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Broll, N. "Fundamental coefficient method applied to a quasi-monochromatic excitation." X-Ray Spectrometry 19, no. 4 (1990): 193–95. http://dx.doi.org/10.1002/xrs.1300190408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pekur, I. V. "SPECTRAL PARAMETERS OF QUASI-MONOCHROMATIC LEDS FOR LIGHTING SYSTEMS WITH TUNABLE SPECTRAL COMPOSITION." Optoelektronìka ta napìvprovìdnikova tehnìka 57 (December 30, 2022): 145–51. http://dx.doi.org/10.15407/iopt.2022.57.145.

Full text
Abstract:
In this paper, the influence on the parameters of the synthesized light of the full width at the half-height level of the spectra of additional quasi-monochromatic LEDs for LED clusters with adjustable correlated color temperature built on the basis of a combination of white broadband high-power LEDs and quasi-monochromatic LEDs with peak wavelengths of 474 and 600 nm is considered. It was shown that the construction of LED clusters with adjustable CCT with an increase in the full width at half the height of the spectrum of quasi-monochromatic LEDs increases the CIE Ra of the resulting radiati
APA, Harvard, Vancouver, ISO, and other styles
31

Mikula, P., and M. Vrána. "New type of versatile neutron diffractometer with a double-crystal monochromator system." Powder Diffraction 30, S1 (2014): S41—S46. http://dx.doi.org/10.1017/s0885715614001201.

Full text
Abstract:
Properties of a special double-crystal (DC) monochromator employing bent-perfect crystals of Si in (1, −1) and (n, −m) settings are presented. The first monochromator was the bent Si(111) crystal (4 mm thickness) and the second one was in the form of a sandwich consisting of two bent Si(111) and Si(220) slabs (2 and 1.3 mm thickness, respectively). It has been found that by a simple exchange of diffraction conditions on the second monochromator one can use either Si(111) + Si(111) bent crystals in (1, −1) setting providing good luminosity and worse diffractometer resolution or Si(111) + Si(220
APA, Harvard, Vancouver, ISO, and other styles
32

Choi, Cheong R., M. H. Woo, P. H. Yoon, D. Y. Lee, and K. S. Park. "Anomalous Proton Velocity Diffusion by Quasi-monochromatic Kinetic Alfvén Waves." Astrophysical Journal 910, no. 2 (2021): 140. http://dx.doi.org/10.3847/1538-4357/abe859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bugai, A. N., and V. A. Khaliapin. "Behavior of quasi-monochromatic rectanglar pulses in a nonlinear medium." Bulletin of the Russian Academy of Sciences: Physics 79, no. 12 (2015): 1464–67. http://dx.doi.org/10.3103/s1062873815120102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hoover, Brian G. "Comparison of field correlations in multiply scattered quasi-monochromatic light." Applied Optics 39, no. 22 (2000): 3978. http://dx.doi.org/10.1364/ao.39.003978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nguyen, Thanhhai, Xun Lu, Chang Jun Lee, et al. "A mirror for lab-based quasi-monochromatic parallel x-rays." Review of Scientific Instruments 85, no. 9 (2014): 093110. http://dx.doi.org/10.1063/1.4896232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Baldelli, P., A. Taibi, A. Tuffanelli, M. C. Gilardoni, and M. Gambaccini. "A prototype of a quasi-monochromatic system for mammography applications." Physics in Medicine and Biology 50, no. 10 (2005): 2225–40. http://dx.doi.org/10.1088/0031-9155/50/10/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Iwatani, S., J. Kaneko, J. Hasegawa, et al. "Imaging by using proton-induced quasi-monochromatic X-ray emission." Science and Technology of Advanced Materials 5, no. 5-6 (2004): 597–602. http://dx.doi.org/10.1016/j.stam.2004.03.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Oliva, P., B. Golosio, S. Stumbo, and M. Carpinelli. "Advantages of quasi-monochromatic X-ray sources in absorption mammography." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, no. 1 (2009): S106—S108. http://dx.doi.org/10.1016/j.nima.2009.05.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Baier, V. N., and V. M. Katkov. "Transition radiation as a source of quasi-monochromatic X-rays." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 439, no. 1 (2000): 189–98. http://dx.doi.org/10.1016/s0168-9002(99)00825-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Biswas, Anjan. "Quasi–monochromatic dynamics of optical solitons having quadratic–cubic nonlinearity." Physics Letters A 384, no. 21 (2020): 126528. http://dx.doi.org/10.1016/j.physleta.2020.126528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jia, Zi-xun, Yong Shuai, Jia-hui Zhang, and He-ping Tan. "Mediating surface mode for intensive quasi-monochromatic evanescent wave tunneling." Journal of Quantitative Spectroscopy and Radiative Transfer 202 (November 2017): 58–63. http://dx.doi.org/10.1016/j.jqsrt.2017.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gevorgyan, L. A., and P. M. Pogosyan. "Quasi-monochromatic hard radiation in a spiral undulator with medium." Radiation Effects 91, no. 3-4 (1986): 275–81. http://dx.doi.org/10.1080/00337578608227603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shapiro, Jeffrey H. "Quasi-monochromatic bound on ultrashort light-pulse transmission through fog." Optics Letters 36, no. 17 (2011): 3356. http://dx.doi.org/10.1364/ol.36.003356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lewis, C. L. S., and J. McGlinchey. "Quasi-monochromatic, projection radiography of dense laser driven spherical targets." Optics Communications 53, no. 3 (1985): 179–86. http://dx.doi.org/10.1016/0030-4018(85)90327-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shan, Lican, Christian Mazelle, Karim Meziane, et al. "Characteristics of quasi‐monochromatic ULF waves in the Venusian foreshock." Journal of Geophysical Research: Space Physics 121, no. 8 (2016): 7385–97. http://dx.doi.org/10.1002/2016ja022876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Леунов, В. И., Л. Б. Прикупец, Т. А. Терешонкова, and М. Н. АльРукаби. "The effect of Phytopyramide lighting systems on the production and reaction of tomato hybrids to different spectra." Kartofel` i ovoshi, no. 7 (July 7, 2023): 23–27. http://dx.doi.org/10.25630/pav.2023.71.72.003.

