Academic literature on the topic 'Qubit'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Qubit.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Qubit"

1

Moussa, Jonathan Edward. "Quantum circuits for qubit fusion." Quantum Information and Computation 16, no. 13&14 (October 2016): 1113–24. http://dx.doi.org/10.26421/qic16.13-14-3.

Full text
Abstract:
We consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Clifford operators. This introduces a nesting, C^2_1 belong to C^4_2 belong to C^2_3 , where Cmn is the nth level of the m-dimensional qudit Clifford hierarchy. If we can convert between logical qubits and qudits, then qudit Clifford operators are qubit non-Clifford operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a faulttolerant state preparation using stabilizer circuits.
APA, Harvard, Vancouver, ISO, and other styles
2

Drozhzhin, Denis A., Anastasiia S. Nikolaeva, Evgeniy O. Kiktenko, and Aleksey K. Fedorov. "Transpiling Quantum Assembly Language Circuits to a Qudit Form." Entropy 26, no. 12 (December 23, 2024): 1129. https://doi.org/10.3390/e26121129.

Full text
Abstract:
In this paper, we introduce the workflow for converting qubit circuits represented by Open Quantum Assembly format (OpenQASM, also known as QASM) into the qudit form for execution on qudit hardware and provide a method for translating qudit experiment results back into qubit results. We present the comparison of several qudit transpilation regimes, which differ in decomposition of multicontrolled gates: qubit as ordinary qubit transpilation and execution, qutrit with d=3 levels and single qubit in qudit, and ququart with d=4 levels and 2 qubits per ququart. We provide several examples of transpiling circuits for trapped ion qudit processors, which demonstrate potential advantages of qudits.
APA, Harvard, Vancouver, ISO, and other styles
3

Nikolaeva, Anstasiia S., Evgeniy O. Kiktenko, and Aleksey K. Fedorov. "Generalized Toffoli Gate Decomposition Using Ququints: Towards Realizing Grover’s Algorithm with Qudits." Entropy 25, no. 2 (February 20, 2023): 387. http://dx.doi.org/10.3390/e25020387.

Full text
Abstract:
Qubits, which are the quantum counterparts of classical bits, are used as basic information units for quantum information processing, whereas underlying physical information carriers, e.g., (artificial) atoms or ions, admit encoding of more complex multilevel states—qudits. Recently, significant attention has been paid to the idea of using qudit encoding as a way for further scaling quantum processors. In this work, we present an efficient decomposition of the generalized Toffoli gate on five-level quantum systems—so-called ququints—that use ququints’ space as the space of two qubits with a joint ancillary state. The basic two-qubit operation we use is a version of the controlled-phase gate. The proposed N-qubit Toffoli gate decomposition has O(N) asymptotic depth and does not use ancillary qubits. We then apply our results for Grover’s algorithm, where we indicate on the sizable advantage of using the qudit-based approach with the proposed decomposition in comparison to the standard qubit case. We expect that our results are applicable for quantum processors based on various physical platforms, such as trapped ions, neutral atoms, protonic systems, superconducting circuits, and others.
APA, Harvard, Vancouver, ISO, and other styles
4

LIU, YANG, GUI LU LONG, and YANG SUN. "ANALYTIC ONE-BIT AND CNOT GATE CONSTRUCTIONS OF GENERAL n-QUBIT CONTROLLED GATES." International Journal of Quantum Information 06, no. 03 (June 2008): 447–62. http://dx.doi.org/10.1142/s0219749908003621.

Full text
Abstract:
General n-qubit controlled unitary gates are frequently used in quantum information processing tasks. Barenco, Bennett, Cleve, Di Vincenzo, Margolus and Shor [Phys. Rev. A52 (1995) 3457] have given the general construction methods, and explicit results for up-to-four-qubits controlled unitary gates. We extended their calculation and gave two analytic expressions for the construction of general n-qubit controlled unitary gates in terms of one-qubit and two-qubit CNOT gates. There are two expressions – one is exponential in the qubit number which is efficient for up to ten qubits, and the other is polynomial in the qubit number, which is efficient for more than ten qubits.
APA, Harvard, Vancouver, ISO, and other styles
5

DOLL, ROLAND, MARTIJN WUBS, SIGMUND KOHLER, and PETER HÄNGGI. "FIDELITY AND ENTANGLEMENT OF A SPATIALLY EXTENDED LINEAR THREE-QUBIT REGISTER." International Journal of Quantum Information 06, supp01 (July 2008): 681–87. http://dx.doi.org/10.1142/s0219749908003955.

