Academic literature on the topic 'Radar cross section'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radar cross section.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Radar cross section"

1

Tran, N., O.-Z. Zanife, B. Chapron, D. Vandemark, and P. Vincent. "Absolute Calibration of Jason-1 and Envisat Altimeter Ku-Band Radar Cross Sections from Cross Comparison with TRMM Precipitation Radar Measurements." Journal of Atmospheric and Oceanic Technology 22, no. 9 (September 1, 2005): 1389–402. http://dx.doi.org/10.1175/jtech1791.1.

Full text
Abstract:
Abstract One year of collocated, rain-free nadir Ku-band backscatter cross-section measurements from the Tropical Rainfall Mapping Mission (TRMM) precipitation radar (PR) and both Jason-1 and Envisat RA-2 altimeter measurements have been compiled to compare these three sources of Ku-band radar cross section. With the exception of a +1.46 dB relative offset between Jason-1 and PR measurements and a −1.40 dB offset between Envisat and PR ones, all three Ku-band measurements compare very well in terms of dependencies upon model wind speed estimates and significant wave height measurements. The altimeter radars and the rain radar thus provide consistent measurements, and observed biases can be rationalized as differences in the radar calibration. The precipitation radar, which also covers off-nadir measurements, has been absolutely calibrated using an active radar calibrator. Consequently, the observed relative offsets can be used to indirectly calibrate both Jason-1 and Envisat altimeter Ku-band radar cross sections in an absolute sense.
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Zhi-Fu, Di Wu, and Tao Hu. "Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface." Acta Physica Sinica 71, no. 3 (2022): 034204. http://dx.doi.org/10.7498/aps.71.20211295.

Full text
Abstract:
To examine the single-photon quantum radar cross-section of cylindrical surface and its specific advantages over the classical radar cross-section, a photon wave function in which the distance vectors causing interference are decomposed is introduced in this study. A closed-form expression of the single-photon quantum radar cross-section of cylindrical surface is derived. The influences of the length and curvature radius of cylindrical surfaces with different electrical sizes are analyzed, and the closed-form expressions of the quantum and classical radar cross-sections of cylindrical surface are compared with each other. The analyses of the closed-form expression and simulation results show that the electrical length of the cylindrical surface determines the number of side lobes of the quantum radar cross-section; meanwhile, the curvature radius has a linear relation with the overall strength of the quantum radar cross-section, and the electrical size of the curvature radius determines the envelope of the quantum radar cross-section curve. Compared with the classical radar cross-section, the quantum radar cross-section of a cylindrical surface has the advantage of side-lobe enhancement, which is beneficial for detecting stealth targets.
APA, Harvard, Vancouver, ISO, and other styles
3

Dybdal, R. B. "Radar cross section measurements." Proceedings of the IEEE 75, no. 4 (1987): 498–516. http://dx.doi.org/10.1109/proc.1987.13757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grant, P. M. "Editorial: Radar cross-section." IEE Proceedings F Radar and Signal Processing 137, no. 4 (1990): 213. http://dx.doi.org/10.1049/ip-f-2.1990.0032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liao, Wen-Jiao, Yuan-Chang Hou, Chin-Che Tsai, Tai-Heng Hsieh, and Hao-Ju Hsieh. "Radar Cross Section Enhancing Structures for Automotive Radars." IEEE Antennas and Wireless Propagation Letters 17, no. 3 (March 2018): 418–21. http://dx.doi.org/10.1109/lawp.2018.2793307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iwaszczuk, Krzysztof, Henning Heiselberg, and Peter Uhd Jepsen. "Terahertz radar cross section measurements." Optics Express 18, no. 25 (December 1, 2010): 26399. http://dx.doi.org/10.1364/oe.18.026399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zdunek, Adam, and Waldemar Rachowicz. "Cavity Radar Cross Section Prediction." IEEE Transactions on Antennas and Propagation 56, no. 6 (June 2008): 1752–62. http://dx.doi.org/10.1109/tap.2008.923357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borkar, V., A. Ghosh, R. Singh, and N. Chourasia. "Radar Cross-section Measurement Techniques." Defence Science Journal 60, no. 2 (March 25, 2010): 204–12. http://dx.doi.org/10.14429/dsj.60.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Riley, J. R. "Radar cross section of insects." Proceedings of the IEEE 73, no. 2 (1985): 228–32. http://dx.doi.org/10.1109/proc.1985.13135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jenn, David, and Cuong Ton. "Wind Turbine Radar Cross Section." International Journal of Antennas and Propagation 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/252689.

