Academic literature on the topic 'Radial Basis Function Neural Network (RBFN)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radial Basis Function Neural Network (RBFN).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radial Basis Function Neural Network (RBFN)"
Babu, N. S. C., and V. C. Prasad. "Radial Basis Function Networks for Analog Circuit Fault Isolation." Journal of Circuits, Systems and Computers 07, no. 06 (December 1997): 643–55. http://dx.doi.org/10.1142/s0218126697000462.
Full textHUANG, DE-SHUANG. "RADIAL BASIS PROBABILISTIC NEURAL NETWORKS: MODEL AND APPLICATION." International Journal of Pattern Recognition and Artificial Intelligence 13, no. 07 (November 1999): 1083–101. http://dx.doi.org/10.1142/s0218001499000604.
Full textKrishnamoorthy, Vinoth Kumar, Usha Nandini Duraisamy, Amruta S. Jondhale, Jaime Lloret, and Balaji Venkatesalu Ramasamy. "Energy-Constrained Target Localization Scheme for Wireless Sensor Networks Using Radial Basis Function Neural Network." International Journal of Distributed Sensor Networks 2023 (March 30, 2023): 1–12. http://dx.doi.org/10.1155/2023/1426430.
Full textSafavi, A., M. H. Esteki, S. M. Mirvakili, and M. Khaki. "Comparison of back propagation network and radial basis function network in Departure from Nucleate Boiling Ratio (DNBR) calculation." Kerntechnik 85, no. 1 (December 1, 2020): 15–25. http://dx.doi.org/10.1515/kern-2020-850105.
Full textDash, Ch Sanjeev Kumar, Ajit Kumar Behera, Satchidananda Dehuri, and Sung-Bae Cho. "Radial basis function neural networks: a topical state-of-the-art survey." Open Computer Science 6, no. 1 (May 2, 2016): 33–63. http://dx.doi.org/10.1515/comp-2016-0005.
Full textAik, Lim Eng, Tan Wei Hong, and Ahmad Kadri Junoh. "An Improved Radial Basis Function Networks Based on Quantum Evolutionary Algorithm for Training Nonlinear Datasets." IAES International Journal of Artificial Intelligence (IJ-AI) 8, no. 2 (June 1, 2019): 120. http://dx.doi.org/10.11591/ijai.v8.i2.pp120-131.
Full textIbrahim, Ashraf Osman, Walaa Akif Hussien, Ayat Mohammoud Yagoop, and Mohd Arfian Ismail. "Feature Selection and Radial Basis Function Network for Parkinson Disease Classification." Kurdistan Journal of Applied Research 2, no. 3 (August 27, 2017): 167–71. http://dx.doi.org/10.24017/science.2017.3.121.
Full textDing, Shuo, and Xiao Heng Chang. "A MATLAB-Based Study on the Realization and Approximation Performance of RBF Neural Networks." Applied Mechanics and Materials 325-326 (June 2013): 1746–49. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.1746.
Full textAik, Lim Eng, Tan Wei Hong, and Ahmad Kadri Junoh. "An Improved Radial Basis Function Networks in Networks Weights Adjustment for Training Real-World Nonlinear Datasets." IAES International Journal of Artificial Intelligence (IJ-AI) 8, no. 1 (March 1, 2019): 63. http://dx.doi.org/10.11591/ijai.v8.i1.pp63-76.
Full textAik, Lim Eng, Tan Wei Hong, and Ahmad Kadri Junoh. "Distance Weighted K-Means Algorithm for Center Selection in Training Radial Basis Function Networks." IAES International Journal of Artificial Intelligence (IJ-AI) 8, no. 1 (March 1, 2019): 54. http://dx.doi.org/10.11591/ijai.v8.i1.pp54-62.
Full textDissertations / Theses on the topic "Radial Basis Function Neural Network (RBFN)"
Guo, Zhihao. "Intelligent multiple objective proactive routing in MANET with predictions on delay, energy, and link lifetime." online version, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1195705509.
Full textMurphy, Ethan Kane. "Radial-Basis-Function Neural Network Optimization of Microwave Systems." Digital WPI, 2003. https://digitalcommons.wpi.edu/etd-theses/77.
Full textMurphy, Ethan Kane. "Radial-Basis-Function Neural Network Optimization of Microwave Systems." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0113103-121206/.
Full textKeywords: optimization technique; microwave systems; optimization technique; neural networks; QuickWave 3D. Includes bibliographical references (p. 68-71).
Aguilar, David P. "A radial basis neural network for the analysis of transportation data." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000515.