Full text
Abstract:
We study decoherence of a three-qubit array coupled to substrate phonons. Assuming an initial three-qubit entangled state that would be decoherence-free for identical qubit positions, allows us to focus on non-Markovian effects of the inevitable spatial qubit separation. It turns out that the coherence is most affected when the qubits are regularly spaced. Moreover, we find that up to a constant scaling factor, two-qubit entanglement is not influenced by the presence of the third qubit, even though all qubits interact via the phonon field.
APA, Harvard, Vancouver, ISO, and other styles
6

Espinel-López, Cristian, Alvaro Martínez-Gómez, Marisol Aguilar-Echeverría, and Hipatia Mañay-Mañay. "Evolución de componentes de computación cuántica y mediciones cuánticas no destructivas en la informática moderna. //Evolution of quantum computing components and non-destructive quantum measurements in modern computing." CIENCIA UNEMI 11, no. 28 (October 1, 2018): 57–69. http://dx.doi.org/10.29076/issn.2528-7737vol11iss28.2018pp57-69p.

Full text
Abstract:
El presente trabajo, realiza una breve introducción a las medidas QND (Quantum nondemolition measurement) y sus características. Además, se describe teóricamente un qubit acoplado a un oscilador armónico cuántico forzado como ejemplo de una medición QND en un qubit. El formalismo desarrollado para este tipo de sistemas cuánticos acoplados se desenvuelve dentro de la teoría cuántica de la computación. Como parte del estudio de las mediciones QND, se introducen los qubits de flujo que hacen uso de los interferómetros superconductores cuánticos (SQUIDs). El análisis de este esquema informático intenta introducir al lector en los conceptos de computación cuántica como el quibit que es el componente base que permite procesar información de forma cuántica. El objetivo de este trabajo es caracterizar si las medidas elaboradas sobre el qubit acoplado son o no QND. En este sentido, la aplicación del formalismo expuesto permitirá vislumbrar los alcances y limitaciones de los qubits acoplados en el desarrollo y aplicación de los sistemas cuánticos de la computación hasta el día de hoy. Adicionalmente, la aplicación de esta teoría se puede emplear a mediciones QND sobre qubits superconductores articulados a un oscilador armónico cuántico. Todo este proceso es sujeto al análisis y metodología que nos proporciona la historia de la ciencia y la tecnología. AbstractThe present work makes a brief introduction to QND (Quantum non demolition measurement) measurements and its characteristics. In addition, a qubit coupled to a forced quantum harmonic oscillator which is described theoretically as an example of a QND measurement in a qubit. The formalism developed for this type of coupled quantum systems is developed within the quantum theory of computation. As part of the study of QND measurements, the flow qubits making use of quantum superconducting interferometers (SQUIDs) are introduced. The analysis of this computer schema attempts to introduce the reader to the concepts of quantum computing such as qubit, which is the basic component that allows information to be processed quantumly. The objective of this work is to characterize whether the elaborated measures on the coupled qubit are QND or not. In this sense, the application of the exposed formalism will allow us to glimpse the scope and limitations of coupled qubits in the development and application of quantum computing systems to this day. Additionally, the application of this theory can be applied to QND measurements on superconducting qubits coupled to a quantum harmonic oscillator. All this process is subject to the analysis and methodology provided by the history of science and technology.
APA, Harvard, Vancouver, ISO, and other styles
7

Schönenberger, Christian. "Andreev‐Qubit‐Qubit‐Kopplung auf Distanz." Physik in unserer Zeit 56, no. 2 (March 2025): 60–61. https://doi.org/10.1002/piuz.202570205.

