Academic literature on the topic 'Quasigroup'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quasigroup.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quasigroup"

1

Khan, Amir, Muhammad Shah, Asif Ali, and Faiz Muhammad. "On Commutative Quasigroup." International Journal of Algebra and Statistics 3, no. 2 (August 22, 2014): 42. http://dx.doi.org/10.20454/ijas.2014.855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khudzaifah, Muhammad. "Aplikasi quasigroup dalam pembentukan kunci rahasia pada algoritma hibrida." CAUCHY 3, no. 2 (May 10, 2014): 55. http://dx.doi.org/10.18860/ca.v3i2.2573.

Full text
Abstract:
Pada artikel ini dibahas penerapan quasigrup di bidang kriptografi. Didefinisikan Suatu operasi quasigroup order 𝑝−1 sehingga bisa membentuk suatu algoritma kriptografi yang disebut sebagai quasigrup cipher, quasigrup cipher merupakan algoritma kriptografi simetris. Algoritma kriptografi simetris memiliki sistem keamanan lemah karena kunci yang digunakan untuk proses enciphering sama dengan kunci yang digunakan untuk proses deciphering. Sehingga pada artikel ini algoritma quasigroup cipher dimodifikasi dengan menggabungkannya dengan algoritma RSA menjadi suatu algoritma hibrida yang memiki dua tingkatan kunci
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Jonathan D. H. "Entropy, character theory and centrality of finite quasigroups." Mathematical Proceedings of the Cambridge Philosophical Society 108, no. 3 (November 1990): 435–43. http://dx.doi.org/10.1017/s0305004100069334.

Full text
Abstract:
AbstractThe paper introduces concepts of entropy and asymptotic entropy for finite quasigroups. A quasigroup is abelian if and only if its entropy is maximal. It is a З-quasigroup if and only if its asymptotic entropy is maximal.
APA, Harvard, Vancouver, ISO, and other styles
4

Kolar-Begović, Zdenka. "An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup." KoG, no. 21 (2017): 3–5. http://dx.doi.org/10.31896/k.21.8.

Full text
Abstract:
A golden section quasigroup or shortly a GS-quasigroup is an idempotent quasigroup which satises the identities a\dot (ab \dot c) \dot c = b; a\dot (a \dot bc) \dot c = b. The concept of a GS-quasigroup was introduced by VOLENEC. A number of geometric concepts can be introduced in a general GS-quasigroup by means of the binary quasigroup operation. In this paper, it is proved that for any affine regular octahedron there is an affine regular icosahedron which is inscribed in the given affine regular octahedron. This is proved by means of the identities and relations which are valid in a general GS-quasigrup. The geometrical presentation in the GS-quasigroup C(\frac{1}{2} (1 +\sqrt{5})) suggests how a geometrical consequence may be derived from the statements proven in a purely algebraic manner.
APA, Harvard, Vancouver, ISO, and other styles
5

Bennett, F. E. "Quasigroup Identities and Mendelsohn Designs." Canadian Journal of Mathematics 41, no. 2 (April 1, 1989): 341–68. http://dx.doi.org/10.4153/cjm-1989-017-0.

Full text
Abstract:
A quasigroup is an ordered pair (Q, •), where Q is a set and (•) is a binary operation on Q such that the equations ax — b and ya — b are uniquely solvable for every pair of elements a,b in Q. It is well-known (see, for example, [11]) that the multiplication table of a quasigroup defines a Latinsquare, that is, a Latin square can be viewed as the multiplication table of a quasigroup with the headline and sideline removed. We are concerned mainly with finite quasigroups in this paper. A quasigroup (Q, •) is called idempotent if the identity x2 = x holds for all x in Q.
APA, Harvard, Vancouver, ISO, and other styles
6

Slaminková, Ivana, and Milan Vojvoda. "Cryptanalysis of a hash function based on isotopy of quasigroups." Tatra Mountains Mathematical Publications 45, no. 1 (December 1, 2010): 137–49. http://dx.doi.org/10.2478/v10127-010-0010-0.

