Academic literature on the topic 'Radiation Damping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiation Damping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radiation Damping"
Clarkson, B. L., and K. T. Brown. "Acoustic Radiation Damping." Journal of Vibration and Acoustics 107, no. 4 (October 1, 1985): 357–60. http://dx.doi.org/10.1115/1.3269272.
Full textSz�ntay, Csaba, and �d�m Demeter. "Radiation damping diagnostics." Concepts in Magnetic Resonance 11, no. 3 (1999): 121–45. http://dx.doi.org/10.1002/(sici)1099-0534(1999)11:3<121::aid-cmr2>3.0.co;2-z.
Full textBlake, Paul R., and Michael F. Summers. "NOESY-1--echo spectroscopy with eliminated radiation damping radiation damping." Journal of Magnetic Resonance (1969) 86, no. 3 (February 1990): 622–25. http://dx.doi.org/10.1016/0022-2364(90)90040-g.
Full textShishmarev, Dmitry, and Gottfried Otting. "Radiation damping on cryoprobes." Journal of Magnetic Resonance 213, no. 1 (December 2011): 76–81. http://dx.doi.org/10.1016/j.jmr.2011.08.040.
Full textMendes, A. C. R., C. Neves, W. Oliveira, and F. I. Takakura. "Supersymmetrization of radiation damping." Journal of Physics A: Mathematical and General 38, no. 42 (October 5, 2005): 9387–94. http://dx.doi.org/10.1088/0305-4470/38/42/015.
Full textAugustine, M. P. "Transient properties of radiation damping." Progress in Nuclear Magnetic Resonance Spectroscopy 40, no. 2 (February 2002): 111–50. http://dx.doi.org/10.1016/s0079-6565(01)00037-1.
Full textKhitrin, A. K., and Alexej Jerschow. "Simple suppression of radiation damping." Journal of Magnetic Resonance 225 (December 2012): 14–16. http://dx.doi.org/10.1016/j.jmr.2012.09.010.
Full textChicone, C., S. M. Kopeikin, B. Mashhoon, and D. G. Retzloff. "Delay equations and radiation damping." Physics Letters A 285, no. 1-2 (June 2001): 17–26. http://dx.doi.org/10.1016/s0375-9601(01)00327-9.
Full textLin‐Liu, Y. R., H. Ikezi, and T. Ohkawa. "Radiation damping and resonance scattering." American Journal of Physics 56, no. 4 (April 1988): 373. http://dx.doi.org/10.1119/1.15616.
Full textZhou, Jinyuan, Susumu Mori, and Peter C. M. van Zijl. "FAIR excluding radiation damping (FAIRER)." Magnetic Resonance in Medicine 40, no. 5 (November 1998): 712–19. http://dx.doi.org/10.1002/mrm.1910400511.
Full textDissertations / Theses on the topic "Radiation Damping"
Vlassenbroek, Alain. "Radiation damping in High Resolution NMR." Doctoral thesis, Universite Libre de Bruxelles, 1993. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212811.
Full textWardell, Zachary. "Gravitational radiation damping and the three-body problem /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3091977.
Full textZulkifli, Ediansjah. "Consistent description of radiation damping in transient soil-structure interaction." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1217499921691-59045.
Full textIn der Dynamik der Boden-Bauwerk-Interaktion wird der Boden in vielen Fällen durch ein unbegrenztes elastisches Medium beschrieben, wodurch das Phänomen der Abstrahldämpfung begründet wird. Diese Dämpfung entsteht durch Energietransfer von der erregten Struktur in den Boden durch Wellenausbreitung und reduziert somit die Strukturschwingungen. Um das infinite Bodengebiet dennoch durch finite Elemente beschreiben zu können, werden üblicherweise als Hilfsmaßnahme künstliche sogenannte absorbierende Ränder eingeführt. In dieser Arbeit wird eine alternative Methode zur Darstellung des unbegrenzten Mediums in der Dynamik vorgelegt. Im Prinzip handelt es sich um eine Kopplung der Rand-Element-Methode (REM) für den unendlichen Boden (das sogenannte Fernfeld) im Frequenzbereich und der Finite-Element-Methode (FEM) für das Nahfeld im Zeitbereich. Dieses alternative Verfahren vermeidet die Einführung künstlicher Ränder. Das Verfahren basiert auf einer rationalen Beschreibung der dynamischen Steifigkeit des Fernfeldes im Frequenzbereich. Diese Steifigkeit wird in der vorliegenden Arbeit durch die Rand-Element-Methode erzeugt. Die Matrix-wertigen Koeffizienten der rationalen Frequenzfunktion werden durch Minimierung des Fehlerquadrates berechnet. Die Transformation dieser Frequenzdarstellung in den Zeitbereich gelingt durch algebraische Überführung der rationalen Funktion in ein in der Frequenz lineares Hypersystem mit einer zugeordneten Zustandsgleichung erste Ordnung im Zeitbereich. Dieser Prozess hat sich als numerisch effektiv erwiesen und erfordert darüberhinaus keine Fourier-Transformation. Das entwickelte Vorgehen wird in dieser Arbeit an Problemen der dynamischen Boden-Bauwerk-Interaktion mit einer großen Anzahl von Freiheitsgraden erprobt. Diese Freiheitsgrade folgen aus der Diskretisierung in der Koppelfuge zwischen Boden und Struktur, der Diskretisierung der Struktur selbst und aus der Überführung in das Hypersystem mittels interner Variablen. Das neue Verfahren eignet sich insbesondere für Systeme mit transienter Erregung, wie sie beim An- und Auslaufen von Rotationsmaschinen ensteht. Der theoretische Teil der Arbeit wird geprägt durch Elemente der Systemtheorie und setzt sich zudem mit typischen Stabilitätsproblemen auseinander, die aus der rationalen Beschreibung entstehen. Der praktische Teil präsentiert Konvergenzstudien und numerische Ergebnisse für Boden-Bauwerk- Interaktionsprobleme mit geschichtetem Boden bei transienter Erregung mit Resonanzdurchlauf. Zudem gelingt eine Darstellung der Abstrahldämpfung in Form des Dämpfungsgrades D, wie er in der klassischen Strukturdynamik verwendet wird