Full text
Abstract:
Mikroskopische Andreev‐Qubits lassen sich nun kohärent über makroskopische Distanzen koppeln, was die Erzeugung von verschränkten Zuständen und allgemeinen Zwei‐Qubit‐Operationen ermöglicht. Dies konnte kürzlich sowohl für Andreev‐Paar‐Qubits als auch für Andreev‐Spin‐Qubits demonstriert werden.
APA, Harvard, Vancouver, ISO, and other styles
8

Fischer, Laurin E., Alessandro Chiesa, Francesco Tacchino, Daniel J. Egger, Stefano Carretta, and Ivano Tavernelli. "Universal Qudit Gate Synthesis for Transmons." PRX Quantum 4 (August 28, 2023): 030327. https://doi.org/10.1103/PRXQuantum.4.030327.

Full text
Abstract:
Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond 99% in the d = 4 case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of SU(16) gates for noisy quantum hardware and an embedded error-correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control—a valuable extension to the operational toolbox of superconducting quantum information processing—is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.
APA, Harvard, Vancouver, ISO, and other styles
9

Childs, Andrew M., Debbie Leung, Laura Mancinska, and Maris Ozols. "Characterization of universal two-qubit Hamiltonians." Quantum Information and Computation 11, no. 1&2 (January 2011): 19–39. http://dx.doi.org/10.26421/qic11.1-2-3.

Full text
Abstract:
Suppose we can apply a given 2-qubit Hamiltonian H to any (ordered) pair of qubits. We say H is n-universal if it can be used to approximate any unitary operation on n qubits. While it is well known that almost any 2-qubit Hamiltonian is 2-universal, an explicit characterization of the set of non-universal 2-qubit Hamiltonians has been elusive. Our main result is a complete characterization of 2-non-universal 2-qubit Hamiltonians. In particular, there are three ways that a 2-qubit Hamiltonian $H$ can fail to be universal: (1) H shares an eigenvector with the gate that swaps two qubits, (2) H acts on the two qubits independently (in any of a certain family of bases), or (3) H has zero trace (with the third condition relevant only when the global phase of the unitary matters). A 2-non-universal 2-qubit Hamiltonian can still be n-universal for some n \geq 3. We give some partial results on 3-universality.
APA, Harvard, Vancouver, ISO, and other styles
10

Assouline, A., L. Pugliese, H. Chakraborti, Seunghun Lee, L. Bernabeu, M. Jo, K. Watanabe, et al. "Emission and coherent control of Levitons in graphene." Science 382, no. 6676 (December 15, 2023): 1260–64. http://dx.doi.org/10.1126/science.adf9887.

Full text
Abstract:
Flying qubits encode quantum information in propagating modes instead of stationary discrete states. Although photonic flying qubits are available, the weak interaction between photons limits the efficiency of conditional quantum gates. Conversely, electronic flying qubits can use Coulomb interactions, but the weaker quantum coherence in conventional semiconductors has hindered their realization. In this work, we engineered on-demand injection of a single electronic flying qubit state and its manipulation over the Bloch sphere. The flying qubit is a Leviton propagating in quantum Hall edge channels of a high-mobility graphene monolayer. Although single-shot qubit readout and two-qubit operations are still needed for a viable manipulation of flying qubits, the coherent manipulation of an itinerant electronic state at the single-electron level presents a highly promising alternative to conventional qubits.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Qubit"

1

Nasser, Metwally Aly Mohamed. "Entangled qubit pairs." Diss., [S.l.] : [s.n.], 2002. http://edoc.ub.uni-muenchen.de/archive/00000083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fay, Aurélien. "Couplage variable entre un qubit de charge et un qubit de phase." Phd thesis, Grenoble 1, 2008. http://www.theses.fr/2008GRE10071.

