Academic literature on the topic 'Radar'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radar.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radar"
Liu, Yuhang, Yu Shen, Lili Fan, Yonglin Tian, Yunfeng Ai, Bin Tian, Zhongmin Liu, and Fei-Yue Wang. "Parallel Radars: From Digital Twins to Digital Intelligence for Smart Radar Systems." Sensors 22, no. 24 (December 16, 2022): 9930. http://dx.doi.org/10.3390/s22249930.
Full textProtat, Alain, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby. "Three-way calibration checks using ground-based, ship-based, and spaceborne radars." Atmospheric Measurement Techniques 15, no. 4 (February 21, 2022): 915–26. http://dx.doi.org/10.5194/amt-15-915-2022.
Full textLuong, David, Sreeraman Rajan, and Bhashyam Balaji. "Quantum Monopulse Radar." Applied Computational Electromagnetics Society 35, no. 11 (February 5, 2021): 1430–32. http://dx.doi.org/10.47037/2020.aces.j.351184.
Full textOh, Soo Young, Kyu Ho Cha, Hayoung Hong, Hongsoo Park, and Sun K. Hong. "Measurement of Nonlinear RCS of Electronic Targets for Nonlinear Detection." Journal of Electromagnetic Engineering and Science 22, no. 4 (July 31, 2022): 447–51. http://dx.doi.org/10.26866/jees.2022.4.r.108.
Full textLakshmanan, Valliappa, Travis Smith, Kurt Hondl, Gregory J. Stumpf, and Arthur Witt. "A Real-Time, Three-Dimensional, Rapidly Updating, Heterogeneous Radar Merger Technique for Reflectivity, Velocity, and Derived Products." Weather and Forecasting 21, no. 5 (October 1, 2006): 802–23. http://dx.doi.org/10.1175/waf942.1.
Full textPerelygin, B. V., and A. M. Luzbin. "Construction of a continuous radar field of a hydrometeorological monitoring system based on a geometric approach." Radiotekhnika, no. 191 (December 22, 2017): 173–80. http://dx.doi.org/10.30837/rt.2017.4.191.17.
Full textJohnston, Paul E., James R. Jordan, Allen B. White, David A. Carter, David M. Costa, and Thomas E. Ayers. "The NOAA FM-CW Snow-Level Radar." Journal of Atmospheric and Oceanic Technology 34, no. 2 (February 2017): 249–67. http://dx.doi.org/10.1175/jtech-d-16-0063.1.
Full textBHAT, G. S., J. VIVEKANANDAN, and D. PRADHAN. "Evolution of Radar Meteorology in India and the latest trends." MAUSAM 76, no. 1 (January 16, 2025): 55–64. https://doi.org/10.54302/mausam.v76i1.6497.
Full textWang, Dingyang, Sungwon Yoo, and Sung Ho Cho. "Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs." Sensors 20, no. 22 (November 23, 2020): 6695. http://dx.doi.org/10.3390/s20226695.
Full textVidal, Luis E., Ulises Román Concha, Justo Solís, José Piedra, Carlos Chávez, Dominga M. Cano, and Juan C. Woolcott. "Implementation of a Transportable Radar Mode S of Monopulse Secondary Surveillance (MSSR-S) for the Peruvian Civil Aviation Surveillance." Telecom 4, no. 4 (October 3, 2023): 693–708. http://dx.doi.org/10.3390/telecom4040031.
Full textDissertations / Theses on the topic "Radar"
Geladakis, Dimitrios N. "Comparison of the step frequency radar with the conventional constant frequency radars." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA328272.
Full text"December 1996." Thesis advisor(s): Gurnam S. Gill. Includes bibliographical references (p. 45). Also available online.
Karlsen, Jan Sigurd. "Radar målfølging." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10444.
Full textKongsberg Defense & Aerospace (KDA) benytter radarer av typen phased array i deres luftvernsystemer. På bakgrunn av nødvendige egenskaper som elektronisk styring av radarstråle tas denne radartypen også i bruk i denne oppgaven. En tilgjengelig signalkilde fra radaren er SNR data som brukes for utbedring av målfølgingen. På bakgrunn av valgt radar er det fremlagt beskrivelser for hvordan oppstart og avslutning av målfølging kan gjennomføres. Metoder for generering av observasjonsdata og observasjonsstøy er tilpasset SNR data innhentet fra radaren. Observasjonsdata er generert ved monopulsbasert og vinkelbasert metode i form av Amplitude Comparison Monopulse (ACM) og Sequential Lobing (SL). Observasjonsstøy er generert ved Bartons, NOAHs og vinkelstøybasert metode, der sistnevnte er utledet fra SL algoritmen. Samtlige metoder er beskrevet matematisk og funksjonelt. To forskjellige typer algoritmer basert på Kalman-filter (KF) er brukt for estimering. Disse benytter forskjellige metoder for å følge manøvrerende mål. Utvidet KF, Extended Kalman-filter (EKF), er satt i sammen med en manøverdeteksjonsalgoritme og Samvirkende multiple modeller, Interacting Multiple Modell (IMM), filter benytter sannsynlighetsberegninger for å skille mellom en hastighetsmodell og en akselerasjonsmodell. Sammensetninger av målfølgealgoritmer basert på modeller for observasjonsdata, observasjonsstøy og estimering er implementert i Matlab 2007a og simulert i manøvrerende miljø med ulik grad av akselerasjon og manøvrerbarhet. Det er vist at det mulig å generere tilstrekkelig nøyaktige observasjonsdata ved å benytte SNR data fra radar med vinkelbasert metode. Monopulsbasert metode gir større avvik i form av bias og er dermed uegnet for bruk med filtrene som brukes for estimering. Observasjonsstøy lar seg tilnærme med tilstrekklig nøyaktighet ved NOAHs og vinkelstøybasert metode. Bartons metode avhenger for lite av differansen i SNR dataene og genererer dermed for unøyaktige støydata for estimatorene. På bakgrunn av resultater fra ulike projeksjoner og statistiske beregninger er det vist at EKF og IMM filteret fungerer godt som estimatorer. IMM filteret gir noe bedre resultater ved manøvre grunnet bedre manøverhåndteringsmetoder. Allikevel fremgår det av konsistenstesten at IMM filteret er optimistisk ved harde manøvre, noe som kan skyldes en dårlig tilpasset akselerasjonsmodell. Både EKF og IMM filteret ble realisert med variabel målestøy i form av generert observasjonsstøy, og dette viste seg å gi vesentlig større nøyaktighet i estimatene. Det er altså vist at en fullstendig målfølgealgoritme lar seg realisere med tilgjengelige SNR data fra radarer av typen phased array, og at nøyaktigheten kan forbedres ved å innføre variabel målestøy basert på de samme SNR dataene.
Gouveia, Carolina Teixeira de Sousa. "Bio-Radar." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23811.
Full textNesta dissertação é desenvolvido um protótipo de um bio-radar, cujo foco é a aquisição e processamento do sinal respiratório em tempo real. O sistema do bio-radar permite medir sinais vitais com precisão, baseando-se no princípio do efeito Doppler, que relaciona as propriedades do sinal recebido com a variação da distância percorrida desses sinais. Essa distância está compreendida entre as antenas do radar e a caixa torácica do paciente. No contexto deste projeto, é apresentado o modelo matemático do bio-radar e é também desenvolvido um algoritmo que visa extrair o sinal respiratório tendo em consideração a sensibilidade dos sinais envolvidos tal como o modo de operação do sistema. O protótipo em tempo real desenvolvido nesta dissertação usa um front-end baseado em Software Defined Radio (SDR) e os sinais por ele adquiridos são processados no software LabVIEW da National Instruments.
In this dissertation, a prototype of a bio-radar was developed with focus in the real-time acquisition and processing of the respiratory signal. The bio-radar system can measure vital signals accurately by using the Doppler e ect principle that relates the received signal properties with the distance change between the radar antennas and the person's chest-wall. In this framework, a mathematical model of the bio-radar is presented. Also, an algorithm for respiratory rate extraction is proposed having in mind the acquired signal's sensitivity and the system's operation. The real-time acquisition system is developed using a front-end based in SDR and the acquired signals are processed using the LabVIEW software from National Instruments.
Yong, Siow Yin. "Radar polarimetry." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FYong.pdf.
Full textFabry, Frédéric. "Precipitation estimates by radar : a zenith pointing radar perspective." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59887.
Full textLöhner, Andreas. "Ein Beitrag zum Verbessern der azimutalen Auflösung vorwärtsschauender Radarsysteme mit synthetischer Apertur /." Düsseldorf : VDI-Verl, 1999. http://www.gbv.de/dms/bs/toc/300868324.pdf.
Full textLane, Andrew. "Real-time weather radar correlation using a vertically pointing radar." Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244841.
Full textFrankford, Mark Thomas. "EXPLORATION OF MIMO RADAR TECHNIQUES WITH A SOFTWARE-DEFINED RADAR." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306526246.
Full textAhmed, Atheeq. "Human Detection Using Ultra Wideband Radar and Continuous Wave Radar." Thesis, Linköpings universitet, Kommunikationssystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137996.
Full textRavichandran, Kulasegaram. "Radar imaging using two-dimensional synthetic aperture radar (SAR) techniques /." abstract and full text PDF (UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1446797.
Full textLibrary also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Books on the topic "Radar"
International, Conference Radar (1997 Edinburgh Scotland). Radar 97. [London: IEE, 1997.
Find full textKirk, Andy. Radar Chart. 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2016. http://dx.doi.org/10.4135/9781529776942.
Full textLanzagorta, Marco. Quantum Radar. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0.
Full textCherniakov, Mikhail, ed. Bistatic Radar. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470985755.
Full textHanssen, Ramon F. Radar Interferometry. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47633-9.
Full textCherniakov, Mikhail, ed. Bistatic Radar. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470035085.
Full textLynn, Paul A. Radar Systems. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18748-5.
Full textRaghavan, S. Radar Meteorology. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0.
Full textBook chapters on the topic "Radar"
Schroeder, Manfred R. "Radar." In Acoustics, Information, and Communication, 329–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05660-9_17.
Full textChaturvedi, Prakash Kumar. "Radar." In Microwave, Radar & RF Engineering, 333–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7965-8_9.
Full textLertes, Erwin. "Radar." In Funkortung und Funknavigation, 60–83. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-663-12124-4_4.
Full textUnger, H. G. "Radar." In Hochfrequenztechnik in Funk und Radar, 201–20. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-663-12417-7_9.
Full textUnger, H. G. "Radar." In Hochfrequenztechnik in Funk und Radar, 229–48. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-10313-4_10.
Full textTerheyden, Karl, and Gerhard Zickwolff. "Radar." In Navigation, 120–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-21924-9_3.
Full textAbraham-Inpijn, Luzi. "Radar." In Tandarts in de knel, 155–61. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1442-3_16.
Full textBarkeshli, Kasra, and Sina Khorasani. "Radar." In Advanced Electromagnetics and Scattering Theory, 213–29. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11547-4_5.
Full textShekhar, Shashi, and Hui Xiong. "RADAR." In Encyclopedia of GIS, 943. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1070.
Full textKozlov, Anatoly Ivanovich, Yuri Grigoryevich Shatrakov, and Dmitry Alexandrovich Zatuchny. "Radar." In Radar and Radionavigation, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6191-5_1.
Full textConference papers on the topic "Radar"
O'Connell, Barbara J. "Ice Hazard Radar." In SNAME 9th International Conference and Exhibition on Performance of Ships and Structures in Ice. SNAME, 2010. http://dx.doi.org/10.5957/icetech-2010-179.
Full textShapiro, Jeffrey H. "Laser Radar System Theory*." In Optical Remote Sensing. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ors.1985.tub3.
Full textYoshikado, Shin, and Tadashi Aruga. "Investigation of Conceptual Synthetic Aperture Infrared Laser Radars." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/clr.1995.wa1.
Full textEberhard, Wynn L., Janet M. Intrieri, and Graham Feingold. "Lidar and Radar as Partners in Cloud Sensing." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/orsa.1997.omb.1.
Full textRibeiro, Eric O., Taina S. Ruchiga, and Jose A. M. Lima. "A Brazilian Northeast Coast Wave Data Comparison: Radar vs Buoy." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10290.
Full textSteinvall, Ove. "Performance of coherent and direct detection laser radars for hard target applications." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/clr.1995.tha1.
Full textSchiryy, Andrey. "USING OF EXPERIENCE IN THE DEVELOPMENT OF RADAR CAD IN THE DEVELOPMENT OF ALGORITHMS FOR ADAPTING OVER-THE-HORIZON RADARS TO THE IONOSPHERIC ENVIRONMENT." In CAD/EDA/SIMULATION IN MODERN ELECTRONICS 2021. Bryansk State Technical University, 2021. http://dx.doi.org/10.30987/conferencearticle_61c997ef58db34.29284003.
Full textPijević, Darko, Aleksandar Ristić, Dragan Nikolić, Dejan Ivković, and Zvonko Radosavljević. "An example of VHF radar signal processing." In 11th International Scientific Conference on Defensive Technologies - OTEX 2024, 381–85. Military Technical Institute, Belgrade, 2024. http://dx.doi.org/10.5937/oteh24068p.
Full textYao, I., E. M. Hauser, C. A. Bouman, and A. M. Chiang. "Hybrid Signal Processor for Wideband Radar*." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.wb2.
Full textSchulz, P. A., and S. R. Henion. "Frequency-chirped solid state laser radars." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/clr.1991.wc1.
Full textReports on the topic "Radar"
Goodman, Nathan A. Cognitive Radar. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada518604.
Full textReed, John. Random Radar. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada480122.
Full textLiang, Qilian. Studies on Radar and Non-radar Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada449291.
Full textLiang, Qilian. Compressive Sensing for Radar and Radar Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada594976.
Full textHaimovich, Alexander M. MIMO Radar: A Multi-Sensor Spatially Diverse Radar Architecture. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada495118.
Full textRobinson, S. D., and Y. Michaud. Ground penetrating radar. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210372.
Full textPilon, J. A. Ground Penetrating Radar. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133641.
Full textRobinson, S., M. Burgess, and S. Wolfe. Ground penetrating radar. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/299323.
Full textMartone, Anthony, David McNamara, Gregory Mazzaro, and Abigail Hedden. Cognitive Nonlinear Radar. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada570993.
Full textSparrow, David A. Modeling Radar Clutter. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada240965.
Full text