LOUIS, JOSEPH ALAIN. "Nouvelles methodologies en rmn biologique : controle de l'amortissement par radiation (radiation damping) et resonance magnetique nucleaire stochastique." Paris, CNAM, 2000. http://www.theses.fr/2000CNAM0372.
Full textChu, Ping-nin Raymond. "The vibration and noise radiation characteristics of damped sandwich structures /." [Hong Kong] : University of Hong Kong, 1987. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12223001.
Full text朱炳年 and Ping-nin Raymond Chu. "The vibration and noise radiation characteristics of damped sandwich structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B31231123.
Full textRamanathan, Sathish Kumar. "The effects of damping treatment on the sound transmission loss of honeycomb panels." Licentiate thesis, KTH, MWL Structural and vibroacoustics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12514.
Full textIn the industry, all passenger vehicles are treated with damping materials to reduce structure-borne sound. Though these damping materials are effective to attenuate structure-borne sound, they have little or no effect on the air-borne sound transmission.The lack of effective predictive methods for assessing the acoustic effects due to added damping on complex industrial structures leads to excessive use of damping materials.Examples are found in the railway industry where sometimes the damping material applied per carriage is more than one ton. The objective of this thesis is to provide a better understanding of the application of these damping materials in particular when applied to lightweight sandwich panels.
As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist in the design process. Sound transmission loss of sandwich plates with isotropic core materials can be accurately predicted by calculating the wave propagation in the structure. A modified wave propagation approach is used to predict the sound transmission loss of sandwich panels with honeycomb cores. The honeycomb panels are treated as being orthotropic and the wave numbers are calculated for the two principle directions. The orthotropic panel theory is used to predict the sound transmission loss of panels. Visco-elastic damping with a constraining layer is applied to these structures and the effect of these damping treatment on the sound transmission loss is studied. Measurements are performed to validate these predictions.
Sound radiated from vibrating structures is of great practical importance.The radiation loss factor represents damping associated with the radiation of sound as a result of the vibrating structure and can be a significant contribution for structures around the critical frequency and for composite structures that are very lightly damped. The influence of the radiation loss factor on the sound reduction index of such structures is also studied.
QC 20100519
ECO2-Multifunctional body Panels
Bowyer, E. P. "Experimental investigation of damping structural vibrations using the acoustic black hole effect." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10983.
Full textFaria, Alencar José de. "Dissipação e ruído de dipolos magnéticos coletivamente acoplados a um circuito ressonante." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-31102008-085617/.
Full textWe study the radiation damping and the spin noise of a magnetic material coupled with a resonant circuit. Radiation damping in magnetic resonance is a dissipation phenomenon, where magnetization prepared after a Rabi pulse decays toward its equilibrium state. The magnetic sample loses its energy by the coupling with resonant circuit, that must be tuned in Larmor frequency of the sample spins. Even though this phenomenon had been studied many years ago, no full quantum description was done. We present a quantum Hamiltonian model, that explains the radiation damping. We use quantum Langevin equation method for this task. Beyond radiation damping, we show the magnetization acquires an unusual intrincate motion, if the circuit initial state is coherent. Using the same Langevin equation, we study the sample influence on the resonant circuit noise. We calculate the current spectral density in the case of thermal equilibrium of whole system. We can verify the method efectiveness, comparing former papers. Moreover we study modifcations in the circuit noise, if an external oscillating tension is applied. In this situation, other two peaks emerge in the central peak sidebands of the sample absorption spectrum. It leads to appear three dips in circuit current spectrum. This efect is due to the splitting of the spin energy states. We comment about the analogy between this phenomenon and the resonance fluorescence in Quantum Optics.