Full text
Abstract:
ABSTRACT This paper deals with cryptanalysis of one hash function based on isotopy of quasigroups [J. Dvorský, E. Ochodková, V. Snášel: Hash functionbased on quasigroups, in: Proc. of Mikulàšska kryptobesídka, Praha, 2001, pp. 27-36. (In Czech)], [J. Dvorský, E. Ochodková, V. Snášel: Hash functionsbased on large quasigroups, in: Proc. of Velikonoční kryptologie, Brno, 2002, pp. 1-8. (In Czech)]. Our work enhances the paper [M. Vojvoda: Cryptanalysisof one hash function based on quasigroup, Tatra Mt. Math. Publ. 29 (2004), 173-181], where the simplified studied hash function, based only on the quasigroup of modular subtraction, was successfully cryptanalysed. In this paper we show how to construct collisions, 2nd preimages, and also preimages for the full hash function based on isotopy of quasigroups.
APA, Harvard, Vancouver, ISO, and other styles
7

Dudek, Wieslaw A., and Robert A. R. Monzo. "Pentagonal quasigroups, their translatability and parastrophes." Open Mathematics 19, no. 1 (January 1, 2021): 184–97. http://dx.doi.org/10.1515/math-2021-0004.

Full text
Abstract:
Abstract Any pentagonal quasigroup Q Q is proved to have the product x y = φ ( x ) + y − φ ( y ) xy=\varphi \left(x)+y-\varphi (y) , where ( Q , + ) \left(Q,+) is an Abelian group, φ \varphi is its regular automorphism satisfying φ 4 − φ 3 + φ 2 − φ + ε = 0 {\varphi }^{4}-{\varphi }^{3}+{\varphi }^{2}-\varphi +\varepsilon =0 and ε \varepsilon is the identity mapping. All Abelian groups of order n < 100 n\lt 100 inducing pentagonal quasigroups are determined. The variety of commutative, idempotent, medial groupoids satisfying the pentagonal identity ( x y ⋅ x ) y ⋅ x = y \left(xy\cdot x)y\cdot x=y is proved to be the variety of commutative, pentagonal quasigroups, whose spectrum is { 1 1 n : n = 0 , 1 , 2 , … } \left\{1{1}^{n}:n=0,1,2,\ldots \right\} . We prove that the only translatable commutative pentagonal quasigroup is x y = ( 6 x + 6 y ) ( mod 11 ) xy=\left(6x+6y)\left({\rm{mod}}\hspace{0.33em}11) . The parastrophes of a pentagonal quasigroup are classified according to well-known types of idempotent translatable quasigroups. The translatability of a pentagonal quasigroup induced by the group Z n {{\mathbb{Z}}}_{n} and its automorphism φ ( x ) = a x \varphi \left(x)=ax is proved to determine the value of a a and the range of values of n n .
APA, Harvard, Vancouver, ISO, and other styles
8

Shi, Gui-Qi, Xiao-Li Fang, and Blas Torrecillas. "Generalized Yetter–Drinfeld (quasi)modules and Yetter–Drinfeld–Long bi(quasi)modules for Hopf quasigroups." Journal of Algebra and Its Applications 18, no. 02 (February 2019): 1950034. http://dx.doi.org/10.1142/s0219498819500348.

Full text
Abstract:
As generalizations of Yetter–Drinfeld module over a Hopf quasigroup, we introduce the notions of Yetter–Drinfeld–Long bimodule and generalize the Yetter–Drinfeld module over a Hopf quasigroup in this paper, and show that the category of Yetter–Drinfeld–Long bimodules [Formula: see text] over Hopf quasigroups is braided, which generalizes the results in Alonso Álvarez et al. [Projections and Yetter–Drinfeld modules over Hopf (co)quasigroups, J. Algebra 443 (2015) 153–199]. We also prove that the category of [Formula: see text] having all the categories of generalized Yetter–Drinfeld modules [Formula: see text], [Formula: see text] as components is a crossed [Formula: see text]-category.
APA, Harvard, Vancouver, ISO, and other styles
9

Volenec, Vladimir, Zdenka Kolar-Begović, and Ružica Kolar-Šuper. "Affine Fullerene C60in a GS-Quasigroup." Journal of Applied Mathematics 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/950103.

Full text
Abstract:
It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroupC(1/2(1+5)).
APA, Harvard, Vancouver, ISO, and other styles
10

Damm, H. Michael. "Half quasigroups and generalized quasigroup orthogonality." Discrete Mathematics 311, no. 2-3 (February 2011): 145–53. http://dx.doi.org/10.1016/j.disc.2010.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quasigroup"

1

Walker, DayVon L. "Power Graphs of Quasigroups." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7984.

Full text
Abstract:
We investigate power graphs of quasigroups. The power graph of a quasigroup takes the elements of the quasigroup as its vertices, and there is an edge from one element to a second distinct element when the second is a left power of the first. We first compute the power graphs of small quasigroups (up to four elements). Next we describe quasigroups whose power graphs are directed paths, directed cycles, in-stars, out-stars, and empty. We do so by specifying partial Cayley tables, which cannot always be completed in small examples. We then consider sinks in the power graph of a quasigroup, as subquasigroups give rise to sinks. We show that certain structures cannot occur as sinks in the power graph of a quasigroup. More generally, we show that certain highly connected substructures must have edges leading out of the substructure. We briefly comment on power graphs of Bol loops.
APA, Harvard, Vancouver, ISO, and other styles
2

Cowhig, Thomas Philip. "Constructing monogenic quasigroups with specified properties." Thesis, Birkbeck (University of London), 2009. http://bbktheses.da.ulcc.ac.uk/12/.

Full text
Abstract:
A monogenic quasigroup is one generated by a single element, and as such is not just non-associative but in general non power associative. We show that monogenic quasigroups or loops with various specified characteristics can exist, by demonstrating constructions and by giving examples. This often involves completing an associated partial latin square, or demonstrating that a completion is possible. It is shown that for every order n ≥ 4 there are monogenic quasigroups generated by each of any m ≤ n of their elements, and similarly for monogenic loops (n ≥ 6 , 2 ≤ m ≤ n −1). Any element in a quasigroup must have its powers unambiguous and distinct (called good) up to some degree j ≥ 2, and unambiguous but not necessarily distinct (called clear) up to some degree k ≥ j. The conditions for the existence of a quasigroup of order n having a generator with a good j th and clear k th power are determined. A monogenic quasigroup may be said to be g-good if every element has a good g th power. An algorithm for finding examples based on diagonally cyclic latin squares is developed, and a computer program used to find comprehensive solutions for g ≤ 16 and odd orders n ≤ 95 (and patchily to g = 17, n = 111), with particular reference to the lowest n affording a solution for any g. A maximally non power associative quasigroup has every element with all its bracketings up to some length distinct. A diagonally cyclic quasigroup of order 23 with all 23 products of length ≤ 5 distinct for every element is displayed,as is one of order 63 with 63 of the 65 bracketings up to length 6 distinct for each element. Properties of direct products of monogenic quasigroups, and the significance of parastrophy and isotopy, are considered. The existence or not of monogenic versions of particular types of quasigroups and loops (for example, totally symmetric, inverse property, entropic, Bol and Moufang, among others) is also explored.
APA, Harvard, Vancouver, ISO, and other styles
3

Klim, Jennifer. "Nonassociative constructions from inverse property quasigroups." Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1295.

Full text
Abstract:
The notion of a Hopf algebra has been generalized many times by weakening certain properties; we introduce Hopf quasigroups which weaken the associativity of the algebra. Hopf quasigroups are coalgebras with a nonassociative product satisfying certain conditions with the antipode re ecting the properties of classical inverse property quasigroups. The de nitions and properties of Hopf quasigroups are dualized to obtain a theory of Hopf coquasigroups, or `algebraic quasigroups'. In this setting we are able to study the coordinate algebra over a quasigroup, and in particular the 7-sphere. One particular class of Hopf quasigroups is obtained by taking a bicrossproduct of a subgroup and a set of coset representatives, in much the same way that Hopf algebras are obtained from matched pairs of groups. Through this construction the bicrossproduct can also be given the structure of a quasi-Hopf algebra. We adapt the theory of Hopf algebras to Hopf (co)quasigroups, de ning integrals and Fourier transformations on these objects. This leads to the expected properties of separable and Frobenius Hopf coquasigroups and notions of (co)semisimplicity.
APA, Harvard, Vancouver, ISO, and other styles
4

Guy, Jean-Pierre. "Groupes isomorphes au groupe de multiplication d'un quasigroupe." Toulouse 3, 1993. http://www.theses.fr/1993TOU30015.