Full text
Abstract:
Цель исследования: сравнительная оценка гибридов томатов при выращивании на установке «Фитопирамида» при естественном и искусственном освещении и различных световых спектрах. Опыт 1 проводили в 2020 году во ВНИИО – филиале ФГБНУ ФНЦО (Московская область) в поликарбонатной теплице на многоярусной вегетационной трубной установке (МВТУ) «Фитопирамида». Были отобраны два крупноплодных гибрида томата F1Розанна и F1 Пламенный – детерминантного типа роста, отличающиеся по массе, окраске плода и скороспелости, селекции Агрофирмы «Поиск» (Россия). Опыт 2 с разными вариантами освещения проводили в 2021
APA, Harvard, Vancouver, ISO, and other styles
47

Lai, Chang, Wei Li, Jiyao Xu, et al. "Extraction of Quasi-Monochromatic Gravity Waves from an Airglow Imager Network." Atmosphere 11, no. 6 (2020): 615. http://dx.doi.org/10.3390/atmos11060615.

Full text
Abstract:
An algorithm has been developed to isolate the gravity waves (GWs) of different scales from airglow images. Based on the discrete wavelet transform, the images are decomposed and then reconstructed in a series of mutually orthogonal spaces, each of which takes a Daubechies (db) wavelet of a certain scale as a basis vector. The GWs in the original airglow image are stripped to the peeled image reconstructed in each space, and the scale of wave patterns in a peeled image corresponds to the scale of the db wavelet as a basis vector. In each reconstructed image, the extracted GW is quasi-monochrom
APA, Harvard, Vancouver, ISO, and other styles
48

Розанов, Н. Н. "Квазиоптическое уравнение в средах со слабым поглощением". Журнал технической физики 127, № 8 (2019): 283. http://dx.doi.org/10.21883/os.2019.08.48042.122-19.

Full text
Abstract:
AbstractThe form of a quasi-optical equation for a beam of monochromatic radiation propagating through a layer of a weakly absorbing linear medium is analyzed. It is concluded that the standard form of this equation should be modified using an “effective diffusion coefficient.”
APA, Harvard, Vancouver, ISO, and other styles
49

Freimanis, Juris. "Polarized radiative transfer equation in some nontrivial coordinate systems." Proceedings of the International Astronomical Union 7, S283 (2011): 360–61. http://dx.doi.org/10.1017/s1743921312011428.

Full text
Abstract:
AbstractExplicit expressions for the differential operator of stationary quasi-monochromatic polarized radiative transfer equation in Euclidean space with piecewise homogeneous real part of the effective refractive index are obtained in circular cylindrical, prolate spheroidal, elliptic conical, classic toroidal and simple toroidal coordinate system.
APA, Harvard, Vancouver, ISO, and other styles
50

Sugawa, Masao. "Nonlinear interaction of obliquely propagating Bernstein waves with electrons in a plasma." Journal of Plasma Physics 40, no. 1 (1988): 87–96. http://dx.doi.org/10.1017/s0022377800013131.

Full text
Abstract:
We obtain analytical expression for the interaction of obliquely propagating Bernstein waves with electrons by using the monochromatic wave approximation for quasi-linear theory in a weakly turbulent plasma. A numerical analysis is also carried out. The waves show initially strong damping and irregular amplitude oscillation, and the electron velocity distribution shows a variation corresponding to one of the waves. These are results of the energy exchange between waves and electrons. Despite the use of the monochromatic wave approximation, strongly scattering electrons with a broad velocity sp
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!