Academic literature on the topic 'Query performance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Query performance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Query performance"
He, Ben, and Iadh Ounis. "Query performance prediction." Information Systems 31, no. 7 (November 2006): 585–94. http://dx.doi.org/10.1016/j.is.2005.11.003.
Full textShtok, Anna, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits. "Predicting Query Performance by Query-Drift Estimation." ACM Transactions on Information Systems 30, no. 2 (May 2012): 1–35. http://dx.doi.org/10.1145/2180868.2180873.
Full textLEE, Ki-Hoon. "How XPath Query Minimization Impacts Query Processing Performance." IEICE Transactions on Information and Systems E95.D, no. 9 (2012): 2258–64. http://dx.doi.org/10.1587/transinf.e95.d.2258.
Full textRobb, David A., Paul L. Bowen, A. Faye Borthick, and Fiona H. Rohde. "Improving New Users’ Query Performance." Journal of Data and Information Quality 3, no. 4 (September 2012): 1–22. http://dx.doi.org/10.1145/2348828.2348829.
Full textSarnikar, Surendra, Zhu Zhang, and J. Leon Zhao. "Query-performance prediction for effective query routing in domain-specific repositories." Journal of the Association for Information Science and Technology 65, no. 8 (April 11, 2014): 1597–614. http://dx.doi.org/10.1002/asi.23072.
Full textXu, Jialu, and Feiyue Ye. "Query Recommendation Using Hybrid Query Relevance." Future Internet 10, no. 11 (November 19, 2018): 112. http://dx.doi.org/10.3390/fi10110112.
Full textLANG, Hao. "Predicting Query Performance for Text Retrieval." Journal of Software 19, no. 2 (July 10, 2008): 291–300. http://dx.doi.org/10.3724/sp.j.1001.2008.00291.
Full textShtok, Anna, Oren Kurland, and David Carmel. "Query Performance Prediction Using Reference Lists." ACM Transactions on Information Systems 34, no. 4 (September 14, 2016): 1–34. http://dx.doi.org/10.1145/2926790.
Full textO'Neil, Patrick, and Dallan Quass. "Improved query performance with variant indexes." ACM SIGMOD Record 26, no. 2 (June 1997): 38–49. http://dx.doi.org/10.1145/253262.253268.
Full textBenham, Rodger, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper. "Boosting Search Performance Using Query Variations." ACM Transactions on Information Systems 37, no. 4 (December 10, 2019): 1–25. http://dx.doi.org/10.1145/3345001.
Full textDissertations / Theses on the topic "Query performance"
Maharajan, Shridevika. "Performance of native SPARQL query processors." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-174542.
Full textRobb, David A. "Query error detection : using base rates to improve end user query performance /." [St. Lucia, Qld], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18191.pdf.
Full textZeuch, Steffen. "Query Execution on Modern CPUs." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19296.
Full textOver the last decades, database systems have been migrated from disk to memory architectures such as RAM, Flash, or NVRAM. Research has shown that this migration fundamentally shifts the performance bottleneck upwards in the memory hierarchy. Whereas disk-based database systems were largely dominated by disk bandwidth and latency, in-memory database systems mainly depend on the efficiency of faster memory components, e.g., RAM, caches, and registers. To encounter these challenges and enable the full potential of the available processing power of modern CPUs for database systems, this thesis proposes four approaches to reduce the impact of the Memory Wall. First, SIMD instructions increase the cache line utilization and decrease the number of executed instructions if they operate on an appropriate data layout. Thus, we adapt tree structures for processing with SIMD instructions to reduce demands on the memory bus and processing units are decreased. Second, by modeling and executing queries following a unified model, we are able to achieve high resource utilization. Therefore, we propose a unified model that enables us to utilize knowledge about the query plan and the underlying hardware to optimize query execution. Third, we need a fundamental knowledge about the individual database operators and their behavior and requirements to optimally distribute the resources among available computing units. We conduct an in-depth analysis of different workloads using performance counters create these insights. Fourth, we propose a non-invasive progressive optimization approach based on in-depth knowledge of individual operators that is able to optimize query execution during run-time. In sum, using additional run-time statistics gathered by performance counters, a unified model, and SIMD instructions, this thesis improves query execution on modern CPUs.
Suto, Tamas. "Performance Trees : A Query Specification Formalism For Quantitative Performance Analysis." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501211.
Full textWien, Sigurd. "Efficient Top-K Fuzzy Interactive Query Expansion While Formulating a Query : From a Performance Perspective." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23010.
Full textWang, Jing. "Optimizing graph query performance by indexing and caching." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8272/.
Full textRichardson, Bartley D. "A Performance Study of XML Query Optimization Techniques." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1258475256.
Full textQian, Shi-Min. "Performance evaluation of query processing on network of workstations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0015/MQ48440.pdf.
Full textWang, Lian, and 王漣. "Mining information from XML documents for query performance enhancement." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30497486.
Full textQian, Shi-Min Carleton University Dissertation Computer Science. "Performance evaluation of query processing on network of workstations." Ottawa, 1999.
Find full textBooks on the topic "Query performance"
Fritchey, Grant. SQL Server Query Performance Tuning. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6742-3.
Full textKrogh, Jesper Wisborg. MySQL 8 Query Performance Tuning. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5584-1.
Full textFritchey, Grant. SQL Server 2012 Query Performance Tuning. Berkeley, CA: Apress, 2012.
Find full textFritchey, Grant. SQL Server 2017 Query Performance Tuning. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3888-2.
Full textFritchey, Grant. SQL Server 2012 Query Performance Tuning. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4204-8.
Full textSajal, Dam, ed. SQL Server 2008 query performance tuning distilled. Berkeley, CA: Apress, 2009.
Find full textFritchey, Grant. SQL Server 2008 query performance tuning distilled. Berkeley, CA: Apress, 2009.
Find full textFritchey, Grant, and Sajal Dam. SQL Server 2008 Query Performance Tuning Distilled. Berkeley, CA: Apress, 2009. http://dx.doi.org/10.1007/978-1-4302-1903-3.
Full textKekäläinen, Jaana. The effects of query complexity, expansion and structure on retrieval performance in probabilistic text retrieval. Tampere, Finland: University of Tampere, 1999.
Find full textPresberg, David. Porting the distributed array query and visualization tool for high performance Fortran to the SP2. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1996.
Find full textBook chapters on the topic "Query performance"
Harrison, Guy, and Michael Harrison. "Query Tuning." In MongoDB Performance Tuning, 123–53. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6879-7_6.
Full textDombrovskaya, Henrietta, Boris Novikov, and Anna Bailliekova. "Application Development and Performance." In PostgreSQL Query Optimization, 197–210. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6885-8_10.
Full textBrimhall, Jason, David Dye, Jonathan Gennick, Andy Roberts, and Wayne Sheffield. "Query Performance Tuning." In SQL Server 2012 T-SQL Recipes, 465–506. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4201-7_21.
Full textSimmons, Ken, and Sylvester Carstarphen. "Managing Query Performance." In Pro SQL Server 2012 Administration, 421–49. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-3916-1_16.
Full textFritchey, Grant. "Query Performance Metrics." In SQL Server Query Performance Tuning, 69–84. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6742-3_6.
Full textFritchey, Grant. "Analyzing Query Performance." In SQL Server Query Performance Tuning, 85–109. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6742-3_7.
Full textFritchey, Grant. "Query Performance Metrics." In SQL Server 2017 Query Performance Tuning, 103–30. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3888-2_6.
Full textFritchey, Grant. "Analyzing Query Performance." In SQL Server 2017 Query Performance Tuning, 131–83. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3888-2_7.
Full textFritchey, Grant. "Query Recompilation." In SQL Server Query Performance Tuning, 321–54. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6742-3_17.
Full textFritchey, Grant. "Query Recompilation." In SQL Server 2012 Query Performance Tuning, 281–311. Berkeley, CA: Apress, 2012. http://dx.doi.org/10.1007/978-1-4302-4204-8_10.
Full textConference papers on the topic "Query performance"
Cronen-Townsend, Steve, Yun Zhou, and W. Bruce Croft. "Predicting query performance." In the 25th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/564376.564429.
Full textSormunen, Eero, Sakari Hokkanen, Petteri Kangaslampi, Petri Pyy, and Bemmu Sepponen. "Query performance analyser -." In the 25th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/564376.564491.
Full textRaiber, Fiana, and Oren Kurland. "Query-performance prediction." In SIGIR '14: The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2600428.2609581.
Full textSondak, Mor, Anna Shtok, and Oren Kurland. "Estimating query representativeness for query-performance prediction." In SIGIR '13: The 36th International ACM SIGIR conference on research and development in Information Retrieval. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2484028.2484107.
Full textSawyer, Scott M., B. David O'Gwynn, An Tran, and Tamara Yu. "Understanding query performance in Accumulo." In 2013 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2013. http://dx.doi.org/10.1109/hpec.2013.6670330.
Full textPal, Dipasree, Mandar Mitra, and Samar Bhattacharya. "Using Multiple Query Expansion Algorithms to Predict Query Performance." In 2014 Fourth International Conference of Emerging Applications of Information Technology (EAIT). IEEE, 2014. http://dx.doi.org/10.1109/eait.2014.67.
Full textZendel, Oleg, J. Shane Culpepper, and Falk Scholer. "Is Query Performance Prediction With Multiple Query Variations Harder Than Topic Performance Prediction?" In SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3404835.3463039.
Full textKanhabua, Nattiya, and Kjetil Nørvåg. "Time-based query performance predictors." In the 34th international ACM SIGIR conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2009916.2010109.
Full textKustarev, Andrey, Yury Ustinovskiy, Anna Mazur, and Pavel Serdyukov. "Session-based query performance prediction." In the 21st ACM international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2396761.2398692.
Full textHolzschuher, Florian, and René Peinl. "Performance of graph query languages." In the Joint EDBT/ICDT 2013 Workshops. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2457317.2457351.
Full textReports on the topic "Query performance"
Bethel, E. Wes, Scott Campbell, Eli Dart, John Shalf, Kurt Stockinger, and Kesheng Wu. High Performance Visualization using Query-Driven Visualizationand Analytics. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/888965.
Full textGao, Xiaoming, and Judy Qiu. Comparing IndexedHBase and Riak for Serving Truthy: Performance of Data Loading and Query Evaluation. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada603198.
Full textFurey, John, Austin Davis, and Jennifer Seiter-Moser. Natural language indexing for pedoinformatics. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41960.
Full text