Full text
Abstract:
The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Radar cross section"

1

Li, Xiang. "Compressive Radar Cross Section Computation." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40073.

Full text
Abstract:
Compressive Sensing (CS) is a novel signal-processing paradigm that allows sampling of sparse or compressible signals at lower than Nyquist rate. The past decade has seen substantial research on imaging applications using compressive sensing. In this thesis, CS is combined with the commercial electromagnetic (EM) simulation software newFASANT to improve its efficiency in solving EM scattering problems such as Radar Cross Section (RCS) of complex targets at GHz frequencies. This thesis proposes a CS-RCS approach that allows efficient and accurate recovery of under-sampled RCSs measured from a random set of incident angles using an accelerated iterative soft thresh-holding reconstruction algorithm. The RCS results of a generic missile and a Canadian KingAir aircraft model simulated using Physical Optics (PO) as the EM solver at various frequencies and angular resolutions demonstrate good efficiency and accuracy of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
2

Dallmann, Thomas [Verfasser]. "Polarimetric Radar Cross-Section Imaging / Thomas Dallmann." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149580321/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hughes, E. J. "Radar cross section modelling using genetic algorithms." Thesis, Department of Aerospace and Sensors, 2009. http://hdl.handle.net/1826/3263.

Full text
Abstract:
In the design of new, more sophisticated missile systems, simulations need to be realistic and fast. Realistic target models are just as important as realistic models of the missile, but have often been overlooked in the past. Existing methods for creating realistic target models require considerable computational resources. This thesis addresses the problem of using limited resources to create realistic target models for simulating engagements with radar guided homing missiles. A multiple genetic algorithm approach is presented for converting inverse synthetic aperture radar images of targets into scatterer models. The models produced are high fidelity and fast to process. Results are given that demonstrate the generation of a model from real data using a desktop computer. Realistic models are used to investigate the effects of target fidelity on the missile performance. The results of the investigation allow the model complexity to be traded against the fidelity of the representation to optimise simulation speed. Finally, a realistic target model is used in a feasibility study to investigate the potential use of glint for target manoeuvre detection. Target glint is considered as noise in conventional missile systems and filtered to reduce its effects on the tracking performance- The use of glint for target manoeuvre detection would provide a cheap and novel alternative to the optical techniques currently being developed. The feasibility study has shown that target manoeuvre detection using glint may be as fast as optical techniques and very reliable.
APA, Harvard, Vancouver, ISO, and other styles
4

Waddell, Rachel C. "Radar cross section synthesis of doubly curved surfaces." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA305445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Faros, Nikolaos I. "Radar cross section synthesis for planar resistive surfaces." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA290151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Demiris, John. "Radar cross section of a planar fractal tree." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27232.

Full text
Abstract:
Electromagnetic scattering from trees and vegetation is of prime importance in radar and remote sensing. The actual problem of scattering from trees is rather complicated and involves three dimensional scattering from lossy, electrically large, and randomly oriented objects. In this thesis, the radar cross section of a planar fractal tree is considered. Although a planar tree is far from being real, scattering from it shed light on the scattering phenomenon from an actual tree. The planar tree is generated using fractal geometry and its branches are considered perfectly conducting. The tree is illuminated by a plane wave and the problem is solved using the moment method. Data is presented for the radar cross section for different branching angles of the tree and at different frequencies
APA, Harvard, Vancouver, ISO, and other styles
7

Ton, Cuong. "Radar cross section (RCS) simulation for wind turbines." Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/34754.

Full text
Abstract:
Approved for public release; distribution is unlimited
Wind-turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built near military and commercial radar and communication installations, they can cause degradation in the systems performance. The purpose of this research is to study the radar cross section (RCS) of a wind turbine and assess its effect on the performance of radar and communication systems. In this research, some basic scattering characteristics of wind turbines are discussed. Several computational methods of RCS prediction are examined, citing their advantages and disadvantages. Modeling and computational issues that affect the accuracy and convergence of the simulation results are discussed. RCS simulation results for two wind turbine configurations are presented: a horizontal axis, three-blade design and a vertical axis helical design. Several methods of mitigating wind turbine clutter are discussed. Issues of RCS reduction and control for wind turbines are also addressed.
APA, Harvard, Vancouver, ISO, and other styles
8

Şamlı, Uğurcan. "Bistatic radar cross section synthesis for rectangular resistive sheets /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA319360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Şamlı, Uğurcan. "Bistatic radar cross section synthesis for rectangular resistive sheets." Thesis, Monterey, California. Naval Postgraduate School, 1996. http://hdl.handle.net/10945/8033.

Full text
Abstract:
Approved for public release; distribution is unlimited
A method of moments solution for the bistatic scattering from planar resistive sheets is presented. The matrix scattering equations are inverted to obtain a rigorous inverse solution that can be applied to the synthesis of radar cross section. Computer calculations for several sheets demonstrate that the synthesized resistivity is in good agreement with the original resistivity.
APA, Harvard, Vancouver, ISO, and other styles
10

Persson, Björn. "Assessment of Aircraft Radar Cross-Section for Detection Analysis." Doctoral thesis, Försvarshögskolan, Militärtekniska avdelningen (MTA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185214.