Costa, Guilherme Alan Souza. "Análise vibratória de fundações de máquinas sobre estacas." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=7853.
Full textA análise de fundações sob solicitações dinâmicas é algo sempre presente em projetos na área industrial. É um campo pouco explorado na área de engenharia geotécnica, onde existem relativamente poucas informações no Brasil, de maneira geral. O método mais comum de realizar essas análises é a simplificação de modelos estruturais a partir do uso de molas. Sabe-se que esses coeficientes de reação têm uma variação relativamente grande e que esse enfoque de projeto pode, em alguns casos, mostrar-se contra a segurança ou levar a superdimensionamentos desnecessários. Verifica-se, então, a necessidade de uma avaliação mais criteriosa, utilizando a interação solo x estrutura, onde as molas comumente utilizadas nas análises vibratórias convencionais são substituídas pela rigidez real do solo quando concebido como um meio contínuo, através de sua discretização pelo método dos elementos finitos. A presente dissertação analisa o problema através do módulo de dinâmica do programa Plaxis 2D. Neste tipo de análise, além da modelagem do solo como um meio contínuo, torna-se possível introduzir condições de contorno específicas ao problema em estudo, múltiplas camadas de solo, sejam horizontais ou inclinadas, além da introdução de amortecedores capazes de evitar a reflexão espúria das ondas incidentes nos limites da malha de elementos finitos e assim modelar mais adequadamente a perda de energia por radiação. A presente dissertação compara medições experimentais e soluções eficientes de métodos vibratórios clássicos com a resposta obtida pelo MEF, mostrando resultados bastante satisfatórios tanto pelos métodos clássicos quanto pelo MEF.
The foundation analysis by dynamic solicitations is always present in industrial projects. It is an area which is poorly explored in geotechnical engineering and there are few information about this subject in Brazil, in general. The most common method to realize this analysis consists in simplifies structural models by using springs. It is known that these reaction coefficients have a large range of variation and this projects focus can, in some cases, be against the safety side or lead to unnecessary over designs. This proves the necessity to do a more criterious evaluation by using the interaction soil x structure where the springs usually used in common vibration analysis are replaced by the real stiffness of soil when designed as a continuous medium through its discretization by finite element method. This present dissertation analyzes the problem through the dynamic modulus of the software PLAXIS 2D. In this sort of analysis, besides the modeling of soil as a continuous medium, it becomes possible to introduce specific boundary conditions associated to the studied problem, multiple soil layer, that can be horizontals or inclined, in addition to the introduction of dampers able to avoid the spurious reflection of incident waves on the boundary of finite element mesh and then to model more efficiently the energy loss by radiation. This present dissertation compares experimental measurements and efficient solutions of classical vibration methods with the response obtained by FEM, showing results quite satisfactory both by classical methods and by FEM.
Books on the topic "Radiation Damping"
Sheet Metal and Air Conditioning Contractors' National Association (U.S.). Fire and Smoke Control Committee. Fire, smoke and radiation damper installation guide for HVAC systems. 5th ed. Chantilly, VA: Sheet Metal and Air Conditioning Contractors' National Association, 2002.
Find full textAcoustic radiation damping of flat rectangular plates subjected to subsonic flows. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Acoustic radiation damping of flat rectangular plates subjected to subsonic flows. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textSheet Metal and Air Conditioning Contractors' National Association. Fire and Smoke Control Committee., ed. Fire, smoke, and radiation damper installation guide for HVAC systems. 4th ed. Chantilly, Va. (4201 Lafayette Center Dr., Chantilly 22021-1209): SMACNA, 1992.
Find full textLutsenko, V. I., I. V. Lutsenko, D. O. Popov, and I. V. Popov. Remote sensing of the environment using the radiation of existing ground and space radio systems. PH “Akademperiodyka”, 2020. http://dx.doi.org/10.15407/akademperiodyka.429.345.
Full textMashhoon, Bahram. Linearized Gravitational Waves in Nonlocal Gravity. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803805.003.0009.
Full textBook chapters on the topic "Radiation Damping"
Stupakov, Gennady, and Gregory Penn. "Radiation Damping Effects." In Graduate Texts in Physics, 259–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90188-6_22.
Full textRivkin, L. "6.5 Synchrotron Radiation and Damping." In Accelerators and Colliders, 147–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23053-0_10.
Full textKoga, James, Sergei Bulanov, and Timur Esirkepov. "Electron Acceleration Under Strong Radiation Damping." In Springer Series in Optical Sciences, 143–48. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_18.
Full textArtru, X., and G. Bignon. "A Semiclassical Approach to the Radiation Damping Force." In Electron-Photon Interaction in Dense Media, 85–90. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0367-4_5.
Full textWang, Xin, Tongchun Li, and Lanhao Zhao. "Hydraulic Vibration Analysis of Bulb Tubular Pump-House Considering Foundation Radiation Damping." In Advances in Water Resources and Hydraulic Engineering, 1750–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89465-0_301.
Full textRobinson, M. C. "Radiation Damping and Nonlinearity in the Pilot Wave Interpretation of Quantum Mechanics." In Open Questions in Quantum Physics, 271–82. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5245-4_19.
Full textMinty, Michiko G., and Frank Zimmermann. "Cooling." In Particle Acceleration and Detection, 263–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_11.
Full textRen, Hao, Tongchun Li, Lanhao Zhao, Xin Wang, and Dong Liang. "Study on the Effect of Fluid-Solid Coupling and Foundation Radiation Damping on Seismic Response of Arch Dam." In Advances in Water Resources and Hydraulic Engineering, 1756–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89465-0_302.
Full textPinilla, Camilo E., Salem Bouhairie, and Vincent H. Chu. "Frictional and Radiation Dampings on Shear Instability." In Computational Fluid Dynamics 2008, 341–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_43.
Full textSurdutovich, G. I., and A. V. Ghiner. "Radiative Damping and a Semiclassical Two-Level Atom." In Coherence and Quantum Optics VII, 519–20. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_133.
Full textConference papers on the topic "Radiation Damping"
Tischer, M. "A Compact Damping Wiggler for the PETRA III Light Source." In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757784.
Full textBeberniss, Timothy, and Robert Gordon. "Finite Element Prediction of Acoustic Radiation Damping." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-2232.
Stancalie, V., P. G. Burke, and V. M. Burke. "Radiation damping in dielectronic recombination of CIV." In ROMOPTO 2000: Sixth Conference on Optics, edited by Valentin I. Vlad. SPIE, 2001. http://dx.doi.org/10.1117/12.432801.
Full textHenderson, John P., Tom M. Lewis, Fred H. Murrell, and Danny Mangra. "Effects of radiation and creep on viscoelastic damping materials." In Smart Structures & Materials '95, edited by Conor D. Johnson. SPIE, 1995. http://dx.doi.org/10.1117/12.208895.
Full textSheng-Jui Chen, Sheau-Shi Pan, and Jeah-Sheng Wu. "Active damping control of a torsion pendulum by radiation pressure." In 2008 Conference on Precision Electromagnetic Measurements (CPEM 2008). IEEE, 2008. http://dx.doi.org/10.1109/cpem.2008.4574688.
Full textSeletskiy, D., M. P. Hasselbeck, M. Sheik-Bahae, and L. R. Dawson. "Blue-shifting of coherent plasmon radiation due to Landau damping." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431649.
Full textChernicoff, Mariano, J. Antonio García, Alberto Güijosa, Alejandro Ayala, Guillermo Contreras, Ildefonso Leon, and Pedro Podesta. "Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory." In XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3622699.
Full textDhavalikar, Sharad S., and Amresh Negi. "Estimation of Roll Damping for Transportation Barges." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79024.
Full textGLAUBER, R. J. "COOPERATIVE EMISSION OF LIGHT QUANTA: A THEORY OF COHERENT RADIATION DAMPING." In Proceedings of the XXI International Conference on Atomic Physics. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814273008_0004.
Full textESPOSITO-FARESE, GILLES. "BINARY-PULSAR TESTS OF STRONG-FIELD GRAVITY AND GRAVITATIONAL RADIATION DAMPING." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0039.
Full textReports on the topic "Radiation Damping"
Cornacchia, Massimo. Radiation Damping Partitions and RF-Fields. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/813235.
Full textRaubenheimer, T. Coherent Synchrotron Radiation effect in damping rings. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/826687.
Full textMeot F. Simulation of radiation damping in rings using stepwise ray-tracing methods. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1095168.
Full textSeletskiy, S., and B. Podobedov. Considerations for NSLS-II Synchrotron Radiation Protection When Operating Damping Wigglers at Low Machine Energy. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1340333.
Full textSeletskiy, Sergei, and Boris Podobedov. Considerations for NSLS-II Synchrotron Radiation Protection When Operating Damping Wigglers at Low Machine Energy. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1505125.
Full textPoh, S., and Amr M. Baz. Adaptive Control of Sound Radiation from a Plate into an Acoustic Cavity Using Active Piezoelectric-Damping Composites. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada378958.
Full textEckermann, Stephen D., Jun Ma, and Xun Zhu. Scale-Dependent Infrared Radiative Damping Rates on Mars and Their Role in the Deposition of Gravity-Wave Momentum Flux. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada522839.
Full text