Full textFathala, Giuma Musbah. "Analysis and implementation of radial basis function neural network for controlling non-linear dynamical systems." Thesis, University of Newcastle upon Tyne, 1998. http://hdl.handle.net/10443/3114.
Full textTran-Canh, Dung. "Simulating the flow of some non-Newtonian fluids with neural-like networks and stochastic processes." University of Southern Queensland, Faculty of Engineering and Surveying, 2004. http://eprints.usq.edu.au/archive/00001518/.
Full textLee, Hee Eun. "Hierarchical modeling of multi-scale dynamical systems using adaptive radial basis function neural networks: application to synthetic jet actuator wing." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/230.
Full textKattekola, Sravanthi. "Weather Radar image Based Forecasting using Joint Series Prediction." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1238.
Full textMatta, Mariel Cadena da. "Processamento de imagens em dosimetria citogenética." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/10141.
Full textMade available in DSpace on 2015-03-03T14:16:54Z (GMT). No. of bitstreams: 2 Dissertação Mariel Cadena da Matta.pdf: 2355898 bytes, checksum: 9c0530af680cf965137a2385d949b799 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013
FACEPE
A Dosimetria citogenética empregando análise de cromossomos dicêntricos é o “padrão ouro” para estimativas da dose absorvida após exposições acidentais às radiações ionizantes. Todavia, este método é laborioso e dispendioso, o que torna necessária a introdução de ferramentas computacionais que dinamizem a contagem dessas aberrações cromossômicas radioinduzidas. Os atuais softwares comerciais, utilizados no processamento de imagens em Biodosimetria, são em sua maioria onerosos e desenvolvidos em sistemas dedicados, não podendo ser adaptados para microscópios de rotina laboratorial. Neste contexto, o objetivo da pesquisa foi o desenvolvimento do software ChromoSomeClassification para processamento de imagens de metáfases de linfócitos (não irradiados e irradiados) coradas com Giemsa a 5%. A principal etapa da análise citogenética automática é a separação correta dos cromossomos do fundo, pois a execução incorreta desta fase compromete o desenvolvimento da classificação automática. Desta maneira, apresentamos uma proposta para a sua resolução baseada no aprimoramento da imagem através das técnicas de mudança do sistema de cores, subtração do background e aumento do contraste pela modificação do histograma. Assim, a segmentação por limiar global simples, seguida por operadores morfológicos e pela técnica de separação de objetos obteve uma taxa de acerto de 88,57%. Deste modo, os cromossomos foram enfileirados e contabilizados, e assim, a etapa mais laboriosa da Dosimetria citogenética foi realizada. As características extraídas dos cromossomos isolados foram armazenadas num banco de dados para que a classificação automática fosse realizada através da Rede Neural com Funções de Ativação de Base Radial (RBF). O software proposto alcançou uma taxa de sensibilidade de 76% e especificidade de 91% que podem ser aprimoradas através do acréscimo do número de objetos ao banco de dados e da extração de mais características dos cromossomos.
Ringienė, Laura. "Hybrid neural network for multidimensional data visualization." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140912_140117-42267.
Full textŠio darbo tyrimų sritis yra duomenų tyryba remiantis daugiamačių duomenų vizualia analize. Tai leidžia tyrėjui betarpiškai dalyvauti duomenų analizės procese, geriau pažinti sudėtingus duomenis ir priimti geriausius sprendimus. Disertacijos tikslas yra sukurti metodą tokios duomenų projekcijos radimui plokštumoje, kad tyrėjas galėtų pamatyti ir įvertinti daugiamačių taškų tarpgrupinius panašumus/skirtingumus. Šiam tikslui pasiekti yra pasiūlytas radialinių bazinių funkcijų ir daugiasluoksnio perceptrono, turinčio ,,butelio kaklelio“ neuroninio tinklo savybes, junginys. Naujas tinklas naudojamas vizualiai daugiamačių duomenų analizei, kai atidėjimui plokštumoje arba trimatėje erdvėje taškai gaunami paskutinio paslėpto neuronų sluoksnio išėjimuose, kai į tinklo įėjimą paduodami daugiamačiai duomenys. Šio tinklo ypatybė yra ta, kad gautas vaizdas plokštumoje labiau atspindi bendrą duomenų struktūrą (klasteriai, klasterių tarpusavio artumas, taškų tarpklasterinis panašumas) nei daugiamačių taškų tarpusavio išsidėstymą.
Books on the topic "Radial Basis Function Neural Network (RBFN)"
Liu, Jinkun. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34816-7.
Full textLiu, Jinkun. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textRadial Basis Function Rbf Neural Network Control For Mechanical Systems Design Analysis And Matlab Simulation. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Find full textA Radial Basis Function Neural Network Approach to Two-Color Infrared Missile Detection. Storming Media, 2001.
Find full textLiu, Jinkun. Radial Basis Function Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation. Springer Berlin / Heidelberg, 2015.
Find full textBook chapters on the topic "Radial Basis Function Neural Network (RBFN)"
Sundararajan, N., P. Saratchandran, and Yan Li. "Indirect Adaptive Control Using Fully Tuned RBFN." In Fully Tuned Radial Basis Function Neural Networks for Flight Control, 69–80. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-5286-1_4.
Full textLiu, Jinkun. "Discrete Neural Network Control." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 311–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_10.
Full textLiu, Jinkun. "Adaptive RBF Neural Network Control." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 71–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_4.
Full textLiu, Jinkun. "Digital RBF Neural Network Control." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 293–309. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_9.
Full textSundararajan, N., P. Saratchandran, and Yan Li. "Nonlinear System Identification Using Lyapunov-Based Fully Tuned RBFN." In Fully Tuned Radial Basis Function Neural Networks for Flight Control, 29–45. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-5286-1_2.
Full textSundararajan, N., P. Saratchandran, and Yan Li. "Direct Adaptive Neuro Flight Controller Using Fully Tuned RBFN." In Fully Tuned Radial Basis Function Neural Networks for Flight Control, 85–94. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-5286-1_5.
Full textLiu, Jinkun. "Neural Network Sliding Mode Control." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 113–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_5.
Full textLiu, Jinkun. "RBF Neural Network Design and Simulation." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 19–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_2.
Full textLiu, Jinkun. "RBF Neural Network Control Based on Gradient Descent Algorithm." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 55–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_3.
Full textLiu, Jinkun. "Backstepping Control with RBF." In Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, 251–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34816-7_8.
Full textConference papers on the topic "Radial Basis Function Neural Network (RBFN)"
Luo, Run, Shifa Wu, Xinyu Wei, and Fuyu Zhao. "Identification Modeling of Accelerator Driven System Based on Growing and Pruning Radial Basis Function Network." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60328.
Full textNarayanan, Madusudanan Sathia, Puneet Singla, Sudha Garimella, Wayne Waz, and Venkat Krovi. "Radial Basis Function Network (RBFN) Approximation of Finite Element Models for Real-Time Simulation." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6154.
Full textMilovanovic, Ivana. "Radial Basis Function (RBF) networks for improved gait analysis." In 2008 9th Symposium on Neural Network Applications in Electrical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/neurel.2008.4685588.
Full textSui, Wenbo, and Carrie M. Hall. "SCR Control System Design Based on On-Line Radial Basis Function and Backpropagation Neural Networks." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5095.
Full textBoopathi, G., and S. Arockiasamy. "Image compression: Wavelet transform using radial basis function (RBF) neural network." In 2012 Annual IEEE India Conference (INDICON). IEEE, 2012. http://dx.doi.org/10.1109/indcon.2012.6420640.
Full textSyafaruddin, Salama Manjang, and Satriani Latief. "Radial basis function (RBF) neural network for load forecasting during holiday." In 2016 3rd Conference on Power Engineering and Renewable Energy (ICPERE). IEEE, 2016. http://dx.doi.org/10.1109/icpere.2016.7904869.
Full textArakawa, Masao, Hirotaka Nakayama, and Hiroshi Ishikawa. "Optimum Design Using Radial Basis Function Network and Adaptive Range Genetic Algorithms." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8637.
Full textYunan, Izzuddin, Ihsan M. Yassin, Syed Farid Syed Adnan, and Mohd Hezri Fazalul Rahiman. "Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network." In 2012 IEEE 8th International Colloquium on Signal Processing & its Applications (CSPA). IEEE, 2012. http://dx.doi.org/10.1109/cspa.2012.6194779.
Full textGAO, MINGLIANG, SHAN GAO, CHUANG YU, DEQUAN LI, SHIJI SONG, HAIMING SHI, HONGLIANG SUN, and HONGCHAO WANG. "RESEARCH AND APPLICATION OF RADIAL BASIS NETWORK BOGIE FAULT DIAGNOSIS MODEL BASED ON PARTICLE SWARM OPTIMIZATION." In 3rd International Workshop on Structural Health Monitoring for Railway System (IWSHM-RS 2021). Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/iwshm-rs2021/36030.
Full textRoh, Young Jun, and Hyungsuck Cho. "Image reconstruction in x-ray tomography using a radial basis function (RBF) neural network." In Intelligent Systems and Advanced Manufacturing, edited by Hyungsuck Cho. SPIE, 2001. http://dx.doi.org/10.1117/12.444110.
Full text