To see the other types of publications on this topic, follow the link: Quinoxaline dioxide.

Journal articles on the topic 'Quinoxaline dioxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quinoxaline dioxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Yuwen, Mei Qiu, Yubin Bai, Shaoqi Qu, and Zhihui Hao. "Improved synthesis of quinocetone and its two desoxymetabolites." Journal of the Serbian Chemical Society 83, no. 3 (2018): 265–70. http://dx.doi.org/10.2298/jsc170614118l.

Full text
Abstract:
Oxidation of o-nitroaniline with sodium hypochlorite afforded benzofurazan oxide in 96 % yield, and treatment of benzofurazan oxide with acetylacetone in the presence of triethylamine gave 2-acetyl-3-methyl-quinoxaline- -1,4-dioxide in 94 % yield. Finally, condensation of 2-acetyl-3-methyl-quinoxaline- 1,4-dioxide with benzaldehyde using 4-(dimethylamino)pyridinium acetate as a catalyst led to quinocetone in 95 % yield. Subsequently, reduction of the synthesized quinocetone with sodium dithionite resulted in two deoxy derivatives, 1-(3-methyl-4-oxido-2-quinoxalinyl)-3-phenyl-2-propen-1-one and
APA, Harvard, Vancouver, ISO, and other styles
2

Nováček, Libor, and Miloslav Nechvátal. "Partial reduction of quinoxaline 1,4-dioxide derivatives with L-ascorbic acid." Collection of Czechoslovak Chemical Communications 53, no. 6 (1988): 1302–6. http://dx.doi.org/10.1135/cccc19881302.

Full text
Abstract:
Partial reduction of quinoxaline 1,4-dioxide derivatives with L-ascorbic acid has been elaborated. Quinoxaline 1,4-dioxide, 2,3-dimethylquinoxaline 1,4-dioxide, 2-methylquinoxaline 1,4-dioxide and 2-(N-(2-hydroxyethyl)carbamoyl)-3-methylquinoxaline 1,4-dioxide afforded monoxides. In the monomethyl derivatives the more distant N-O bond is reduced. In addition to the monoxide, quinoxaline 1,4-dioxide afforded small amount of quinoxaline. Structures of all the compounds have been confirmed by 1H and 13C NMR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
3

Silva, Liliana, Pedro Coelho, Dulce Teixeira, et al. "Oxidative Stress Modulation and Radiosensitizing Effect of Quinoxaline-1,4-Dioxides Derivatives." Anti-Cancer Agents in Medicinal Chemistry 20, no. 1 (2020): 111–20. http://dx.doi.org/10.2174/1871520619666191028091547.

Full text
Abstract:
Background: Quinoxaline-1,4-dioxide (QNX) derivatives are synthetic heterocyclic compounds with multiple biological and pharmacological effects. Objective: In this study, we investigated the oxidative status of quinoxaline-1,4-dioxides derivatives in modulating melanoma and glioma cell lines, based on previous results from the research group and their capability to promote cell damage by the production of Reactive Oxygen Species (ROS). Methods: Using in vitro cell cultures, the influence of 2-amino-3-cyanoquinoxaline-1,4-dioxide (2A3CQNX), 3- methyl-2-quinoxalinecarboxamide-1,4-dioxide (3M2QNX
APA, Harvard, Vancouver, ISO, and other styles
4

Dotsenko, Victor V., Karina V. Khalatyan, Alena A. Russkih, and Aminat M. Semenova. "New Quinoxaline-1,4-Dioxides Derived from Beirut Reaction of Benzofuroxane with Active Methylene Nitriles." Chemistry Proceedings 3, no. 1 (2020): 14. http://dx.doi.org/10.3390/ecsoc-24-08391.

Full text
Abstract:
Benzofuroxane reacts under Beirut reaction conditions with active methylene nitriles to give new 2-aminoquinoxaline-1,4-dioxides. The treatment of known 2-amino-3-cyanoquinoxaline-1,4-dioxide with chloroacetyl chloride afforded corresponding chloroacetamide which is useful for the preparation of various heterocycles bearing a quinoxaline-1,4-dioxide core system.
APA, Harvard, Vancouver, ISO, and other styles
5

TAKABATAKE, T., Y. TAKABATAKE, T. MIYAZAWA, and M. HASEGAWA. "ChemInform Abstract: Quinoxaline 1,4-Dioxide. Synthesis and Antibacterial Properties of Quinoxaline 1,4-Dioxide Derivatives." ChemInform 27, no. 48 (2010): no. http://dx.doi.org/10.1002/chin.199648173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Juan, Dezhao Kong, Liqiang Liu, Shanshan Song, Hua Kuang, and Chuanlai Xu. "Determination of quinoxaline antibiotics in fish feed by enzyme-linked immunosorbent assay using a monoclonal antibody." Analytical Methods 7, no. 12 (2015): 5204–9. http://dx.doi.org/10.1039/c5ay00953g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yadav, Pooja, Andrew J. Marshall, Jóhannes Reynisson, William A. Denny, Michael P. Hay, and Robert F. Anderson. "Fragmentation of the quinoxaline N-oxide bond to the ˙OH radical upon one-electron bioreduction." Chem. Commun. 50, no. 89 (2014): 13729–31. http://dx.doi.org/10.1039/c4cc05657d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Xu, Panpan Yang, Juan Li, et al. "Genotoxic risk of quinocetone and its possible mechanism in in vitro studies." Toxicology Research 5, no. 2 (2016): 446–60. http://dx.doi.org/10.1039/c5tx00341e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

TAKABATAKE, Tohru, Yumiko TAKABATAKE, Tomoyuki MIYAZAWA, and Minoru HASEGAWA. "Synthesis and Antibacterial Properties of Quinoxaline 1, 4-Dioxide Derivatives." YAKUGAKU ZASSHI 116, no. 6 (1996): 491–96. http://dx.doi.org/10.1248/yakushi1947.116.6_491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vicente, Esther, Raquel Villar, Asunción Burguete, et al. "Efficacy of Quinoxaline-2-Carboxylate 1,4-Di-N-Oxide Derivatives in Experimental Tuberculosis." Antimicrobial Agents and Chemotherapy 52, no. 9 (2008): 3321–26. http://dx.doi.org/10.1128/aac.00379-08.

Full text
Abstract:
ABSTRACT This study extends earlier reports regarding the in vitro efficacies of the 1,4-di-N-oxide quinoxaline derivatives against Mycobacterium tuberculosis and has led to the discovery of a derivative with in vivo efficacy in the mouse model of tuberculosis. Quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives were tested in vitro against a broad panel of single-drug-resistant M. tuberculosis strains. The susceptibilities of these strains to some compounds were comparable to those of strain H37Rv, as indicated by the ratios of MICs for resistant and nonresistant strains, supporting the prem
APA, Harvard, Vancouver, ISO, and other styles
11

Acree,, W. E., Joyce R. Powell, Sheryl A. Tucker, et al. "Thermochemical and Theoretical Study of Some Quinoxaline 1,4-Dioxides and of Pyrazine 1,4-Dioxide." Journal of Organic Chemistry 62, no. 25 (1997): 8960. http://dx.doi.org/10.1021/jo974016s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Acree,, W. E., Joyce R. Powell, Sheryl A. Tucker, et al. "Thermochemical and Theoretical Study of Some Quinoxaline 1,4-Dioxides and of Pyrazine 1,4-Dioxide." Journal of Organic Chemistry 62, no. 11 (1997): 3722–26. http://dx.doi.org/10.1021/jo962149s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Carta, A., P. Corona, and M. Loriga. "Quinoxaline 1,4-Dioxide: A Versatile Scaffold Endowed With Manifold Activities." Current Medicinal Chemistry 12, no. 19 (2005): 2259–72. http://dx.doi.org/10.2174/0929867054864831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Urquiola, Carolina, Marisol Vieites, María H. Torre, et al. "Cytotoxic palladium complexes of bioreductive quinoxaline N1,N4-dioxide prodrugs." Bioorganic & Medicinal Chemistry 17, no. 4 (2009): 1623–29. http://dx.doi.org/10.1016/j.bmc.2008.12.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Xin, Zhi Jun, Jian Ping Liang, Xue Hu Li, Lei Tao, and Xi Hong Lu. "Synthesis and Antibacterial Activity of some New Quinoxaline-1,4-Dioxide Derivatives." Advanced Materials Research 634-638 (January 2013): 1376–79. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.1376.

Full text
Abstract:
As a continuation of our research and with the aim of obtaining new antibacterial agents which can improve the current chemotherapeutic antibacterial treatments, a series of quinoxaline-1,4-di-N-oxide derivatives were synthesized and evaluated for antibacterial activity against bacterial growing in macrophages in vitro. The results indicate that the new compounds exhibited a good antibacterial activity. Also, the potency and low toxicity of these compounds make them valid leads for synthesizing new compounds that possess better activity.
APA, Harvard, Vancouver, ISO, and other styles
16

Stará, Věra, and Miloslav Kopanica. "Determination of some quinoxaline-N-dioxide derivatives by adsorptive stripping voltammetry." Analytica Chimica Acta 186 (1986): 21–30. http://dx.doi.org/10.1016/s0003-2670(00)81770-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Petkevičius, Vytautas, Justas Vaitekūnas, Dovydas Vaitkus, Narimantas Čėnas, and Rolandas Meškys. "Tailoring a Soluble Diiron Monooxygenase for Synthesis of Aromatic N-oxides." Catalysts 9, no. 4 (2019): 356. http://dx.doi.org/10.3390/catal9040356.

Full text
Abstract:
The aromatic N-oxides have received increased attention over the last few years due to their potential application in medicine, agriculture and organic chemistry. As a green alternative in their synthesis, the biocatalytic method employing whole cells of Escherichia coli bearing phenol monooxygenase like protein PmlABCDEF (from here on – PML monooxygenase) has been introduced. In this work, site-directed mutagenesis was used to study the contributions of active site neighboring residues I106, A113, G109, F181, F200, F209 to the regiospecificity of N-oxidation. Based on chromogenic indole oxida
APA, Harvard, Vancouver, ISO, and other styles
18

Shabatina, Tatyana, Olga Vernaya, Vladimir Shabatin, et al. "Cryochemically Obtained Nanoforms of Antimicrobial Drug Substance Dioxidine and Their Physico-chemical and Structural Properties." Crystals 8, no. 7 (2018): 298. http://dx.doi.org/10.3390/cryst8070298.

Full text
Abstract:
Nanoforms of the antimicrobial drug substance 2,3-bis-(hydroxymethyl) quinoxaline-N,N′-dioxide with particles sizes between 50 and 300 nm were obtained by cryochemical modification of the initial pharmaceutical substance using a freeze-drying technique and were characterized by different physicochemical methods (FTIR, UV-Vis, 1H-NMR, DSC, TG and X-ray diffraction) and transmission electron microscopy (TEM). The data obtained from FTIR- and UV–Vis-spectroscopy confirmed the unaltered chemical structure of dioxidine molecules due to the cryochemical modification method. At the same time, X-ray d
APA, Harvard, Vancouver, ISO, and other styles
19

Silva, Liliana, Pedro Coelho, Raquel Soares, Cristina Prudêncio, and Mónica Vieira. "Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells." Future Medicinal Chemistry 11, no. 7 (2019): 645–57. http://dx.doi.org/10.4155/fmc-2018-0251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vieira, Mónica, Cátia Pinheiro, Rúben Fernandes, João Paulo Noronha, and Cristina Prudêncio. "Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives." Microbiological Research 169, no. 4 (2014): 287–93. http://dx.doi.org/10.1016/j.micres.2013.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jaso, Andrés, Belén Zarranz, Ignacio Aldana, and Antonio Monge. "Synthesis of New Quinoxaline-2-carboxylate 1,4-Dioxide Derivatives as Anti-MycobacteriumtuberculosisAgents." Journal of Medicinal Chemistry 48, no. 6 (2005): 2019–25. http://dx.doi.org/10.1021/jm049952w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Torre, María H., Dinorah Gambino, Jeannette Araujo, et al. "Novel Cu(II) quinoxaline N1,N4-dioxide complexes as selective hypoxic cytotoxins." European Journal of Medicinal Chemistry 40, no. 5 (2005): 473–80. http://dx.doi.org/10.1016/j.ejmech.2004.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nunoshiba, Tatsuo, and Hajime Nishioka. "Genotoxicity of quinoxaline 1,4-dioxide derivatives in Escherichia coli and Salmonella typhimurium." Mutation Research/DNA Repair 217, no. 3 (1989): 203–9. http://dx.doi.org/10.1016/0921-8777(89)90072-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gomes, José R. B., Maria D. M. C. Ribeiro da Silva, and Manuel A. V. Ribeiro da Silva. "Quinoxaline-1,4-dioxide: Substituent effects on the N–O bond dissociation enthalpy." Chemical Physics Letters 429, no. 1-3 (2006): 18–22. http://dx.doi.org/10.1016/j.cplett.2006.07.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

ACREE, W. E. JUN, J. R. POWELL, S. A. TUCKER, et al. "ChemInform Abstract: Thermochemical and Theoretical Study of Some Quinoxaline 1,4-Dioxides ( I) and of Pyrazine 1,4-Dioxide." ChemInform 28, no. 44 (2010): no. http://dx.doi.org/10.1002/chin.199744175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

KHLYTIN, A. L., I. E. EFREMOVA, and V. M. BERESTOVITSKAYA. "ChemInform Abstract: Synthesis of Quinoxaline Derivatives Starting from Polynitro-3- thiolene-1,1-dioxide." ChemInform 26, no. 41 (2010): no. http://dx.doi.org/10.1002/chin.199541200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ribeiro da Silva, Maria D. M. C., José R. B. Gomes, Jorge M. Gonçalves, Emanuel A. Sousa, Siddharth Pandey, and William E. Acree. "Thermodynamic Properties of Quinoxaline-1,4-Dioxide Derivatives: A Combined Experimental and Computational Study." Journal of Organic Chemistry 69, no. 8 (2004): 2785–92. http://dx.doi.org/10.1021/jo035695b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nunoshiba, T., M. Takahagi, and H. Nishioka. "Mutagenicity and SOS-inducing activity of quinoxaline 1,4-dioxide derivatives in Escherichia coli." Mutation Research/Environmental Mutagenesis and Related Subjects 203, no. 5 (1988): 384. http://dx.doi.org/10.1016/0165-1161(88)90070-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Urquiola, Carolina, Dinorah Gambino, Mauricio Cabrera, et al. "New copper-based complexes with quinoxaline N1,N4-dioxide derivatives, potential antitumoral agents." Journal of Inorganic Biochemistry 102, no. 1 (2008): 119–26. http://dx.doi.org/10.1016/j.jinorgbio.2007.07.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hampel, O., C. Rode, D. Walther, R. Beckert, and H. Görls. "New Derivatives of Quinoxaline – Syntheses, Complex Formation and their Application as Controlling Ligands for Zinc Catalyzed Epoxide-CO2–Copolymerization." Zeitschrift für Naturforschung B 57, no. 8 (2002): 946–56. http://dx.doi.org/10.1515/znb-2002-0816.

Full text
Abstract:
A series of amino-(type 3) as well as hydrazino-substituted quinoxalines (type 8) have been synthesized in order to study their ability to complex with iron(III) and zinc(II) ions. Cyclization of 2,3-dichloroquinoxaline (1) with a bis-amidine 9 leads to ring-fused quinoxalines of type 10. One of these compounds (10a) forms a unique macrocyclic hexameric complex 14 with zinc ions in the presence of 2,6-diisopropyl phenolate. In an analogous manner, the monomeric complexes 12 and 13 could be synthesized. All of these new zinc complexes catalyze the copolymerization of cyclohexene oxide and carbo
APA, Harvard, Vancouver, ISO, and other styles
31

Waly, Mohamed, Sameh Elgogary, Ahmed Lashien, and Ahmad Farag. "Synthesis andIn VitroAntitumor Evaluation of Some New Pyrimido[4,5-b]quinoxaline 5,10-Dioxide Derivatives." Journal of Heterocyclic Chemistry 52, no. 2 (2014): 411–17. http://dx.doi.org/10.1002/jhet.1999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Meier, Herbert, Mustafa M. El- Abadelah, Musa Z. Nazer, and Naser S. El-Abadla. "6- Fluoro-7-(1-piperazinyl)quinoxaline 1,4-Dioxide. Part I. 2-(N-2-Hydroxyalkylcarbamoyl) Derivatives." HETEROCYCLES 41, no. 10 (1995): 2203. http://dx.doi.org/10.3987/com-95-7128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Barea, Carlos, Adriana Pabón, Silvia Galiano, et al. "Antiplasmodial and Leishmanicidal Activities of 2-Cyano-3-(4-phenylpiperazine-1-carboxamido) Quinoxaline 1,4-Dioxide Derivatives." Molecules 17, no. 8 (2012): 9451–61. http://dx.doi.org/10.3390/molecules17089451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Scherbakov, Alexander M., Alexander M. Borunov, Galina I. Buravchenko та ін. "Novel Quinoxaline-2-Carbonitrile-1,4-Dioxide Derivatives Suppress HIF1α Activity and Circumvent MDR in Cancer Cells". Cancer Investigation 36, № 3 (2018): 199–209. http://dx.doi.org/10.1080/07357907.2018.1453072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Čihák, R., and M. Vontorková. "Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents evaluated by the transplacental micronucleus test." Mutation Research/Environmental Mutagenesis and Related Subjects 147, no. 5 (1985): 289. http://dx.doi.org/10.1016/0165-1161(85)90146-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Čihák, Rostislav, and Markéta Vontorková. "Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents III. Transplacental micronucleus test in mice." Mutation Research Letters 144, no. 2 (1985): 81–84. http://dx.doi.org/10.1016/0165-7992(85)90006-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Noblía, Pabla, Marisol Vieites, María H. Torre, et al. "Novel vanadyl complexes with quinoxaline N1,N4-dioxide derivatives as potent in vitro insulin-mimetic compounds." Journal of Inorganic Biochemistry 100, no. 2 (2006): 281–87. http://dx.doi.org/10.1016/j.jinorgbio.2005.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dehamchia, Mohamed, and Zine Régaïnia. "Conventional and microwave-assisted solvent-free synthesis of fused [1,2,5]thiadiazolo[3,4-b]quinoxaline-2,2-dioxide derivatives." Journal of Sulfur Chemistry 34, no. 3 (2012): 242–49. http://dx.doi.org/10.1080/17415993.2012.729589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dahbi, Samir, and Philippe Bisseret. "Near Room Temperature Cross-Coupling Reactions of Arene Boronic Acids with a Quinoxaline 1,4-Dioxide Benzylsulfanyl Derivative." European Journal of Organic Chemistry 2012, no. 20 (2012): 3759–63. http://dx.doi.org/10.1002/ejoc.201200433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aguirre, Gabriela, Hugo Cerecetto, Rossanna Di Maio, et al. "Quinoxaline N , N ′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi . Structure–activity relationships." Bioorganic & Medicinal Chemistry Letters 14, no. 14 (2004): 3835–39. http://dx.doi.org/10.1016/j.bmcl.2004.04.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liang-Bo, Feng, and Wang Han-Qing. "ESR Studies on 2-Methyl-3-Acetyl Quinoxaline N,N-Dioxide and Its Cyclodextrin Inclusion Compounds." Acta Physico-Chimica Sinica 11, no. 06 (1995): 537–40. http://dx.doi.org/10.3866/pku.whxb19950612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

El-Gogary, Sameh R., Mohamed A. Waly, Ismail T. Ibrahim, and Osama Z. El-Sepelgy. "Synthesis and UV absorption of new conjugated quinoxaline 1,4-dioxide derivatives anticipated as tumor imaging and cytotoxic agents." Monatshefte für Chemie - Chemical Monthly 141, no. 11 (2010): 1253–62. http://dx.doi.org/10.1007/s00706-010-0386-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Greer, Melinda L., Joseph R. Duncan, Janice L. Duff, and Silas C. Blackstock. "Solid-state complexes of quinoxaline- and phenazine-N,N′-dioxide donors with tetracyanoethylene. Crystal engineering via donor-acceptor interactions." Tetrahedron Letters 38, no. 44 (1997): 7665–68. http://dx.doi.org/10.1016/s0040-4039(97)10089-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Jiaheng, Wenfeng Zhou, Bing Peng, Suxia Zhang, Haixiang Gao, and Zhiqiang Zhou. "Density functional theory for N–O bond dissociation enthalpies of quinoxaline-1,4-dioxide derivatives: Theoretical method assessment and prediction." Journal of Molecular Structure: THEOCHEM 957, no. 1-3 (2010): 36–40. http://dx.doi.org/10.1016/j.theochem.2010.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dahbi, Samir, and Philippe Bisseret. "ChemInform Abstract: Near Room Temperature Cross-Coupling Reactions of Arene Boronic Acids with a Quinoxaline 1,4-Dioxide Benzylsulfanyl Derivatives." ChemInform 43, no. 50 (2012): no. http://dx.doi.org/10.1002/chin.201250168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chouker, Mohamad A., Hiba Abdallah, Ali Zeiz та Mohammad H. El-Dakdouki. "Host-quest inclusion complex of quinoxaline-1,4-dioxide derivative with 2-hydroxypropyl-β-cyclodextrin: Preparation, characterization, and antibacterial activity". Journal of Molecular Structure 1235 (липень 2021): 130273. http://dx.doi.org/10.1016/j.molstruc.2021.130273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ibrahim, I. T., M. A. Waly, and M. El-Tawoosy. "Synthesis, labeling, and biological evaluation of 2-{[benzyl(cyanomethyl)amino]methyl}-3-(ethoxycarbonyl)-quinoxaline 1,4-dioxide in ascites bearing mice." Radiochemistry 54, no. 4 (2012): 395–400. http://dx.doi.org/10.1134/s1066362212040157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

El-Gogary, Sameh R., Mohamed A. Waly, Ismail T. Ibrahim, and Osama Z. El-Sepelgy. "ChemInform Abstract: Synthesis and UV Absorption of New Conjugated Quinoxaline 1,4-Dioxide Derivatives Anticipated as Tumor Imaging and Cytotoxic Agents." ChemInform 42, no. 6 (2011): no. http://dx.doi.org/10.1002/chin.201106178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lavaggi, María Laura, Gabriela Aguirre, Lucía Boiani, et al. "Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi." European Journal of Medicinal Chemistry 43, no. 8 (2008): 1737–41. http://dx.doi.org/10.1016/j.ejmech.2007.10.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gomes, José R. B., Emanuel A. Sousa, Paula Gomes, et al. "Thermochemical Studies on 3-Methyl-quinoxaline-2-carboxamide-1,4-dioxide Derivatives: Enthalpies of Formation and of N−O Bond Dissociation." Journal of Physical Chemistry B 111, no. 8 (2007): 2075–80. http://dx.doi.org/10.1021/jp067818c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!