Full text
Abstract:
Probleme: soit g un groupe abstrait, est-il possible de construire un quasigroupe dont le groupe de multiplication est isomorphe a g? une reponse negative sera apportee pour les groupes hamiltoniens, de heineken-mohamed, des quaternions generalises et dicycliques d'ordre 4n. Une reponse positive sera apportee pour les groupes symetriques, alternes, diedraux, les groupes de mathieu de degre 11, 12 et 23, les groupes lineaires generaux et projectifs lineaires, certains p-groupes (semi-diedraux,. . . ), les groupes de coxeter de type bn. Le probleme pose pouvant se ramener a l'etude des groupes de multiplication de boucles, l'auteur construira des boucles commutatives, a l'aide de leurs translations a gauche, dont le groupe de multiplication est isomorphe soit au groupe (4,4|2,,2n+1) de degre 4n+2, soit au groupe (2,4,4;n+1) de degre 4n+4. Nous montrerons que certains d'entre eux sont transitifs minimaux, i. E. Sans sous groupe propre transitif. D'autre part, une boucle commutative dont le groupe de multiplication est isomorphe au p-sous groupe de sylow du groupe symetrique d'ordre p#2 sera construite par l'intermediaire de sa table de multiplication. Enfin, il sera montre que si les groupes abeliens, de fischer decentres, alternes sont representables en groupe de multiplication d'une boucle, une telle representation n'existe pas pour les groupes diedraux, les groupes de frobenius, les groupes de permutations dont le stabilisateur d'un element est de cardinal 1, 2 ou 3
APA, Harvard, Vancouver, ISO, and other styles
5

Young, Benjamin M. "Totally Symmetric and Medial Quasigroups and their Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1618269661285196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hardcastle, Tim. "Normal and characteristic structure in quasigroups and loops." Thesis, University of Leicester, 2003. http://hdl.handle.net/2381/30523.

Full text
Abstract:
In this thesis I shall be exploring the normal and characteristic structure of quasigroups and loops. In recent years there has been a revival of interest in the theory of loops and in particular in the relationship between the properties of a loop and the properties of its multiplication group; and several powerful new theorems have emerged which allow the structural properties of a loop to be related to its multiplication group. I shall combine these ideas with tools developed at the beginning of loop theory to produce some interesting new theorems, principally relating the order of a finite multiplication group to the structure of its loop.
APA, Harvard, Vancouver, ISO, and other styles
7

Rice, Theodore Allen. "Greedy quasigroups and greedy algebras with applications to combinatorial games." [Ames, Iowa : Iowa State University], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Olsson, Christoffer. "Discreet Discrete Mathematics : Secret Communication Using Latin Squares and Quasigroups." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136860.

Full text
Abstract:
This thesis describes methods of secret communication based on latin squares and their close relative, quasigroups. Different types of cryptosystems are described, including ciphers, public-key cryptosystems, and cryptographic hash functions. There is also a chapter devoted to different secret sharing schemes based on latin squares. The primary objective is to present previously described cryptosystems and secret sharing schemes in a more accessible manner, but this text also defines two new ciphers based on isotopic latin squares and reconstructs a lost proof related to row-latin squares.
Denna uppsats beskriver kryptosystem och metoder för hemlighetsdelning baserade på latinska kvadrater och det närliggande konceptet kvasigrupper. Olika sorters chiffer, både symmetriska och asymmetriska, behandlas. Dessutom finns ett kapitel tillägnat kryptografiska hashfunktioner och ett tillägnat metoder för hemlighetsdelning. Huvudsyftet är att beskriva redan existerande metoder för hemlig kommunikation på ett mer lättillgängligt sätt och med nya exempel, men dessutom återskapas ett, till synes, förlorat bevis relaterat till rad-latinska kvadrater samt beskrivs två nya chiffer baserade på isotopa latinska kvadrater.
APA, Harvard, Vancouver, ISO, and other styles
9

Maia, Ricardo José Menezes. "Análise da viabilidade da implementação de algoritmos pós-quânticos baseados em quase-grupos multivariados quadráticos em plataformas de processamento limitadas." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-30112010-151111/.

Full text
Abstract:
Redes de sensores sem fio (RSSF) tipicamente consistem de nós sensores com limitação de energia, processamento, comunicação e memória. A segurança em RSSF está se tornando fundamental com o surgimento de aplicações que necessitam de mecanismos que permitam autenticidade, integridade e confidencialidade. Devido a limitações de recursos em RSSF, adequar criptossistemas de chaves públicas (PKC) para estas redes é um problema de pesquisa em aberto. Meados de 2008, Danilo Gligoroski et al. propuseram um novo PKC baseado em quase-grupos multivariados quadráticos (MQQ). Experimentos feitos por Gligoroski na plataforma FPGA mostram que MQQ executou em tempo menor que principais PKC (DH, RSA e ECC) existentes, tanto que alguns artigos afirmam que MQQ possui velocidade de uma típica cifra de bloco simétrica. Além disto, o MQQ exibiu o mesmo nível de segurança que outros PKC (DH, RSA e ECC) necessitando chaves menores. Outra propriedade que chama atenção no MQQ é o uso das operações básicas XOR, AND e deslocamento de bits nos processos de encriptação e decriptação, fato importante considerando que uma RSSF possui processamento limitado. Estas características tornam o MQQ promissor a levar um novo caminho na difícil tarefa de dotar redes de sensores sem fio de criptossistemas de chaves públicas. Neste contexto se insere este trabalho que analisa a viabilidade de implementar o algoritmo MQQ em uma plataforma de RSSF. Sendo importante considerar que este trabalho inova na proposta de levar para RSSF este novo PKC baseado quase-grupos multivariados quadráticos, além de contribuir com um método para reduzir o tamanho da chave pública utilizada pelo MQQ. Foram feitos testes com MQQ nas plataformas TelosB e MICAz, sendo que o MQQexibiu os tempos de 825; 1 ms para encriptar e 116; 6 ms para decriptar no TelosB e 445 ms para encriptar no MICAz.
Wireless sensor networks (WSN) typically consist of sensor nodes with limited energy, processing, communication and memory. Security in WSN is becoming critical with the emergence of applications that require mechanisms for authenticity, integrity and confidentiality. Due to resource constraints in sensor networks, public key cryptosystems suit (PKC) for these networks is an open research problem. In 2008 Danilo Gligoroski et al. proposed a new PKC based on quasi-groups multivariate quadratic (MQQ). Experiments by Gligoroski on FPGA platform show that MQQ performed in less time than most popular PKC (DH, RSA and ECC), so that some papers say MQQ has a typical speed of symmetric block cipher. Moreover, the MQQ exhibited same level of security that other PKC (DH, RSA and ECC) requiring keys minors. Another property that draws attention in MQQ is the use of basic operations XOR, AND, and bit shifting in the processes of encryption and decryption, important fact considering that a WSN has limited processing. These features make the MQQ promising to take a new path in the difficult task of providing wireless sensor networks in public key cryptosystems. Appears in this context that this study examines the feasibility of implementing MQQ a platform for WSN. Is important to consider this innovative work in the proposal to bring this new PKC for WSN based multivariate quadratic quasigroups, and contribute a method to reduce the size public key used by MQQ. Tests with MQQ on platforms TelosB and MICAz, the MQQ exhibited 825ms to encrypt and 116ms to decrypt on TelosB and 445 ms to encrypt on MICAz.
APA, Harvard, Vancouver, ISO, and other styles
10

Chaluleau, Benoît. "Problème du mot, invariants de quasi-isométrie pour les groupes." Toulouse 3, 2003. http://www.theses.fr/2003TOU30036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quasigroup"

1

Shelekhov, A. M. Webs & quasigroups. Tver: Tver State University, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sabinin, Lev V. Smooth Quasigroups and Loops. Dordrecht: Springer Netherlands, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pflugfelder, Hala O. Quasigroups and loops: Introduction. Berlin: Heldermann, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sabinin, Lev V. Smooth quasigroups and loops. Dordrecht: Kluwer Academic, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sabinin, Lev V. Smooth Quasigroups and Loops. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4491-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

An introduction to quasigroups and their representations. Boca Raton, FL: Chapman & Hall/CRC, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Representation theory of infinite groups and finite quasigroups. Montréal, Québec, Canada: Presses de l'Université de Montréal, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vesanen, Ari. On connected transversals in PSL (2, g). Helsinki: Suomalainen Tiedeakatemia, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1974-, Nelson Sam, ed. Quandles: An introduction to the algebra of knots. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morse, Robert Fitzgerald, editor of compilation, Nikolova-Popova, Daniela, 1952- editor of compilation, and Witherspoon, Sarah J., 1966- editor of compilation, eds. Group theory, combinatorics and computing: International Conference in honor of Daniela Nikolova-Popova's 60th birthday on Group Theory, Combinatorics and Computing, October 3-8, 2012, Florida Atlantic University, Boca Raton, Florida. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quasigroup"

1

Dimitrova, Vesna, Verica Bakeva, Aleksandra Popovska-Mitrovikj, and Aleksandar Krapež. "Cryptographic Properties of Parastrophic Quasigroup Transformation." In ICT Innovations 2012, 235–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37169-1_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barták, Roman. "On Generators of Random Quasigroup Problems." In Lecture Notes in Computer Science, 164–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11754602_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sabinin, Lev V. "Semidirect Products of a Quasigroup by its Transassociants." In Smooth Quasigroups and Loops, 36–46. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4491-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mileva, Aleksandra, and Smile Markovski. "Quasigroup String Transformations and Hash Function Design." In ICT Innovations 2009, 367–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10781-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dotú, Iván, Alvaro del Val, and Manuel Cebrián. "Redundant Modeling for the QuasiGroup Completion Problem." In Principles and Practice of Constraint Programming – CP 2003, 288–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45193-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Markovski, Smile, Danilo Gligoroski, and Ljupco Kocarev. "Unbiased Random Sequences from Quasigroup String Transformations." In Fast Software Encryption, 163–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11502760_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haridas, Deepthi, K. C. Emmanuel Sanjay Raj, Venkataraman Sarma, and Santanu Chowdhury. "Probabilistically Generated Ternary Quasigroup Based Stream Cipher." In Advances in Intelligent Systems and Computing, 153–60. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3376-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mileva, Aleksandra, and Smile Markovski. "Quasigroup Representation of Some Feistel and Generalized Feistel Ciphers." In ICT Innovations 2012, 161–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37169-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maia, Ricardo José Menezes, Paulo Sérgio Licciardi Messeder Barreto, and Bruno Trevizan de Oliveira. "Implementation of Multivariate Quadratic Quasigroup for Wireless Sensor Network." In Transactions on Computational Science XI, 64–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17697-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lakshmi, S., Chungath Srinivasan, K. V. Lakshmy, and M. Sindhu. "A Quasigroup Based Synchronous Stream Cipher for Lightweight Applications." In Communications in Computer and Information Science, 205–14. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6898-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quasigroup"

1

Nikhil, N. A., and D. S. Harish Ram. "Hardware implementation of quasigroup based encryption." In 2014 International Conference on Embedded Systems (ICES). IEEE, 2014. http://dx.doi.org/10.1109/embeddedsys.2014.6953050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Battey, Matthew, and Abhishek Parakh. "Cryptanalysis of the Quasigroup Block Cipher." In the 2014 ACM Southeast Regional Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2638404.2737600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gerlock, Leonora, and Abhishek Parakh. "Linear Cryptanalysis of Quasigroup Block Cipher." In CISRC '16: 11th Annual Cyber and Information Security Research. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897795.2897818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Battey, Matthew, and Abhishek Parakh. "Efficient Quasigroup Block Cipher for Sensor Networks." In 2012 21st International Conference on Computer Communications and Networks - ICCCN 2012. IEEE, 2012. http://dx.doi.org/10.1109/icccn.2012.6289294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ilievska, N., and D. Gligoroski. "Simulation of a quasigroup error-detecting linear code." In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2015. http://dx.doi.org/10.1109/mipro.2015.7160311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mahoney, William, Abhishek Parakh, and Matthew Battey. "Hardware Implementation of Quasigroup Encryption for SCADA Networks." In 2014 IEEE 13th International Symposium on Network Computing and Applications (NCA). IEEE, 2014. http://dx.doi.org/10.1109/nca.2014.52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pal, Saibal K., and Sumitra. "Development of Efficient Algorithms for Quasigroup Generation & Encryption." In 2009 IEEE International Advance Computing Conference (IACC 2009). IEEE, 2009. http://dx.doi.org/10.1109/iadcc.2009.4809141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rachana Reddy M and Vijender Busi Reddy. "A Quasigroup based cipher algorithm for Ad-Hoc wireless networks." In 2015 IEEE International Advance Computing Conference (IACC). IEEE, 2015. http://dx.doi.org/10.1109/iadcc.2015.7154706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Disina, Abdulkadir Hassan, Sapiee Jamel, Zahraddeen Abubakar Pindar, and Mustafa Mat Deris. "All-or-Nothing Key Derivation Function Based on Quasigroup String Transformation." In 2016 International Conference on Information Science and Security (ICISS). IEEE, 2016. http://dx.doi.org/10.1109/icissec.2016.7885839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mahoney, William, and Abhishek Parakh. "Towards a New Quasigroup Block Cipher for a Single-Chip FPGA Implementation." In 2015 24th International Conference on Computer Communication and Networks (ICCCN). IEEE, 2015. http://dx.doi.org/10.1109/icccn.2015.7288479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography