To see the other types of publications on this topic, follow the link: Quinoxalinona.

Journal articles on the topic 'Quinoxalinona'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quinoxalinona.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Awad, Ibrahim M. A., and Khairy M. Hassan. "Studies in Vilsmeier-Haack reaction. Application to quinoxalinones." Collection of Czechoslovak Chemical Communications 55, no. 11 (1990): 2715–21. http://dx.doi.org/10.1135/cccc19902715.

Full text
Abstract:
The 3-methyl group in quinoxalinones I and II has been found to undergo diformylation by Vilsmeier reagent to give the corresponding aminoacrolein derivatives (III, IV). Condensation and/or interaction of III or IV with some secondary heterocyclic amines and/or with hydrazine, phenylhydrazine and hydroxylamine affords the related 3-methyl-N-(1H)-2-quinoxalinone and 1,3-dimethyl-2-quinoxalinone derivatives (VII-XVIII), some with pronounced fluorescence activities. All synthesized compounds have been screened in vitro for their antimicrobial activities against Gram-positive and Gram-negative bacteria. The structures of these compounds were confirmed by elemental analysis, IR and 1H NMR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
2

Lv, Min, and Hui Xu. "The Combinatorial Synthesis of Bioactive Quinoxalines, Quinoxalinones and Quinoxalinols." Combinatorial Chemistry & High Throughput Screening 13, no. 3 (March 1, 2010): 293–301. http://dx.doi.org/10.2174/138620710790980513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lv, Min, and Hui Xu. "ChemInform Abstract: The Combinatorial Synthesis of Bioactive Quinoxalines, Quinoxalinones and Quinoxalinols." ChemInform 41, no. 28 (June 17, 2010): no. http://dx.doi.org/10.1002/chin.201028227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramli, Youssef, Ahmed Moussaif, Khalid Karrouchi, and El Mokhtar Essassi. "Pharmacological Profile of Quinoxalinone." Journal of Chemistry 2014 (2014): 1–21. http://dx.doi.org/10.1155/2014/563406.

Full text
Abstract:
Quinoxalinone and its derivatives are used in organic synthesis for building natural and designed synthetic compounds and they have been frequently utilized as suitable skeletons for the design of biologically active compound. This review covers updated information on the most active quinoxalinone derivatives that have been reported to show considerable pharmacological actions such as antimicrobial, anti-inflammatory, antidiabetic, antiviral, antitumor, and antitubercular activity. It can act as an important tool for chemists to develop newer quinoxalinone derivatives that may prove to be better agents in terms of efficacy and safety.
APA, Harvard, Vancouver, ISO, and other styles
5

Abad, Nadeem, Youssef Ramli, Tuncer Hökelek, Nada Kheira Sebbar, Joel T. Mague, and El Mokhtar Essassi. "Crystal structure and Hirshfeld surface analysis of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-methylquinoxalin-2(1H)-one." Acta Crystallographica Section E Crystallographic Communications 74, no. 12 (November 20, 2018): 1815–20. http://dx.doi.org/10.1107/s205698901801589x.

Full text
Abstract:
The title compound, C16H19N5O, is built up from a planar quinoxalinone ring system linked through a methylene bridge to a 1,2,3-triazole ring, which in turn carries ann-butyl substituent. The triazole ring is inclined by 67.09 (4)° to the quinoxalinone ring plane. In the crystal, the molecules form oblique stacks along thea-axis direction through intermolecular C—HTrz...NTrz(Trz = triazole) hydrogen bonds, and offset π-stacking interactions between quinoxalinone rings [centroid–centroid distance = 3.9107 (9) Å] and π–π interactions, which are associated pairwise by inversion-related C—HDhydqn...π(ring) (Dhydqn = dihydroquinoxaline) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (52.7%), H...N/N...H (18.9%) and H...C/C...H (17.0%) interactions.
APA, Harvard, Vancouver, ISO, and other styles
6

Toonchue, Saowanee, Ladawan Sumunnee, Khamphee Phomphrai, and Sirilata Yotphan. "Metal-free direct oxidative C–C bond coupling of pyrazolones and quinoxalinones." Organic Chemistry Frontiers 5, no. 12 (2018): 1928–32. http://dx.doi.org/10.1039/c8qo00328a.

Full text
Abstract:
An efficient oxidative dehydrogenative coupling of quinoxalinones and pyrazolones has been successfully developed using a readily available persulfate oxidant. This protocol provides facile access to a wide array of hydroxy-pyrazolyl quinoxalinones in good to excellent yields.
APA, Harvard, Vancouver, ISO, and other styles
7

Saeed, Tahseen S., Dinesh Maddipatla, Binu B. Narakathu, Sarah S. Albalawi, Sherine O. Obare, and Massood Z. Atashbar. "Synthesis of a novel hexaazatriphenylene derivative for the selective detection of copper ions in aqueous solution." RSC Advances 9, no. 68 (2019): 39824–33. http://dx.doi.org/10.1039/c9ra08825c.

Full text
Abstract:
A hexaazatriphenylene (HAT) derivative, naphtho[2,3-h]naphtho[2′,3′:7,8]quinoxalino[2,3-a]naphtho[2′,3′:7,8]quinoxalino[2,3-c]phenazine-5,10,15,20,25,30-hexaone (NQH) was synthesized, characterized, and found to be selective to copper (Cu2+) ions.
APA, Harvard, Vancouver, ISO, and other styles
8

Nakane, Yuta, Takashi Takeda, Norihisa Hoshino, Ken-ichi Sakai, and Tomoyuki Akutagawa. "Dual fluorescent zwitterionic organogels of a quinoxalinone derivative using cation–anion detection keys." Journal of Materials Chemistry C 5, no. 25 (2017): 6234–42. http://dx.doi.org/10.1039/c7tc01242j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Freeman-Davis, Joanna G., Margaret A. Hines, Cynthia L. Mazat-Griffith, and Charles F. Beam. "The Preparation of 3-Substituted-2(1H)-quinoxalinones by the Condensation of 3-Methyl-2-quinoxalinol Dianion with Certain Electrophilic Reagents." Synthetic Communications 23, no. 2 (January 1993): 201–8. http://dx.doi.org/10.1080/00397919308009769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Jie, Mingyu Ba, Bo Wang, Haibo Zhou, Jianbo Bie, Decai Fu, Yingli Cao, Bailing Xu, and Ying Guo. "Synthesis and biological evaluation of novel quinoxalinone-based HIV-1 reverse transcriptase inhibitors." Med. Chem. Commun. 5, no. 4 (2014): 441–44. http://dx.doi.org/10.1039/c3md00337j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Burganov, T. I., S. A. Katsyuba, S. M. Sharipova, A. A. Kalinin, A. Monari, and X. Assfeld. "Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications." Physical Chemistry Chemical Physics 20, no. 33 (2018): 21515–27. http://dx.doi.org/10.1039/c8cp03780a.

Full text
Abstract:
The photophysical properties of a series of novel push–pull quinoxalinone-based chromophores that strongly absorb and emit light in the broad visible spectrum were comprehensively studied both experimentally and through quantum chemical methods.
APA, Harvard, Vancouver, ISO, and other styles
12

Mamedov, Vakhid A. "Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es." RSC Advances 6, no. 48 (2016): 42132–72. http://dx.doi.org/10.1039/c6ra03907c.

Full text
Abstract:
The review describes all the quinoxaline-benzimidazole rearrangements as a whole and the new quinoxalinone-benzimidazol(on)e rearrangements in particular when exposed to nucleophilic rearrangements which can be used for the synthesis of various biheterocyclic motifs.
APA, Harvard, Vancouver, ISO, and other styles
13

Song, J. H., S. M. Bae, H. Y. Shin, D. I. Jung, and J. H. Cho. "Synthesis of Spirohydantoins and Schiff Bases of Indenoquinoxalinones and Indenopyridopyrazinones." Asian Journal of Chemistry 32, no. 8 (2020): 1925–30. http://dx.doi.org/10.14233/ajchem.2020.22679.

Full text
Abstract:
The main structure of many compounds containing spirohydantoin and Schiff bases of indenoquinoxalines and indenopyridopyrazinones expose valuable pharmacological properties. Herein, an effective synthesis and stereochemistry of indenoquinoxalinones (2a, 2b+bi~2d+di) and indenopyridopyrazinones (2e+ei~g+gi) via the reaction of ninhydrin with desirable diamines is reported. We synthesized the corres-ponding spirohydantoins (3a, 3b~d and 3bi~di) from synthesized indeno[1,2-b]quinoxalinones and indeno[1,2-b]pyrido[3,2-e]pyrazinones with the standard Bucherer-Bergs conditions (KCN, ammonium carbonate, acetonitrile, refluxing, without NaHSO3). And also synthesized the azomethine analogs (4~8+8i) of tetracyclic indeno[1,2-b]quinoxalinones as a Schiff base.
APA, Harvard, Vancouver, ISO, and other styles
14

Lian, Fei, Kun Xu, Wei Meng, Haonan Zhang, Zhoumei Tan, and Chengchu Zeng. "Nickel-catalyzed electrochemical reductive decarboxylative coupling of N-hydroxyphthalimide esters with quinoxalinones." Chemical Communications 55, no. 97 (2019): 14685–88. http://dx.doi.org/10.1039/c9cc07840a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Guo, Tao, Chuan-Chuan Wang, Xiang-Heng Fu, Yu Liu, and Pan-Ke Zhang. "Copper-catalyzed C–H/N–H cross-coupling reactions for the synthesis of 3-heteroaryl quinoxalin-2(1H)-ones." Organic & Biomolecular Chemistry 17, no. 13 (2019): 3333–37. http://dx.doi.org/10.1039/c9ob00294d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Renault, Kévin, Pierre-Yves Renard, and Cyrille Sabot. "Photophysical properties of quinoxalin-2(1H)-ones: application in the preparation of an azide-based fluorogenic probe for the detection of hydrogen sulfide." New Journal of Chemistry 41, no. 18 (2017): 10432–37. http://dx.doi.org/10.1039/c7nj01893b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mtiraoui, Hasan, Kevin Renault, Morgane Sanselme, Moncef Msaddek, Pierre-Yves Renard, and Cyrille Sabot. "Correction: Metal-free oxidative ring contraction of benzodiazepinones: an entry to quinoxalinones." Organic & Biomolecular Chemistry 15, no. 35 (2017): 7474–75. http://dx.doi.org/10.1039/c7ob90126g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Xu, Bin Xu, and Ming-Hua Xu. "Rhodium-catalyzed asymmetric arylation of N- and O-containing cyclic aldimines: facile and efficient access to highly optically active 3,4-dihydrobenzo[1,4]oxazin-2-ones and dihydroquinoxalinones." Organic Chemistry Frontiers 3, no. 8 (2016): 944–48. http://dx.doi.org/10.1039/c6qo00191b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xu, Jun, Lin Huang, Lei He, Chenfeng Liang, Yani Ouyang, Jiabin Shen, Min Jiang, and Wanmei Li. "Direct para-C–H heteroarylation of anilines with quinoxalinones by metal-free cross-dehydrogenative coupling under an aerobic atmosphere." Green Chemistry 23, no. 17 (2021): 6632–38. http://dx.doi.org/10.1039/d1gc01899j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Mu-Wang, Zhihong Deng, Qin Yang, Jian Huang, and Yiyuan Peng. "Enantioselective synthesis of trifluoromethylated dihydroquinoxalinones via palladium-catalyzed hydrogenation." Organic Chemistry Frontiers 6, no. 6 (2019): 746–50. http://dx.doi.org/10.1039/c8qo01361f.

Full text
Abstract:
A highly enantioselective palladium-catalyzed asymmetric hydrogenation of 3-(trifluoromethyl)quinoxalinones has been successfully developed, providing a general and facile access to chiral 3-(trifluoromethyl)-3,4-dihydroquinoxalinones with up to 99% ee.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhou, Kai, Ming Bao, Jingjing Huang, Zhenghui Kang, Xinfang Xu, Wenhao Hu, and Yu Qian. "Iron-catalyzed [3 + 2]-cycloaddition of in situ generated N-ylides with alkynes or olefins: access to multi-substituted/polycyclic pyrrole derivatives." Organic & Biomolecular Chemistry 18, no. 3 (2020): 409–14. http://dx.doi.org/10.1039/c9ob02571e.

Full text
Abstract:
An iron-catalyzed three-component reaction of benzimidazoles with diazoacetates and electron-deficient alkynes or alkenes that delivers multi-substituted pyrroles, pyrrolo[1,2-a]benzimidazoles and pyrrolo[1,2-a] quinoxalinones has been reported.
APA, Harvard, Vancouver, ISO, and other styles
22

Nakache, R., T. Touil, A. El Hessni, A. Ouichou, Y. Bahbiti, I. Berkiks, M. Chakit, A. Mesfioui, and Youcef Mehellou. "In vivo acute toxicity assessment of a novel quinoxalinone (6-nitro-2 (1H)-quinoxalinone) in Wistar rats." Cogent Chemistry 3, no. 1 (January 1, 2017): 1301242. http://dx.doi.org/10.1080/23312009.2017.1301242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

DAVIS, J. G., M. A. HINES, C. L. GRIFFITH, and C. F. BEAM. "ChemInform Abstract: The Preparation of 3-Substituted 2(1H)-Quinoxalinones (IV) by the Condensation of 3-Methyl-2-quinoxalinol Dianion (II) with Certain Electrophilic Reagents (III)." ChemInform 24, no. 31 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199331195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Zi-Biao, Xiang Li, Mu-Wang Chen, Zongbao K. Zhao, and Yong-Gui Zhou. "Biomimetic asymmetric reduction of benzoxazinones and quinoxalinones using ureas as transfer catalysts." Chemical Communications 56, no. 53 (2020): 7309–12. http://dx.doi.org/10.1039/d0cc03091k.

Full text
Abstract:
Using ureas as transfer catalysts through hydrogen bonding activation, biomimetic asymmetric reduction of benzoxazinones and quinoxalinones has been developed, giving chiral products with high enantioselectivities. A key dihydroquinoxalinone intermediate of a BRD4 inhibitor was synthesized using biomimetic asymmetric reduction.
APA, Harvard, Vancouver, ISO, and other styles
25

Shi, Leilei, Hua Zhou, Jifeng Wu, and Xun Li. "Advances in the Chemistry of Quinoxalinone Derivatives." Mini-Reviews in Organic Chemistry 12, no. 1 (December 24, 2014): 96–112. http://dx.doi.org/10.2174/1570193x11666141029004418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Santra, Swadeshmukul, and Sneh K. Dogra. "Solvatochromism and prototropic reactions of 2-quinoxalinone." Chemical Physics 226, no. 1-2 (January 1998): 229. http://dx.doi.org/10.1016/s0301-0104(97)00313-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Santra, Swadeshmukul, and Sneh K. Dogra. "Solvatochromism and prototropic reactions of 2-quinoxalinone." Chemical Physics 207, no. 1 (June 1996): 103–13. http://dx.doi.org/10.1016/0301-0104(96)00057-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Okujima, Tetsuo, Makoto Kikuchi, Hiroko Yamada, Hidemitsu Uno, and Noboru Ono. "A new synthesis of tetra(quinoxalino)tetraazaporphyrin by the retro Diels-Alder reaction of a soluble precursor." Journal of Porphyrins and Phthalocyanines 10, no. 10 (October 2006): 1197–201. http://dx.doi.org/10.1142/s1088424606000569.

Full text
Abstract:
Soluble tetra(pyrazino)tetraazaporphyrin was synthesized by the reaction of bicyclo[2.2.2]octadiene-fused dicyanopyrazine. The retro Diels-Alder reaction of the soluble tetra(pyrazino)tetraazaporphyrin gave a tetra(quinoxalino)tetraazaporphyrin in quantitative yield.
APA, Harvard, Vancouver, ISO, and other styles
29

Soni, Neeraj, Shivendra Singh, Shubham Sharma, Gayatri Batra, Kush Kaushik, Chethana Rao, Navneet C. Verma, Bhaskar Mondal, Aditya Yadav, and Chayan K. Nandi. "Absorption and emission of light in red emissive carbon nanodots." Chemical Science 12, no. 10 (2021): 3615–26. http://dx.doi.org/10.1039/d0sc05879c.

Full text
Abstract:
Herein we unveil the presence of a molecular fluorophore quinoxalino[2,3-b]phenazine-2,3-diamine (QXPDA) in a colossal amount in red emissive CNDs synthesized from o-phenylenediamine, a well-known precursor molecule used for CND synthesis.
APA, Harvard, Vancouver, ISO, and other styles
30

Shaaban, Mohamed A., Omneya M. Khalil, Khaled R. Ahmed, and Phoebe F. Lamie. "Synthesis and antibacterial activity of novel quinoxalinone derivatives." Journal of Chemical Research 2009, no. 9 (September 1, 2009): 574–78. http://dx.doi.org/10.3184/030823409x12510409044803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shi, Leilei, Wei Hu, Jifeng Wu, Huaiyu Zhou, Hua Zhou, and Xun Li. "Quinoxalinone as a Privileged Platform in Drug Development." Mini-Reviews in Medicinal Chemistry 18, no. 5 (February 14, 2018): 392–413. http://dx.doi.org/10.2174/1389557517666171101111134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, X., K. H. Yang, W. L. Li, and W. F. Xu. "Recent advances in the research of quinoxalinone derivatives." Drugs of the Future 31, no. 11 (2006): 979. http://dx.doi.org/10.1358/dof.2006.031.11.1037128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shi, Leilei, Jianfeng Zhou, Jifeng Wu, Junya Cao, Yuemao Shen, Hua Zhou, and Xun Li. "Quinoxalinone (Part II). Discovery of (Z)-3-(2-(pyridin-4-yl)vinyl)quinoxalinone derivates as potent VEGFR-2 kinase inhibitors." Bioorganic & Medicinal Chemistry 24, no. 8 (April 2016): 1840–52. http://dx.doi.org/10.1016/j.bmc.2016.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Liu, Gang, Li Li, Binbin Kou, Suode Zhang, Liang Zhang, Yunyun Yuan, Tao Ma, Yan Shang, and Yuancheng Li. "Benzofused Tricycles Based on 2-Quinoxalinol." Journal of Combinatorial Chemistry 9, no. 1 (December 16, 2006): 70–78. http://dx.doi.org/10.1021/cc060034o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yotphan, Sirilata, Medena Noikham, and Tanakorn Kittikool. "Iodine-Catalyzed Oxidative Cross-Dehydrogenative Coupling of Quinoxalinones and Indoles: Synthesis of 3-(Indol-2-yl)quinoxalin-2-one under Mild and Ambient Conditions." Synthesis 50, no. 12 (April 4, 2018): 2337–46. http://dx.doi.org/10.1055/s-0037-1609445.

Full text
Abstract:
A highly efficient iodine-catalyzed oxidative cross-dehydrogenative coupling reaction of quinoxalinones and indoles has been developed. Without the requirement of peroxide and acid, this reaction utilizes a catalytic amount of molecular iodine to facilitate the C–C bond formation under ambient air. This simple and easy-to-handle protocol represents an interesting synthetic alternative with a good scope and functional group compatibility.
APA, Harvard, Vancouver, ISO, and other styles
36

Freyer, Wolfgang. "Metallo-tetrabenzo[g]quinoxalino-2,3-porphyrazines." Journal f�r Praktische Chemie/Chemiker-Zeitung 336, no. 8 (1994): 693–94. http://dx.doi.org/10.1002/prac.19943360810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kalinin, A. A., V. A. Mamedov, and Ya A. Levin. "ChemInform Abstract: Unexpected Quinoxalino-Benzimidazole Rearrangement." ChemInform 32, no. 21 (May 26, 2010): no. http://dx.doi.org/10.1002/chin.200121147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Makino, Kenji, Gozyo Sakata, Katsushi Morimoto, and Yoshinori Ochiai. "Synthesis of Tricyclic Compounds Using 2(1H)-Quinoxalinone Derivatives." HETEROCYCLES 23, no. 1 (1985): 198. http://dx.doi.org/10.3987/r-1985-01-0198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ali, M., M. Ismail, M. El-Gaby, M. Zahran, and Y. Ammar. "Synthesis and Antimicrobial Activities of Some Novel Quinoxalinone Derivatives." Molecules 5, no. 12 (June 18, 2000): 864–73. http://dx.doi.org/10.3390/50600864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shi, Leilei, Hua Zhou, Jifeng Wu, and Xun Li. "ChemInform Abstract: Advances in the Chemistry of Quinoxalinone Derivatives." ChemInform 46, no. 21 (May 2015): no. http://dx.doi.org/10.1002/chin.201521281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

El-Sabbagh, Osama. "SYNTHESIS OF NEW QUINOXALINONE DERIVATIVES OF EXPECTED ANTIMICROBIAL ACTIVITY." Zagazig Journal of Pharmaceutical Sciences 13, no. 1 (June 1, 2004): 29–35. http://dx.doi.org/10.21608/zjps.2004.177906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Krchňák, Viktor, Lajos Szabo, and Josef Vágner. "A solid phase traceless synthesis of quinoxalinones." Tetrahedron Letters 41, no. 16 (April 2000): 2835–38. http://dx.doi.org/10.1016/s0040-4039(00)00297-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kou, Bin-Bin, Fa Zhang, Tian-Ming Yang, and Gang Liu. "Simultaneous Solid-Phase Synthesis of Quinoxalinone and Benzimidazole Scaffold Libraries." Journal of Combinatorial Chemistry 8, no. 6 (November 2006): 841–47. http://dx.doi.org/10.1021/cc060074s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ramli, Y., H. Benzeid, R. Bouhfid, Y. Kandri Rodi, S. Ferfra, and E. M. Essassi. "ChemInform Abstract: Synthesis, Reactivity and Biological Activity of Quinoxalinone Derivatives." ChemInform 41, no. 45 (October 14, 2010): no. http://dx.doi.org/10.1002/chin.201045259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Joly, Nicolas, Chakir Jarmoumi, Mohamed Massoui, El Mokhtar Essassi, Patrick Martin, and Joseph H. Banoub. "Electrospray tandem mass spectrometric analysis of novel synthetic quinoxalinone derivatives." Rapid Communications in Mass Spectrometry 22, no. 6 (2008): 819–33. http://dx.doi.org/10.1002/rcm.3429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Duda, T. A., L. L. Sveshnikova, V. K. Khlestkin, K. A. Dembo, and L. G. Yanusova. "Langmuir-blodgett films of hydroxamic acid of the quinoxalinone series." Russian Journal of Physical Chemistry A 83, no. 4 (January 2009): 654–59. http://dx.doi.org/10.1134/s0036024409040232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Alasmary, Fatmah A. S., Fatima S. Alnahdi, Abir Ben Bacha, Amr M. El-Araby, Nadine Moubayed, Ahmed M. Alafeefy, and Moustafa E. El-Araby. "New quinoxalinone inhibitors targeting secreted phospholipase A2 and α-glucosidase." Journal of Enzyme Inhibition and Medicinal Chemistry 32, no. 1 (January 1, 2017): 1143–51. http://dx.doi.org/10.1080/14756366.2017.1363743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hussain, Saghir, Shagufta Parveen, Xiangyu Qin, Xin Hao, Shuzhen Zhang, Xin Chen, Changjin Zhu, and Bing Ma. "Novel synthesis of nitro-quinoxalinone derivatives as aldose reductase inhibitors." Bioorganic & Medicinal Chemistry Letters 24, no. 9 (May 2014): 2086–89. http://dx.doi.org/10.1016/j.bmcl.2014.03.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Yonggang, Jian Zhang, Wenfang Xu, Huawei Zhu, and Xun Li. "Novel matrix metalloproteinase inhibitors derived from quinoxalinone scaffold (Part I)." Bioorganic & Medicinal Chemistry 18, no. 4 (February 2010): 1516–25. http://dx.doi.org/10.1016/j.bmc.2010.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Liao, Chun-Chen, Chuan-Hung Chou, and Rama Krishna Peddinti. "Photochemistry of Pyrazino- and Quinoxalino-fused Naphthobarrelenes." HETEROCYCLES 54, no. 1 (2001): 61. http://dx.doi.org/10.3987/com-00-s(i)24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography