Academic literature on the topic 'Radar cross section'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radar cross section.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radar cross section"
Tran, N., O.-Z. Zanife, B. Chapron, D. Vandemark, and P. Vincent. "Absolute Calibration of Jason-1 and Envisat Altimeter Ku-Band Radar Cross Sections from Cross Comparison with TRMM Precipitation Radar Measurements." Journal of Atmospheric and Oceanic Technology 22, no. 9 (September 1, 2005): 1389–402. http://dx.doi.org/10.1175/jtech1791.1.
Full textTian, Zhi-Fu, Di Wu, and Tao Hu. "Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface." Acta Physica Sinica 71, no. 3 (2022): 034204. http://dx.doi.org/10.7498/aps.71.20211295.
Full textDybdal, R. B. "Radar cross section measurements." Proceedings of the IEEE 75, no. 4 (1987): 498–516. http://dx.doi.org/10.1109/proc.1987.13757.
Full textGrant, P. M. "Editorial: Radar cross-section." IEE Proceedings F Radar and Signal Processing 137, no. 4 (1990): 213. http://dx.doi.org/10.1049/ip-f-2.1990.0032.
Full textLiao, Wen-Jiao, Yuan-Chang Hou, Chin-Che Tsai, Tai-Heng Hsieh, and Hao-Ju Hsieh. "Radar Cross Section Enhancing Structures for Automotive Radars." IEEE Antennas and Wireless Propagation Letters 17, no. 3 (March 2018): 418–21. http://dx.doi.org/10.1109/lawp.2018.2793307.
Full textIwaszczuk, Krzysztof, Henning Heiselberg, and Peter Uhd Jepsen. "Terahertz radar cross section measurements." Optics Express 18, no. 25 (December 1, 2010): 26399. http://dx.doi.org/10.1364/oe.18.026399.
Full textZdunek, Adam, and Waldemar Rachowicz. "Cavity Radar Cross Section Prediction." IEEE Transactions on Antennas and Propagation 56, no. 6 (June 2008): 1752–62. http://dx.doi.org/10.1109/tap.2008.923357.
Full textBorkar, V., A. Ghosh, R. Singh, and N. Chourasia. "Radar Cross-section Measurement Techniques." Defence Science Journal 60, no. 2 (March 25, 2010): 204–12. http://dx.doi.org/10.14429/dsj.60.341.
Full textRiley, J. R. "Radar cross section of insects." Proceedings of the IEEE 73, no. 2 (1985): 228–32. http://dx.doi.org/10.1109/proc.1985.13135.
Full textJenn, David, and Cuong Ton. "Wind Turbine Radar Cross Section." International Journal of Antennas and Propagation 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/252689.
Full textDissertations / Theses on the topic "Radar cross section"
Li, Xiang. "Compressive Radar Cross Section Computation." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40073.
Full textDallmann, Thomas [Verfasser]. "Polarimetric Radar Cross-Section Imaging / Thomas Dallmann." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149580321/34.
Full textHughes, E. J. "Radar cross section modelling using genetic algorithms." Thesis, Department of Aerospace and Sensors, 2009. http://hdl.handle.net/1826/3263.
Full textWaddell, Rachel C. "Radar cross section synthesis of doubly curved surfaces." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA305445.
Full textFaros, Nikolaos I. "Radar cross section synthesis for planar resistive surfaces." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA290151.
Full textDemiris, John. "Radar cross section of a planar fractal tree." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27232.
Full textTon, Cuong. "Radar cross section (RCS) simulation for wind turbines." Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/34754.
Full textWind-turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built near military and commercial radar and communication installations, they can cause degradation in the systems performance. The purpose of this research is to study the radar cross section (RCS) of a wind turbine and assess its effect on the performance of radar and communication systems. In this research, some basic scattering characteristics of wind turbines are discussed. Several computational methods of RCS prediction are examined, citing their advantages and disadvantages. Modeling and computational issues that affect the accuracy and convergence of the simulation results are discussed. RCS simulation results for two wind turbine configurations are presented: a horizontal axis, three-blade design and a vertical axis helical design. Several methods of mitigating wind turbine clutter are discussed. Issues of RCS reduction and control for wind turbines are also addressed.
Şamlı, Uğurcan. "Bistatic radar cross section synthesis for rectangular resistive sheets /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA319360.
Full textŞamlı, Uğurcan. "Bistatic radar cross section synthesis for rectangular resistive sheets." Thesis, Monterey, California. Naval Postgraduate School, 1996. http://hdl.handle.net/10945/8033.
Full textA method of moments solution for the bistatic scattering from planar resistive sheets is presented. The matrix scattering equations are inverted to obtain a rigorous inverse solution that can be applied to the synthesis of radar cross section. Computer calculations for several sheets demonstrate that the synthesized resistivity is in good agreement with the original resistivity.
Persson, Björn. "Assessment of Aircraft Radar Cross-Section for Detection Analysis." Doctoral thesis, Försvarshögskolan, Militärtekniska avdelningen (MTA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185214.
Full textAtt kunna gömma sig för att sedan överaska sin motståndare är en taktik som har använts inom krigsföring genom historien, detta var också en möjlighet flygplan erbjöd när de började användas i militära samanhang. Utveckling av teknik för militära ändamål är emellertid en ständigt pågående kamp mellan framsteg inom det befintliga teknikfältet och utveckling för att kunna motverka sådan teknik. Under andra världskriget ledde denna kamp till utvecklingen av radar, en teknik som används för att upptäcka och följa fartyg och flygplan på stora avstånd, vilket kraftigt försvårade möjlighet att överaska motståndaren med hjälp av flygplan. Utvecklingen av radar är en hörnsten inom moderna luftvärnssystem, vilket också har skapat ett behov för luftstridskrafter att kunna motverka och penetrera sådana skydd. Centralt för den teknik och taktikutveckling som skede till följd av att radar introducerades på det moderna slagfältet är flygplans radarmålarea, som är avgörande för på vilket avstånd det är möjligt att upptäcka flygplanet. I den här avhandlingen undersöks aspekter kring hur flygplans radarmålarea påverkar detektionsmöjligheterna för en hotradar. Avhandlingen består av både mätningar på faktiska flygplan samt forskning kring digitala modeller av radarmålarea. Flygförsöken gav kvantitativa exempel på hur stor osäkerhet i aspekt vinkel ett givet flygplan kan förväntas ha emot en hot sensor på grund av flygdynamik. Utöver detta så utfördes även en dynamisk mätning av radarmålarea på ett jetdrivet skolflygplan, för att undersöka fluktuationerna i radarmålarea. Både monostatisk och bistatisk radarmålarea har beräknats för en F-117 modell och resultaten tyder på att spline-interpolation ger den bästa noggrannheten vid interpolation. Vidare föreslås hur jämna och konservativa modeller av radarmålarea kan uppnås samt att en ny samplingsstrategi för radarmålarea presenteras. En modell som bygger på experimentell data föreslås för att uppskatta hur stor ändring av aspektvinkel ett givet flygplan kan förväntas ge emot en hotsensor, samt att mätdata av radarmålarea jämförs med de klassiska Swerling modellerna. Den påverkan resultaten förväntas ha på militära operationer och system diskuteras och några överväganden som bör beaktas vid modellering av interaktionen mellan flygplan och radar ges. Denna avhandling torde vara av intresse för såväl militära aktörer som försvarsindustri, eftersom analysen och möjligheten att upptäcka flygplan med radar är en viktig del av luftstrid och tillhörande planering.
QC 20160418
Books on the topic "Radar cross section"
F, Shaeffer John, and Tuley Michael T, eds. Radar cross section. 2nd ed. Boston: Artech House, 1993.
Find full textKnott, Eugene F. Radar Cross Section Measurements. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9.
Full textKnott, Eugene F. Radar cross section measurements. New York: Van Nostrand Reinhold, 1993.
Find full textJenn, David C. Radar and laser cross section engineering. Washington, DC: American Institute of Aeronautics and Astronautics, 1995.
Find full textBhattacharyya, Asoke K. Radar cross section analysis and control. Boston: Artech House, 1991.
Find full textSingh, Hema, Simy Antony, and Rakesh Mohan Jha. Plasma-based Radar Cross Section Reduction. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-760-4.
Full textUnited States. National Aeronautics and Space Administration, ed. [Radar cross section studies]: [final report]. Hampton, Va: National Aeronautics and Space Administration, 1987.
Find full textL, Mensa Dean, ed. High resolution radar cross-section imaging. Boston: Artech House, 1991.
Find full text(Firm), Knovel, ed. Radar and laser cross section engineering. 2nd ed. Reston, Va: American Institute of Aeronautics and Astronautics, 2005.
Find full text1942-, Burnside Walter Dennis, and Langley Research Center, eds. Radar cross section studies/compact range research. Columbus, Ohio: The Ohio State University, 1988.
Find full textBook chapters on the topic "Radar cross section"
Toomay, J. C. "Radar Cross Section." In Radar Principles for the Non-Specialist, 65–81. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6985-1_4.
Full textMahafza, Bassem R. "Radar Cross-Section." In Radar Systems Analysis and Design Using MATLAB®, 453–90. 4th ed. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003051282-14.
Full textKnott, Eugene F. "Radar Imagery." In Radar Cross Section Measurements, 385–429. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_10.
Full textLanzagorta, Marco. "Quantum Radar Cross Section." In Quantum Radar, 129–51. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0_6.
Full textKnott, Eugene F. "Radar Cross Section Fundamentals." In Radar Cross Section Measurements, 1–26. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_1.
Full textKnott, Eugene F. "Dynamic Test Ranges." In Radar Cross Section Measurements, 430–81. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_11.
Full textKnott, Eugene F. "Scale-Model Testing." In Radar Cross Section Measurements, 482–512. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_12.
Full textKnott, Eugene F. "Test Security." In Radar Cross Section Measurements, 513–35. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_13.
Full textKnott, Eugene F. "Instrumentation Systems." In Radar Cross Section Measurements, 27–69. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_2.
Full textKnott, Eugene F. "Target Support Structures." In Radar Cross Section Measurements, 70–119. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_3.
Full textConference papers on the topic "Radar cross section"
Li, Zonghui, and Ju Gao. "Radar Cross Section Reduction Based on Disordered Metasurface." In 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), 239. IEEE, 2024. http://dx.doi.org/10.1109/iceaa61917.2024.10701818.
Full textRutz, Felix, Ralph Rasshofer, and Erwin Biebl. "Radar Cross Section Analysis for Road Debris in Automotive FMCW Radar." In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666261.
Full textGARRETSON III, HENRY. "RADAR CROSS SECTION TESTING." In 3rd Flight Testing Conference and Technical Display. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-828.
Full textGARRETSON, III, H. "Radar cross section testing." In 3rd Flight Testing Conference and Technical Display. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-9828.
Full textHughes, E. J. "Radar cross section model optimisation using genetic algorithms." In Radar Systems (RADAR 97). IEE, 1997. http://dx.doi.org/10.1049/cp:19971717.
Full textShang, Yuping, and Zhongxiang Shen. "Radar cross-section enhancement techniques." In 2017 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2017. http://dx.doi.org/10.1109/compem.2017.7912846.
Full textTran, H. B. "Radar cross section computational techniques." In IEEE Antennas and Propagation Society International Symposium 1992 Digest. IEEE, 1992. http://dx.doi.org/10.1109/aps.1992.221755.
Full textIwaszczuk, Krzysztof, Henning Heiselberg, and Peter Uhd Jepsen. "Terahertz radar cross section measurements." In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612715.
Full textHughes, E. J. "Piecewise cumulative weibull modelling of radar cross section." In International Conference on Radar Systems (Radar 2017). Institution of Engineering and Technology, 2017. http://dx.doi.org/10.1049/cp.2017.0475.
Full textRossi, Massimiliano, and Marco Frasca. "Determination of Radiometric Radar Cross-Section." In 2020 IEEE Radar Conference (RadarConf20). IEEE, 2020. http://dx.doi.org/10.1109/radarconf2043947.2020.9266558.
Full textReports on the topic "Radar cross section"
Rossiter, J. R., E. M. Reimer, L. Lalumiere, and D. R. Inkster. Radar Cross - Section of Fish At Vhf. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133663.
Full textHolland, Richard, and Kah-Song Cho. Radar Cross-Section Evaluation of Arbitrary Cylinders. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada172159.
Full textMuth, Lorant A. Phase dependence in radar cross section measurements. Gaithersburg, MD: National Bureau of Standards, 2001. http://dx.doi.org/10.6028/nist.tn.1522.
Full textNarayanan, Ram M. Instrumentation for Antenna and Radar Cross Section Measurements. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada400092.
Full textDoan, Larry, Patrick A. Day, and Oleg Brovko. Large Dynamic Range Radar Cross Section Parallel Tracking. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada304014.
Full textKinzel, G. A., R. C. Wittmann, and L. A. Muth. Uncertainty analysis for NRaD radar cross section measurements. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5061.
Full textCrocker, Dylan. Wind Turbine Lightning Mitigation System Radar Cross Section Reduction. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1664639.
Full textBrock, Billy C., Hung Loui, Jacob J. McDonald, Joshua A. Paquette, David A. Calkins, William K. Miller, Steven E. Allen, Paul Gilbert Clem, and Ward E. Patitz. Radar-cross-section reduction of wind turbines. part 1. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1038185.
Full textBrock, Billy. Bistatic and Monostatic Radar Cross Section of Radially Inhomogeneous Spheres. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1618259.
Full textMcIntosh, Robert E. Normalized Radar Cross Section of Natural Surfaces at Millimeter Wavelengths. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada248452.
Full text