Academic literature on the topic 'Radar Absorbing Materials (RAM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radar Absorbing Materials (RAM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radar Absorbing Materials (RAM)"
Ramya, K. "Radar Absorbing Material (RAM)." Applied Mechanics and Materials 390 (August 2013): 450–53. http://dx.doi.org/10.4028/www.scientific.net/amm.390.450.
Full textLagarkov, Andrey Nikolayevich, Vladimir Nikolayevich Kisel, and Vladimir Nikolayevich Semenenko. "Radar Absorbing Materials Based on Metamaterials." Advances in Science and Technology 75 (October 2010): 215–23. http://dx.doi.org/10.4028/www.scientific.net/ast.75.215.
Full textY. Al Jubory, Ammar. "Microwave Absorbing Characteristics Study of Three Layers Radar Absorbing Materials (RAM)." Rafidain Journal of Science 20, no. 2 (March 1, 2009): 160–72. http://dx.doi.org/10.33899/rjs.2009.40230.
Full textAytaç, Ayhan, Hüseyin İpek, Kadir Aztekin, and Burak Çanakçı. "A review of the radar absorber material and structures." Scientific Journal of the Military University of Land Forces 198, no. 4 (December 15, 2020): 931–46. http://dx.doi.org/10.5604/01.3001.0014.6064.
Full textKrishna, K. Murali, Amit Jain, Hardeep Singh Kang, Mithra Venkatesan, Anurag Shrivastava, and Sitesh Kumar Singh. "Development of the Broadband Multilayer Absorption Materials with Genetic Algorithm up to 8 GHz Frequency." Security and Communication Networks 2022 (February 17, 2022): 1–12. http://dx.doi.org/10.1155/2022/4400412.
Full textTeber, Ahmet, Ibrahim Unver, Huseyin Kavas, Bekir Aktas, and Rajeev Bansal. "Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials." Journal of Magnetism and Magnetic Materials 406 (May 2016): 228–32. http://dx.doi.org/10.1016/j.jmmm.2015.12.056.
Full textChen, Xin, Xiang Xuan Liu, Xuan Jun Wang, and Yuan Liu. "Optimized Design for Multi-Layer Absorbing Materials Based on Genetic Algorithm." Advanced Materials Research 681 (April 2013): 324–28. http://dx.doi.org/10.4028/www.scientific.net/amr.681.324.
Full textMuratov, D. G., L. V. Kozhitov, A. V. Popkova, E. Yu Korovin, E. V. Yakushko, and M. R. Bakirov. "Study of the radar absorption of metal-carbon nanocomposites (review)." Industrial laboratory. Diagnostics of materials 89, no. 1 (January 21, 2023): 35–45. http://dx.doi.org/10.26896/1028-6861-2023-89-1-35-45.
Full textZainuri, Mochamad, and Dina Andryani. "Characterization of BaM and PaNi-Based Radar Absorbency (RAM) Behavior with Multilayer Geometry Structure for X-Band Absorption." Materials Science Forum 966 (August 2019): 54–59. http://dx.doi.org/10.4028/www.scientific.net/msf.966.54.
Full textSivakoti, Kavya Kumari, Mamatha Basava, Rao Venkata Balaga, and Balarama Murty Sannidhi. "Design Optimization of Radar Absorbing Materials Using Particle Swarm Optimization." International Journal of Applied Metaheuristic Computing 8, no. 4 (October 2017): 113–32. http://dx.doi.org/10.4018/ijamc.2017100107.
Full textDissertations / Theses on the topic "Radar Absorbing Materials (RAM)"
Sudhendra, Chandrika. "A Novel Chip Resistor Spacecloth For Radar Absorbing Materials." Thesis, Indian Institute of Science, 2006. https://etd.iisc.ac.in/handle/2005/280.
Full textSudhendra, Chandrika. "A Novel Chip Resistor Spacecloth For Radar Absorbing Materials." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/280.
Full textPessoa, R?gia Chacon. "Estudo das caracter?sticas magn?ticas e absorvedoras das ferritas de nizn, niznmn, mnzn, nimg, nicuzn e nicuznmg obtidas via m?todo do citrato precursor." Universidade Federal do Rio Grande do Norte, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17716.
Full textUniversidade Estadual de Roraima
Were synthesized systems Ni0,5Zn0,5Fe2O4, i0,2Zn0,5Mn0,3Fe2O4, Mn0,5Zn0,5Fe2O4, Ni0,5Mg0,5Fe2O4, Ni0,2Cu0,3Zn0,5Fe2O4 and Ni0,2Cu0,3Zn0,5Mg0,08Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350?C/3h. The evolution of the phases formed after calcinations at 350, 500, 900 and 1100?C/3h was accompanied by X-ray diffraction using the Rietveld refinement to better identify the structures formed. The materials were also analyzed by scanning electron microscopy, magnetic measurements and analysis of the reflectivity of the material. The samples calcined at different temperatures showed an increase of crystallinity with increasing calcination temperature, verifying that for some compositions at temperatures above 500?C precipitates of second phase such as hematite and CuO. The compositions of manganese present in the structure diffusion processes slower due to the ionic radius of manganese is greater than for other ions substitutes, a fact that delays the stabilization of spinel structure and promotes the precipitation of second phase. The compositions presented with copper precipitation CuO phase at a temperature of 900 and 1100?C/3h This occurs according to the literature because the concentration of copper in the structure is greater than 0.25 mol%. The magnetic measurements revealed features of a soft ferrimagnetic material, resulting in better magnetic properties for the NiZn ferrite and NiCuZnMg at high temperatures. The reflectivity measurements showed greater absorption of electromagnetic radiation in the microwave band for the samples calcined at 1100?C/3h, which has higher crystallite size and consequently the formation of multi-domain, increasing the magnetization of the material. The results of absorption agreed with the magnetic measurements, indicating among the ferrites studied, those of NiZn and NiCuZnMg as better absorbing the incident radiation.
Foram sintetizados os sistemas Ni0,5Zn0,5Fe2O4, Ni0,2Zn0,5Mn0,3Fe2O4, Mn0,5Zn0,5Fe2O4, Ni0,5Mg0,5Fe2O4, Ni0,2Cu0,3Zn0,5Fe2O4 e Ni0,2Cu0,3Zn0,5Mg0,08Fe2O4, pelo m?todo dos citratos precursores. A decomposi??o dos precursores foi estudada por an?lise termogravim?trica e espectroscopia na regi?o do infravermelho, na temperatura de 350?C/3h. A evolu??o das fases formadas ap?s as calcina??es a 350, 500, 900 e 1100?C/3h foi acompanhada por difra??o de raios X utilizando o refinamento de Rietveld, para melhor identifica??o das estruturas formadas. Os materiais foram tamb?m analisados por microscopia eletr?nica de varredura, medidas magn?ticas e an?lise da refletividade do material. As amostras calcinadas em diferentes temperaturas indicaram um aumento da cristalinidade com o aumento da temperatura de calcina??o, verificando-se que, para algumas composi??es, em temperaturas acima de 500?C ocorre a precipita??o de segunda fase, como hematita e CuO. As composi??es com mangan?s na estrutura apresentaram processos de difus?o mais lentos devido ao raio i?nico do mangan?s ser maior em rela??o aos outros ?ons substituintes, fato que retarda a estabiliza??o da estrutura espin?lio e favorece a precipita??o de segunda fase. As composi??es com cobre apresentaram precipita??o da fase CuO na temperatura de 900 e 1100?C/3h, fato que ocorre segundo a literatura porque a concentra??o de cobre na estrutura ? maior que 0,25 mol%. As medidas magn?ticas revelaram racter?sticas de um material ferrimagn?tico macio, obtendo-se melhores ar?metros magn?ticos para as ferritas de NiZn e NiCuZnMg em altas temperaturas. As medidas de refletividade mostraram maior absor??o da radia??o eletromagn?tica na faixa de microondas para as amostras calcinadas a 1100?C/3h, que tem maior tamanho do cristalito e em conseq??ncia forma??o de multidom?nios, aumentando a magnetiza??o do material. Os resultados de absor??o concordaram com as medidas magn?ticas, indicando dentre as ferritas estudadas, as de NiZn e NiCuZnMg como melhores absorvedoras da radia??o incidente.
Rodrigues, Manuella Karla da Cruz. "Estudo da viabiliza??o do uso da mistura h?brida ferrocarbonila / ferrita de NI0,5Zn0,5Fe2o4 como material absorvedor de radia??o eletromagn?tica." Universidade Federal do Rio Grande do Norte, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17652.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Were synthesized ferrites of NiZn on systems Ni0,5Zn0,5Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350?C/3h. The evolution of the phases formed after calcinations at 350?C/3h, 600, 1000 and 1100?C/2h was accompanied by X-ray diffraction using the Rietveld refinement method for better identification os structures formed. Was observed for samples calcined at different temperatures increased crystallinity with increasing calcination temperature, being observed for the samples calcined at 900 and 1100 ? C/2h was the precipitation of a secondary phase, the phase hematite. The ferrocarbonila of industrial origin was analyzed by X-ray diffraction and Rietveld for the identification of its structure. The carbonyl iron was added NiZn ferrite calcined at 350?C/3h, 600, 900, 1000 and 1100?C/2h to the formation of hybrid mixtures. They were then analyzed by Xray diffraction and Rietveld. The NiZn ferrite and ferrocarbonila as well as the hybrid mixtures were subjected to analysis of scanning electron microscopy, magnetic measurements and reflectivity. The magnetic measurements indicated that the ferrite, the ferrocarbonila, as well as hybrid mixtures showed characteristics of soft magnetic material. The addition of ferrocarbonila in all compositions showed an increase in the results of magnetic measurements and reflectivity. Best result was observed in the increase of the magnetization for the hybrid mixture of Ferrocarbonila / ferrite of NiZn calcined at 600?C/2h. The mixture Ferrocarbonila / ferrite calcined 1000?C/2h presented better absorption of electromagnetic radiation in the microwave
Foram sintetizadas ferritas de NiZn no sistema Ni0,5Zn0,5Fe2O4, pelo m?todo dos citratos precursores. A decomposi??o dos precursores foi estudada por an?lise termogravim?trica e espectroscopia na regi?o do infravermelho na temperatura de 350?C/3h. A evolu??o das fases formadas ap?s calcina??es a 350?C/3h, 600, 1000 e 1100?C/2h foi acompanhada por difra??o de raios X utilizando o refinamento de Rietveld para melhor identifica??o das estruturas formadas. Foi observado para as amostras calcinadas em diferentes temperaturas o aumento da cristalinidade com o aumento da temperatura de calcina??o, sendo verificado que para as amostras calcinadas a 900 e 1100?C/2h ocorreu a precipita??o de uma fase secund?ria, a fase hematita. A ferrocarbonila de proced?ncia industrial foi analisada por Difra??o de raios X e por Rietveld para a identifica??o de sua estrutura. A ferrocarbonila foi adicionada ? ferrita de NiZn calcinada a 350?C/3h, 600, 1000 e 1100?C/2h para a forma??o das misturas h?bridas. Em seguida foram analisadas por difra??o de raios X e por Rietveld. A ferrita de NiZn, a ferrocarbonila, assim como as misturas h?bridas foram submetidas ? an?lises de Microscopia Eletr?nica de Varredura, medidas magn?ticas e refletividade. As medidas magn?ticas indicaram que a ferrita, a ferrocarbonila, como tamb?m as misturas h?bridas apresentaram caracter?sticas de material magn?tico macios. A adi??o de ferrocarbonila em todas as composi??es indicou um aumento nos resultados de medidas magn?ticas e de refletividade. Foi verificado melhor resultado no aumento da magnetiza??o para a mistura h?brida de Ferrocarbonila/ferrita de NiZn calcinada 600?C/2h. A mistura Ferrocarbonila/ferrita calcinada 1000?C/2h apresentou melhor resultado absor??o da radia??o eletromagn?tica na faixa de microondas em rela??o ?s outras misturas
Ford, Lee. "Adaptive radar signature control with the use of radar absorbing materials." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398391.
Full textYildirim, Egemen. "Development Of Multi-layered Circuit Analog Radar Absorbing Structures." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614314/index.pdf.
Full texts knowledge, designed absorbers are superior in terms of frequency bandwidth to similar studies conducted so far in the literature. For broadband scattering characterization of periodic structures, numerical codes are developed. The introduced method is improved with the employment of developed FDTD codes to the proposed method. By taking the limitations regarding production facilities into consideration, a five-layered circuit analog absorber is designed and manufactured. It is shown that the manufactured structure is capable of 15 dB reflectivity minimization in a frequency band of 3.2-12 GHz for normal incidence case with an overall thickness of 14.2 mm.
Sharma, Reena. "Scattering From Chiral And Chirally Coated Bodies." Thesis, 1996. https://etd.iisc.ac.in/handle/2005/1572.
Full textSharma, Reena. "Scattering From Chiral And Chirally Coated Bodies." Thesis, 1996. http://etd.iisc.ernet.in/handle/2005/1572.
Full textHe, Ying-Hsien, and 何應賢. "The study of Radar absorbing materials." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/64956476451386367298.
Full text國防大學中正理工學院
兵器系統工程研究所
94
In this study, the electromagnetic wave absorbing (EMA) properties of graphite/epoxy sheets were investigated. The hybrid graphite/epoxy sheets were fabricated with the addition of graphite into epoxy resin. The graphite size, thickness of sheets, and weight amount varied for optimizing absorbing sheets. The corresponding EMAs of graphite sheets were measured by a free space vector network analyzer in the frequency range of 3~18 GHz. The experimental results have demonstrated that the graphite/epoxy sheets effectively absorb the electromagnetic wave, especially for the frequency of X-band range. The demand of light for EMA is therefore reached for further applications. The dispersion of graphites in the epoxy resin affects the microwave absorbing characteristics. The value of F*D decreases with the addition of ED211 up to 10 wt%. Nevertheless, the value increases when the weight amount higher than 10 wt%. With increasing the graphite particle size, the dielectric constant of the hybrid sheets increases and causes the microwave absorbing frequency shifts to lower frequency. As a usual, the value of F*D keeps the same for materials. In this case, the absorbing frequency also decreases with increasing the thickness. The dielectric constant increases with increasing the weight percentage of graphite, and, as a result, the absorbing frequency shifts to low frequency. The hybrid sheets mixed with G30 graphite powder absorb the loss more than 20 dB at a thickness of less than 1.0 mm with a density of 1.3kg/m2. The EMA of G30 sheets slightly modulates with the additions of carbonyl-iron, NG300, and G01 particles. The addition of ferrite could extend the 3 % lossy at the refection loss of 10 dB.
MARRA, FABRIZIO. "Development of Graphene-based Nanocomposites for Radar Absorbing Materials." Doctoral thesis, 2016. http://hdl.handle.net/11573/879804.
Full textBooks on the topic "Radar Absorbing Materials (RAM)"
Vinoy, K. J., and R. M. Jha. Radar Absorbing Materials. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9.
Full textVinoy, K. J. Radar absorbing materials: From theory to design and characterization. Boston: Kluwer Academic Publishers, 1996.
Find full textSkorupa, John A. Self-protective measures to enhance airlift operations in hostile environments. 5th ed. Maxwell Air Force Base: Air University Press, 2004.
Find full textVinoy, K. J., and R. M. Jha. Radar Absorbing Materials: From Theory to Design and Characterization. Springer, 2011.
Find full textMicheli, Davide. Radar Absorbing Materials and Microwave Shielding Structures Design: By using Multilayer Composite Materials, Nanomaterials and Evolutionary Computation. LAP Lambert Academic Publishing, 2011.
Find full textBook chapters on the topic "Radar Absorbing Materials (RAM)"
Vinoy, K. J., and R. M. Jha. "Trends in RAM." In Radar Absorbing Materials, 169–73. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_7.
Full textVinoy, K. J., and R. M. Jha. "Electromagnetic Design of RAM." In Radar Absorbing Materials, 97–141. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_4.
Full textVinoy, K. J., and R. M. Jha. "Fundamental Electromagnetic Concepts for RAM." In Radar Absorbing Materials, 19–50. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_2.
Full textVinoy, K. J., and R. M. Jha. "Identification and Applications of RAM." In Radar Absorbing Materials, 159–67. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_6.
Full textVinoy, K. J., and R. M. Jha. "Mathematical Analysis for RAM on Surfaces." In Radar Absorbing Materials, 51–95. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_3.
Full textVinoy, K. J., and R. M. Jha. "Introduction." In Radar Absorbing Materials, 1–18. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_1.
Full textVinoy, K. J., and R. M. Jha. "Absorber Characterization Techniques." In Radar Absorbing Materials, 143–58. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_5.
Full textJiang, Shicai, Li Ying Xing, and Bin Tai Li. "Study on a Novel Radar Absorbing Structure Composite." In Materials Science Forum, 1023–28. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.1023.
Full textJiang, Shicai, Li Ying Xing, Bin Tai Li, and Xiang Bao Chen. "Optimization of Radar Absorbing Structure Using the Genetic Algorithm." In Materials Science Forum, 1603–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.1603.
Full textMansoori, Mariam, Safieh Almahmoud, and Daniel Choi. "Development of a Metamaterial Honeycomb Structure for Radar Absorbing Materials." In The Minerals, Metals & Materials Series, 1341–45. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22524-6_130.
Full textConference papers on the topic "Radar Absorbing Materials (RAM)"
Truong, Vo-Van, Ben D. Turner, Richard F. Muscat, and M. S. Russo. "Conducting-polymer-based radar-absorbing materials." In Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS, edited by Alex Hariz, Vijay K. Varadan, and Olaf Reinhold. SPIE, 1997. http://dx.doi.org/10.1117/12.293483.
Full textToktas, Abdurrahim, Deniz Ustun, Enes Yigit, Kadir Sabanci, and Mustafa Tekbas. "Optimally Synthesizing Multilayer Radar Absorbing Material (RAM) Using Artificial Bee Colony Algorithm." In 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2018. http://dx.doi.org/10.1109/diped.2018.8543261.
Full textŞentürk, Berkant, and Hüsnügül Yılmaz Atay. "Production of Radar Absorbing Composite Materials Using Carbon Nanotubes." In 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.046.
Full textSmith, F. C. "A review of UK facilities for characterizing the performance of radar absorbing material (RAM)." In Ninth International Conference on Antennas and Propagation (ICAP). IEE, 1995. http://dx.doi.org/10.1049/cp:19950347.
Full textMackay, A. J. "The Theory and Design of Provably Optimal Bandwidth Radar Absorbent Materials (RAM) using Dispersive Structures and/or Frequency Selective Surfaces (FSS)." In 2007 International Conference on Electromagnetics in Advanced Applications. IEEE, 2007. http://dx.doi.org/10.1109/iceaa.2007.4387261.
Full textMitrano, C., A. Balzano, M. Bertacca, M. Flaccavento, and R. Mancinelli. "CFRP-based broad-band Radar Absorbing Materials." In 2008 IEEE Radar Conference (RADAR). IEEE, 2008. http://dx.doi.org/10.1109/radar.2008.4720745.
Full textAfsar, Mohammed N. "Millimeter wave radar absorbing materials." In 18th International Conference on Infrared and Millimeter Waves. SPIE, 1993. http://dx.doi.org/10.1117/12.2298519.
Full textNIELSEN, DEVIN, JUHYEONG LEE, and YOUNG-WOO NAM. "DESIGN OF COMPOSITE DOUBLE-SLAB RADAR ABSORBING STRUCTURES USING FORWARD, INVERSE, AND TANDEM NEURAL NETWORKS." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36409.
Full textSidorenko, Eugene N., Yuri V. Kabirov, Ivan I. Nathin, Tatiana Y. Privalova, Mark Belokobylskiy, and Artem Klochnev. "Radar-Absorbing Composite Materials Based on Carboxylmethylcellulose Matrix." In 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2021. http://dx.doi.org/10.1109/rsemw52378.2021.9494058.
Full textTennant, Alan, and Barry Chambers. "Adaptive radar absorbing structures with active FSS." In SPIE's International Symposium on Smart Materials, Nano-, and Micro- Smart Systems, edited by Alan R. Wilson. SPIE, 2002. http://dx.doi.org/10.1117/12.468647.
Full textReports on the topic "Radar Absorbing Materials (RAM)"
Maragoudakis, Christos E., and Vernon Kopsa. Effects of Radar Absorbing Material (RAM) on the Radiated Power of Monopoles with Finite Ground Plane. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada494124.
Full textJianguo, He, Lu Zhongliang, and Su Yi. Experimental Investigation of Impulse Radar for Mitigation of Effects of Radar Absorbing Materials,. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada294166.
Full text