Full text
Abstract:
Hiding from and surprising an opponent are tactics that have been used in warfare throughout history. They were features that aircraft originally possessed when they were first used in military operations. However, development of military technology is an endless struggle between advances in technology and counter technology. During World War II this struggle led to the development of a new technology called radar, which was designed to detect sea vessels and aircraft at a distance and deny them the element of surprise. This laid the foundation for modern air defenses and simultaneously created a need for aircraft to penetrate such defenses. Central to the tactics and technological development that followed from the deployment of radar on the modern battlefield is the radar cross-section (RCS) of aircraft, which dictates the range at which aircraft can be detected by radar. In this thesis some aspects of the RCS of aircraft in radar detection are investigated. A combination of experimental measurement of aircraft and digital model development of the RCS of aircraft has been used. From flight experiments, the uncertainty in aspect angle to a threat sensor, due to aircraft dynamics, is quantified for various aircraft. In addition, the RCS fluctuation behavior of a military jet trainer is investigated by dynamic in-flight measurement. The monostatic and bistatic RCS of an F-117 are modeled and findings show that spline interpolation provides superior accuracy when interpolating the RCS data. Smooth and conservative RCS models are suggested and a new RCS sampling scheme is presented. A model based on experimental data is suggested for determining the range of aspect angles that an aircraft is likely to orient towards a threat sensor, and experimental RCS data is compared to the classical Swerling radar target models. Possible consequences for military operations and the design of military systems are discussed and considerations for modeling the interaction between air defenses and aircraft penetrating those defenses are given.   This thesis should be of interest to military actors and the defense industry, since the analyses of the ability to detect aircraft using radar are important for military operations and their planning.
Att kunna gömma sig för att sedan överaska sin motståndare är en taktik som har använts inom krigsföring genom historien, detta var också en möjlighet flygplan erbjöd när de började användas i militära samanhang. Utveckling av teknik för militära ändamål är emellertid en ständigt pågående kamp mellan framsteg inom det befintliga teknikfältet och utveckling för att kunna motverka sådan teknik. Under andra världskriget ledde denna kamp till utvecklingen av radar, en teknik som används för att upptäcka och följa fartyg och flygplan på stora avstånd, vilket kraftigt försvårade möjlighet att överaska motståndaren med hjälp av flygplan. Utvecklingen av radar är en hörnsten inom moderna luftvärnssystem, vilket också har skapat ett behov för luftstridskrafter att kunna motverka och penetrera sådana skydd. Centralt för den teknik och taktikutveckling som skede till följd av att radar introducerades på det moderna slagfältet är flygplans radarmålarea, som är avgörande för på vilket avstånd det är möjligt att upptäcka flygplanet. I den här avhandlingen undersöks aspekter kring hur flygplans radarmålarea påverkar detektionsmöjligheterna för en hotradar. Avhandlingen består av både mätningar på faktiska flygplan samt forskning kring digitala modeller av radarmålarea. Flygförsöken gav kvantitativa exempel på hur stor osäkerhet i aspekt vinkel ett givet flygplan kan förväntas ha emot en hot sensor på grund av flygdynamik. Utöver detta så utfördes även en dynamisk mätning av radarmålarea på ett jetdrivet skolflygplan, för att undersöka fluktuationerna i radarmålarea. Både monostatisk och bistatisk radarmålarea har beräknats för en F-117 modell och resultaten tyder på att spline-interpolation ger den bästa noggrannheten vid interpolation. Vidare föreslås hur jämna och konservativa modeller av radarmålarea kan uppnås samt att en ny samplingsstrategi för radarmålarea presenteras. En modell som bygger på experimentell data föreslås för att uppskatta hur stor ändring av aspektvinkel ett givet flygplan kan förväntas ge emot en hotsensor, samt att mätdata av radarmålarea jämförs med de klassiska Swerling modellerna. Den påverkan resultaten förväntas ha på militära operationer och system diskuteras och några överväganden som bör beaktas vid modellering av interaktionen mellan flygplan och radar ges. Denna avhandling torde vara av intresse för såväl militära aktörer som försvarsindustri, eftersom analysen och möjligheten att upptäcka flygplan med radar är en viktig del av luftstrid och tillhörande planering.

QC 20160418

APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Radar cross section"

1

F, Shaeffer John, and Tuley Michael T, eds. Radar cross section. 2nd ed. Boston: Artech House, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Knott, Eugene F. Radar Cross Section Measurements. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knott, Eugene F. Radar cross section measurements. New York: Van Nostrand Reinhold, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jenn, David C. Radar and laser cross section engineering. Washington, DC: American Institute of Aeronautics and Astronautics, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhattacharyya, Asoke K. Radar cross section analysis and control. Boston: Artech House, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Hema, Simy Antony, and Rakesh Mohan Jha. Plasma-based Radar Cross Section Reduction. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-760-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration, ed. [Radar cross section studies]: [final report]. Hampton, Va: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Mensa Dean, ed. High resolution radar cross-section imaging. Boston: Artech House, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Firm), Knovel, ed. Radar and laser cross section engineering. 2nd ed. Reston, Va: American Institute of Aeronautics and Astronautics, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1942-, Burnside Walter Dennis, and Langley Research Center, eds. Radar cross section studies/compact range research. Columbus, Ohio: The Ohio State University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Radar cross section"

1

Toomay, J. C. "Radar Cross Section." In Radar Principles for the Non-Specialist, 65–81. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6985-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mahafza, Bassem R. "Radar Cross-Section." In Radar Systems Analysis and Design Using MATLAB®, 453–90. 4th ed. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003051282-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knott, Eugene F. "Radar Imagery." In Radar Cross Section Measurements, 385–429. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lanzagorta, Marco. "Quantum Radar Cross Section." In Quantum Radar, 129–51. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knott, Eugene F. "Radar Cross Section Fundamentals." In Radar Cross Section Measurements, 1–26. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knott, Eugene F. "Dynamic Test Ranges." In Radar Cross Section Measurements, 430–81. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knott, Eugene F. "Scale-Model Testing." In Radar Cross Section Measurements, 482–512. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knott, Eugene F. "Test Security." In Radar Cross Section Measurements, 513–35. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knott, Eugene F. "Instrumentation Systems." In Radar Cross Section Measurements, 27–69. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knott, Eugene F. "Target Support Structures." In Radar Cross Section Measurements, 70–119. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-9904-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Radar cross section"