Full text
Abstract:
Nous avons étudié la dynamique quantique d'un circuit supraconducteur constitué d'un SQUID dc couplé à un transistor à paires de Cooper fortement asymétrique (ACPT). Le SQUID dc est un qubit de phase contrôlé par un courant de polarisation et un champ magnétique. L'ACPT est un qubit de charge contrôlé par un courant de polarisation, un champ magnétique et une tension de la grille. Nous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux. Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1. 1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits<br>We have studied the quantum dynamics of a superconducting circuit based on a dc-SQUID coupled to a highly asymmetric Cooper pair transistor (ACPT). The dc-SQUID is a phase qubit controlled by a bias current and magnetic field. The ACPT is a charge qubit controlled by a bias current, magnetic flux and gate voltage. We have measured by microwave spectroscopy the lowest quantum levels of the coupled circuit as a function of the bias parameters. Quantum state measurements of the phase and charge qubit are achieved by an escape measurement on the dc SQUID with a nanosecond flux pulse applied to it. The measurement of the ACPT state consist of a new quantum process: the excited state of the ACPT is adiabatically transferred to the excited state of the SQUID during the flux pulse. Our circuit enables the independent manipulation of each qubit as well as the entanglement of the quantum states of the two circuits. We observe avoided level crossings between the two qubits when they are put in resonance. The coupling strength is measured over a large frequency range and varies from 60 MHz to 1. 1 GHz. In this coupled circuit, we succeed to realize a tunable coupling between the charge and the phase qubit. We have analyzed theoretically the quantum dynamics of our circuit. This analysis explains well the measured tunable coupling strength by a combination of a capacitive and a Josephson coupling between the two qubits
APA, Harvard, Vancouver, ISO, and other styles
3

Fay, Aurélien. "Couplage variable entre un qubit de charge et un qubit de phase." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00310131.

Full text
Abstract:
Nous avons étudié la dynamique quantique d'un circuit supraconducteur constitué d'un SQUID dc couplé à un transistor à paires de Cooper fortement asymétrique (ACPT). Le SQUID dc est un qubit de phase contrôlé par un courant de polarisation et un champ magnétique. L'ACPT est un qubit de charge contrôlé par un courant de polarisation, un champ magnétique et une tension de la grille.<br /><br />Nous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux.<br /><br />Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1.1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits.
APA, Harvard, Vancouver, ISO, and other styles
4

Palomaki, Tauno A. "Dc SQUID phase qubit." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8575.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2008.<br>Thesis research directed by: Dept. of Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
5

Viehmann, Oliver. "Multi-qubit circuit quantum electrodynamics." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-160998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aiello, Clarice Demarchi. "Qubit dynamics under alternating controls." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93053.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 111-117).<br>In this thesis, we discuss two problems of quantum dynamics in the presence of alternating controls. Alternating controls arise in many protocols designed to extend the duration over which a qubit is a useful computational resource. This is accomplished by control sequences that either retard decoherence, or that accomplish a quantum operation in as short a time as possible. The first problem tackles the use of a composite-pulse control sequence known as 'rotary-echo' for quantum magnetometry purposes. The sequence consists in the continuous drive of a qubit, with field phases that alternate at specific intervals. We implement such a magnetometry protocol using an electronic qubit in diamond, and experimentally confirm the flexibility yielded by the tuning of sequence parameters that achieves a good compromise between decoherence resilience and sensitivity. The second problem theoretically investigates the time-optimal evolution of a qubit in the case of a restricted control set composed of alternating rotations around two non-parallel axes on the Bloch sphere. Using accessible algebraic methods, we show that experimental parameters, such as the angle between the two rotation axes, restrict the necessary structure of time-optimal sequences. We propose to implement such an evolution through alternate driving as an advantageous alternative to the slow, noisy direct addressing of a nuclear qubit anisotropically hyperfine-coupled to an electronic spin in diamond.<br>by Clarice Demarchi Aiello.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Convertini, Luciana. "Simulazione numerica di qubit a superconduttori di tipo transmon: dal layout al gate a singolo qubit." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Find full text
Abstract:
In questo lavoro di tesi è stato messo a punto un insieme di modelli e strumenti di simulazione numerica che consentono nel loro insieme l’analisi completa di un sistema formato da qubit a superconduttore di tipo transmon per il calcolo quantistico. Appoggiandosi agli elementi noti della teoria del transmon, l’analisi parte dalla definizione del layout da cui, mediante simulazioni elettromagnetiche, si estraggono le matrici di capacità ed induttanza dei vari componenti. Questo consente la costruzione dell’Hamiltoniano del sistema, noto il quale si possono eseguire le simulazioni nel dominio del tempo delle operazioni dei vari gate, una volta definiti gli opportuni segnali di controllo. Per l’implementazione del flusso di simulazione si sono utilizzati sia strumenti software open-source (Qiskit Metal, FastCap, QuTip), sia script Python sviluppati allo scopo. A dimostrazione della funzionalità dell’ambiente così creato viene presentata l’analisi di un transmon accoppiato a risonatori e linee di trasmissione, tramite il quale si realizza un quantum gate a singolo qubit di tipo X.
APA, Harvard, Vancouver, ISO, and other styles
8

Narla, Anirudh. "Flying Qubit Operations in Superconducting Circuits." Thesis, Yale University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10783459.

Full text
Abstract:
<p> The quantum non-demolition (QND) measurement process begins by entangling the system to be measured, a qubit for example, with an ancillary degree of freedom, usually a system with an infinite-dimensional Hilbert space. The ancilla is amplified to convert the quantum signal into a measurable classical signal. The continuous classical signal is recorded by a measurement apparatus; a discrete measurement outcome is recovered by thresholding the integrated signal record. Measurements play a central role in technologies based on quantum theory, like quantum computation and communication. They form the basis for a wide range of operations, ranging from state initialization to quantum error correction. Quantum measurements used for quantum computation must satisfy three essential requirements of being high fidelity, quantum non-demolition and efficient. Satisfying these criteria necessitates control over all the parts of the quantum measurement process, especially generating the ancilla, entangling it with the qubit and amplifying it to complete the measurement. </p><p> For superconducting quantum circuits, a promising platform for realizing quantum computation, a natural choice for the ancillae are modes of microwave-frequency electromagnetic radiation. In the paradigm of circuit quantum electrodynamics (cQED) with three-dimensional circuits, the most commonly used ancillae are coherent states, since they are easy to generate, process and amplify. Using these flying coherent states, we present results for achieving QND measurements of transmon qubits with fidelities of <i>F</i>> 0.99 and efficiencies of &eta; = 0.56 &plusmn; 0.01. By also treating the measurement as a more general quantum operation, we use the ancillae as carriers of quantum information to generate remote entanglement between two transmon qubits in separate cavities. By using microwave single photons as the flying qubits, it is possible to generate remote entanglement that is robust to loss since the generation of entanglement is uniquely linked to a particular measurement outcome. We demonstrate, in a single experiment, the ability to efficiently generate and detect single microwave photons and use them to generate robust remote entanglement between two transmon qubits. This operation forms a crucial primitive in modular architectures for quantum computation. The results of this thesis extend the experimental toolbox at the disposal to superconducting circuits. Building on these results, we outline proposals for remote entanglement distillation as well as strategies to further improve the performance of the various tools.</p><p>
APA, Harvard, Vancouver, ISO, and other styles
9

Weber, Steven Joseph. "Quantum Trajectories of a Superconducting Qubit." Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686046.

Full text
Abstract:
<p> In quantum mechanics, the process of measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. An accurate measurement record documents this stochastic evolution and can be used to reconstruct the quantum trajectory of the system state in a single experimental iteration. We use weak measurements to track the individual quantum trajectories of a superconducting qubit that evolves under the competing influences of continuous weak measurement and Rabi drive. We analyze large ensembles of such trajectories to examine their characteristics and determine their statistical properties. For example, by considering only the subset of trajectories that evolve between any chosen initial and final states, we can deduce the most probable path through quantum state space. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wavefunction collapse, and unitary evolution. Our results provide insight into the dynamics of open quantum systems and may enable new methods of quantum state tomography, quantum state steering through measurement, and active quantum control.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Bader, Samuel James. "Higher levels of the transmon qubit." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92701.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2014.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 91-95).<br>This thesis discusses recent experimental work in measuring the properties of higher levels in transmon qubit systems. The first part includes a thorough overview of transmon devices, explaining the principles of the device design, the transmon Hamiltonian, and general Circuit Quantum Electrodynamics concepts and methodology. The second part discusses the experimental setup and methods employed in measuring the higher levels of these systems, and the details of the simulation used to explain and predict the properties of these levels.<br>by Samuel James Bader.<br>S.B.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Qubit"

1

Hays, Max. Realizing an Andreev Spin Qubit. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83879-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alvarez, Raúl Aguiar. Qubit: Antología de la nueva ciencia ficción latinoamericana. La Habana, Cuba: Fondo Editorial Casa de las Américas, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rainger, Amanda. Quit sait? London: BBC Educational, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Byalick, Marcia. Quit It. New York: Random House Children's Books, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

illustrator, Cartwright Amy, ed. Quit it! Mankato, Minnesota: Amicus Readers, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qubit. Page Publishing, Inc, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bylander, J. Superconducting Quantum Bits of Information—Coherence and Design Improvements. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.18.

Full text
Abstract:
This article reviews recent progress in superconducting quantum bits, including major improvements in design and coherence times. It first provides an overview of the basics of modern superconducting qubit devices and their architectures before turning to single-qubit Hamiltonians and reference frames. It then examines how decoherence originates with noise and shows how to characterize and mitigate this noise using magnetic-resonance-type pulse sequences. It also describes the first-generation superconducting qubits and the now-dominant circuit-quantum electrodynamics architecture in which qubits are coupled to microwave resonators. Finally, it considers several improved designs of superconducting qubits in which coherence times have been significantly improved by minimizing the sensitivity to fluctuating impurities and the coupling to external modes.
APA, Harvard, Vancouver, ISO, and other styles
8

Wehm, M. Darusha. Qubit Zirconium: A KeyForge Novel. Asmodee Editions, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wehm, M. Darusha. Qubit Zirconium: A KeyForge Novel. Asmodee Editions, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soiguine, Alexander. Geometric Phase in Geometric Algebra Qubit Formalism. LAP LAMBERT Academic Publishing, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Qubit"

1

Wong, Hiu Yung. "Transmon Qubit: One-Qubit and Two-Qubit Gates." In Quantum Computing Architecture and Hardware for Engineers, 289–308. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78219-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diósi, Lajos. "Qubit Thermodynamics." In A Short Course in Quantum Information Theory, 123–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16117-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fujii, Yoichi Robertus. "MicroRNA Qubit." In The MicroRNA Quantum Code Book, 11–16. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8586-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Conti, Claudio. "Qubit Maps." In Quantum Science and Technology, 51–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-44226-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kasirajan, Venkateswaran. "Qubit Modalities." In Fundamentals of Quantum Computing, 107–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63689-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wetterich, Christof. "Qubit Automaton." In Fundamental Theories of Physics, 355–76. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-83213-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wong, Hiu Yung. "Electron Spin Qubit in Semiconductor—1-Qubit and 2-Qubit Gates." In Quantum Computing Architecture and Hardware for Engineers, 155–66. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78219-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tamura, Kentaro, and Yutaka Shikano. "Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 17–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_6.

Full text
Abstract:
Abstract A cloud quantum computer is similar to a random number generator in that its physical mechanism is inaccessible to its users. In this respect, a cloud quantum computer is a black box. In both devices, its users decide the device condition from the output. A framework to achieve this exists in the field of random number generation in the form of statistical tests for random number generators. In the present study, we generated random numbers on a 20-qubit cloud quantum computer and evaluated the condition and stability of its qubits using statistical tests for random number generators. As a result, we observed that some qubits were more biased than others. Statistical tests for random number generators may provide a simple indicator of qubit condition and stability, enabling users to decide for themselves which qubits inside a cloud quantum computer to use.
APA, Harvard, Vancouver, ISO, and other styles
9

McCracken, James M. "Negative Qubit Channel Examples with Multi-Qubit Baths." In Negative Quantum Channels, 107–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-031-02517-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wong, Hiu Yung. "Charge Qubit Dynamics: Precession and 1-Qubit Gate." In Quantum Computing Architecture and Hardware for Engineers, 273–87. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78219-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Qubit"

1

Chien, Wei-Chen, Chung-Li Lin, Tse-Yu Lai, Watson Kuo, Yen-Chun Chen, and Chiidong Chen. "Tuning Inter-qubit Coupling Strengths by Sideband Driving." In Quantum 2.0, QTu3A.11. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qtu3a.11.

Full text
Abstract:
The iSWAP operation between two qubits serves as a means to quantify the inter-qubit coupling strength. We examine the inter-qubit coupling strength when the qubit frequency is modulated at 80 MHz. The coupling strength between qubits, mediated by various sidebands generated from the frequency modulation, can be dynamically tuned, following the Bessel dependencies. This dynamically tunable coupling between qubits provides a straightforward approach to create a testing ground for versatile quantum models.
APA, Harvard, Vancouver, ISO, and other styles
2

Oliver, Richard, Sidarth Raghunathan, Hoi Chun Chiu, Ali Binai-Motlagh, and Alexander L. Gaeta. "Tomography of a Frequency-Bin Qubit." In CLEO: Fundamental Science, FM4R.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm4r.2.

Full text
Abstract:
Using Bragg-scattering four-wave mixing, we prepare frequency-bin qubits and measure a purity of 0.92 through a lossy channel, suggesting viability for quantum networks using existing telecommunications infrastructure. Such a frequency-bin qubit obviates the polarization-compensation requirement of polarization qubits.
APA, Harvard, Vancouver, ISO, and other styles
3

Lammers, Jonas, Federico Pegoraro, Philip Held, Nidhin Prasannan, Benjamin Brecht, and Christine Silberhorn. "Two Photon Tripartite Entanglement Transfer via Time-Multiplexed Quantum Walks." In Frontiers in Optics, FM5C.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fm5c.3.

Full text
Abstract:
We experimentally study the transfer of multiparticle qubit entanglement towards qubit-qudit entanglement via modal entanglement in a time-multiplexed discrete-time quantum walk. We verified this transfer via the von Neumann entropy and performing steering-like experiments.
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, Ghazi, and Thomas E. Roth. "Field-Based Formalism for Calculating Qubit-Qubit Exchange Coupling Rates for Transmon Qubits." In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1977–78. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rahmouni, A., Y. S. Li-Baboud, Y. Shi, P. Shrestha, M. Merzouki, A. Battou, O. Slattery, and T. Gerrits. "Challenges and Solutions in Adapting Classical Infrastructure for Quantum Networks." In Optical Fiber Communication Conference, Tu3D.5. Washington, D.C.: Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.tu3d.5.

Full text
Abstract:
Quantum network protocols require qubit transmission at useful rates and fidelity, ideally leveraging existing optical fiber infrastructure. This work addresses challenges in adapting classical systems for qubits and proposes necessary upgrades for quantum network development.
APA, Harvard, Vancouver, ISO, and other styles
6

Aiyejina, Abuenameh, Ethan Wyke, Roger Andrews, and Andrew D. Greentree. "Excitation Transfer in a Pulsed Trimer of Qubits in a Young’s Double-Slit Configuration." In Frontiers in Optics, JD4A.11. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.11.

Full text
Abstract:
We investigate interfering amplitudes in a pulsed trimer system consisting of a pair of source qubits and one detector qubit. We have demonstrated that this system exhibits different interference properties from the Young’s double-slit experiment.
APA, Harvard, Vancouver, ISO, and other styles
7

Scalcon, Davide, Elisa Bazzani, Giuseppe Vallone, Paolo Villoresi, and Marco Avesani. "MacZac: ultra low QBER time-bin qubit and qudit generator." In Quantum 2.0, QTh4B.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth4b.6.

Full text
Abstract:
The qubit encoding with low quantum-bit-error-rate (QBER) is crucial in effective quantum communications as it directly influence the final key-rate. We here introduce Mac-Zac scheme leveraging on intrinsically-stable interferometer reaching parts in 105 of base contrast.
APA, Harvard, Vancouver, ISO, and other styles
8

Uchehara, Gideon, Tor M. Aamodt, and Olivia Di Matteo. "Graph-Based Identification of Qubit Network (GidNET) for Qubit Reuse." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 1120–31. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Poster, Maxwell, Sayam Sethi, and Jonathan M. Baker. "CQM: Cyclic Qubit Mappings." In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 1058–64. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aminpour, Sara, Yaser Banad, and Sarah Sharif. "Quantum Machine Learning Performance Analysis: Accuracy and Efficiency Trade-offs in Linear Classification." In Frontiers in Optics, JW5A.72. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw5a.72.

Full text
Abstract:
This study introduces the Nelder-Mead minimization method for data reuploading and examines the performance of quantum machine learning algorithms for linear classification using 1-qubit, 2-qubit, and 2-qubit entangled systems. We analyze accuracy and computation time across varying training sample sizes, revealing trade-offs between classification performance and computational efficiency in quantum systems.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Qubit"

1

Martinis, John M., Alexander Korotkov, Frank Wilhelm, and Andrew Cleland. Multi-Qubit Algorithms in Josephson Phase Qubits. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada631621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Padilla Gandia, Marc, and Alejandro Díaz Morcillo. Análisis de un experimento para la detección de axiones de materia oscura mediante cavidades resonantes y qubits. Fundación Avanza, May 2024. http://dx.doi.org/10.60096/fundacionavanza/3382024.

Full text
Abstract:
En este trabajo se analiza una configuración de dos cavidades con un qubit. Se estudia, mediante simulaciones de diferentes geometrías del sistema qubit-cavidades, el comportamiento de los principales parámetros de funcionamiento del sistema.
APA, Harvard, Vancouver, ISO, and other styles
3

Davis, J. C. STM Studies of Semiconductor Qubit Candidates. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada455573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shreeram, Soumya. Studying Qubit Interactions with Multimode Cavities Using QuTiP. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1615359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saxena, Avadh, and Julia Cen. Anti-PT-symmetric qubit: Decoherence and Entanglement Entropy. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nielsen, Erik. Efficient Scalable Tomography of Many-Qubit Quantum Processors. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1673168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blume-Kohout, Robin, Erik Nielsen, Kenneth Rudinger, Mohan Sarovar, and Kevin Young. Efficient Predictive Tomography of Multi-Qubit Quantum Processors. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1733288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wachen, John, and Steven McGee. Qubit by Qubit’s Middle School Quantum Camp Evaluation Report for Summer 2021. The Learning Partnership, August 2021. http://dx.doi.org/10.51420/report.2021.5.

Full text
Abstract:
Qubit by Qubit’s Middle School Quantum Camp is one of the first opportunities for students as young as eleven to begin learning about the field of quantum computing. In this week-long summer camp, students learn about key concepts of quantum mechanics and quantum computing, including qubits, superposition, and entanglement, basic coding in Python, and quantum gates. By the end of the camp, students can code quantum circuits and run them on a real quantum computer. The Middle School Quantum Camp substantially increased participants’ knowledge about quantum computing, as exhibited by large gains on a technical assessment that was administered at the beginning and end of the program. On a survey of student motivation, students in the program showed a statistically significant increase in their expectancy of being successful in quantum computing and valuing quantum computing. Students experienced a significant increase in their sense of belonging in STEM and quantum computing following the camp. The camp substantially increased students’ interest in taking additional coursework in STEM and quantum, as well as pursuing careers in STEM and quantum computing.
APA, Harvard, Vancouver, ISO, and other styles
9

Harris, Charles Thomas, Tzu-Ming Lu, Andrew Jacob Miller, Donald Thomas Bethke, and Rupert M. Lewis. Towards Quantum-Limited Cryogenic Amplification for Multi-Qubit Platforms. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khatiwada, Rakshya. Qubit Based Single Photon Sensors for Dark Matter Searches. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1592131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!