1

Li, Zonghui, and Ju Gao. "Radar Cross Section Reduction Based on Disordered Metasurface." In 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), 239. IEEE, 2024. http://dx.doi.org/10.1109/iceaa61917.2024.10701818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rutz, Felix, Ralph Rasshofer, and Erwin Biebl. "Radar Cross Section Analysis for Road Debris in Automotive FMCW Radar." In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GARRETSON III, HENRY. "RADAR CROSS SECTION TESTING." In 3rd Flight Testing Conference and Technical Display. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

GARRETSON, III, H. "Radar cross section testing." In 3rd Flight Testing Conference and Technical Display. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-9828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hughes, E. J. "Radar cross section model optimisation using genetic algorithms." In Radar Systems (RADAR 97). IEE, 1997. http://dx.doi.org/10.1049/cp:19971717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shang, Yuping, and Zhongxiang Shen. "Radar cross-section enhancement techniques." In 2017 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2017. http://dx.doi.org/10.1109/compem.2017.7912846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tran, H. B. "Radar cross section computational techniques." In IEEE Antennas and Propagation Society International Symposium 1992 Digest. IEEE, 1992. http://dx.doi.org/10.1109/aps.1992.221755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iwaszczuk, Krzysztof, Henning Heiselberg, and Peter Uhd Jepsen. "Terahertz radar cross section measurements." In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hughes, E. J. "Piecewise cumulative weibull modelling of radar cross section." In International Conference on Radar Systems (Radar 2017). Institution of Engineering and Technology, 2017. http://dx.doi.org/10.1049/cp.2017.0475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rossi, Massimiliano, and Marco Frasca. "Determination of Radiometric Radar Cross-Section." In 2020 IEEE Radar Conference (RadarConf20). IEEE, 2020. http://dx.doi.org/10.1109/radarconf2043947.2020.9266558.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Radar cross section"

1

Rossiter, J. R., E. M. Reimer, L. Lalumiere, and D. R. Inkster. Radar Cross - Section of Fish At Vhf. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holland, Richard, and Kah-Song Cho. Radar Cross-Section Evaluation of Arbitrary Cylinders. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada172159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muth, Lorant A. Phase dependence in radar cross section measurements. Gaithersburg, MD: National Bureau of Standards, 2001. http://dx.doi.org/10.6028/nist.tn.1522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Narayanan, Ram M. Instrumentation for Antenna and Radar Cross Section Measurements. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada400092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doan, Larry, Patrick A. Day, and Oleg Brovko. Large Dynamic Range Radar Cross Section Parallel Tracking. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada304014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kinzel, G. A., R. C. Wittmann, and L. A. Muth. Uncertainty analysis for NRaD radar cross section measurements. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crocker, Dylan. Wind Turbine Lightning Mitigation System Radar Cross Section Reduction. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1664639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brock, Billy C., Hung Loui, Jacob J. McDonald, Joshua A. Paquette, David A. Calkins, William K. Miller, Steven E. Allen, Paul Gilbert Clem, and Ward E. Patitz. Radar-cross-section reduction of wind turbines. part 1. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1038185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brock, Billy. Bistatic and Monostatic Radar Cross Section of Radially Inhomogeneous Spheres. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1618259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McIntosh, Robert E. Normalized Radar Cross Section of Natural Surfaces at Millimeter Wavelengths. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada248452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography