To see the other types of publications on this topic, follow the link: Radiation Degradation.

Journal articles on the topic 'Radiation Degradation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Radiation Degradation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hill, David J. T., James H. O'Donnell, M. C. Senake Perera, Peter J. Pomery, and Andrew K. Whittaker. "Radiation Degradation of Elastomers." Journal of Macromolecular Science, Part A 30, no. 9-10 (September 1993): 633–44. http://dx.doi.org/10.1080/10601329308021251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leonhardt, J., G. Arnold, M. Baer, H. Langguth, M. Gey, and S. Hübert. "Radiation degradation of cellulose." Radiation Physics and Chemistry (1977) 25, no. 4-6 (January 1985): 887–92. http://dx.doi.org/10.1016/0146-5724(85)90170-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Skvortsov, S. V. "Radiation degradation of lignin." Chemistry of Natural Compounds 26, no. 1 (1990): 1–9. http://dx.doi.org/10.1007/bf00605186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khoylou, F., and A. A. Katbab. "Radiation degradation of polypropylene." Radiation Physics and Chemistry 42, no. 1-3 (July 1993): 219–22. http://dx.doi.org/10.1016/0969-806x(93)90238-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bürger, W., K. Lunkwitz, G. Pompe, A. Petr, and D. Jehnichen. "Radiation degradation of fluoropolymers: Carboxylated fluoropolymers from radiation degradation in presence of air." Journal of Applied Polymer Science 48, no. 11 (June 15, 1993): 1973–85. http://dx.doi.org/10.1002/app.1993.070481111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nascimento, Graziele Elisandra do, Marcos André Soares Oliveira, Rayany Magali da Rocha Santana, Beatriz Galdino Ribeiro, Deivson Cesar Silva Sales, Joan Manuel Rodríguez-Díaz, Daniella Carla Napoleão, Mauricio Alves da Motta Sobrinho, and Marta Maria Menezes Bezerra Duarte. "Investigation of paracetamol degradation using LED and UV-C photo-reactors." Water Science and Technology 81, no. 12 (June 15, 2020): 2545–58. http://dx.doi.org/10.2166/wst.2020.310.

Full text
Abstract:
Abstract This work investigates the efficiency of LED and UV-C photo-reactors for paracetamol degradation using advanced oxidative processes. Among the evaluated processes, photo-Fenton was the most efficient for both radiations. Degradations greater than 81% (λ 197 nm) and 91% (λ 243 nm) were obtained in the kinetic study. These degradations were also observed by means of the reduction in the peaks in both spectral scanning and high-performance liquid chromatography analysis. The good fit of the Chan and Chu kinetic model shows that the degradation reaction has pseudo-first order behavior. Toxicity tests did not indicate the inhibition of growth of Lactuca sativa seeds and Escherichia coli bacterium. However, the growth of strains of the Salmonella enteritidis bacterium was inhibited in all the samples, demonstrating that only this bacterium was sensitive to solutions. The proposed empirical models obtained from the 24 factorial designs were able to predict paracetamol degradation. These models could, at the same levels assessed, be used to predict the percentage of degradation in studies using other organic compounds. The LED and UV-C photo-reactors were, when employing the photo-Fenton process, able to degrade paracetamol, thus highlighting the efficiency of LED radiation when its power (three times smaller) is compared to that of UV-C radiation.
APA, Harvard, Vancouver, ISO, and other styles
7

F. Ferreira, Gabriela, Milena G. Maniero, and José R. Guimarães. "Degradation of Sucralose by Peroxidation Assisted with Ultraviolet Radiation and Photo-Fenton." International Journal of Engineering and Technology 7, no. 5 (December 2015): 438–44. http://dx.doi.org/10.7763/ijet.2015.v7.833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Múčka, V., R. Silber, M. Pospı́šil, M. Čamra, and B. Bartonı́ček. "Radiation degradation of polychlorinated biphenyls." Radiation Physics and Chemistry 57, no. 3-6 (March 2000): 489–93. http://dx.doi.org/10.1016/s0969-806x(99)00477-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Relleve, L., N. Nagasawa, L. Q. Luan, T. Yagi, C. Aranilla, L. Abad, T. Kume, F. Yoshii, and A. dela Rosa. "Degradation of carrageenan by radiation." Polymer Degradation and Stability 87, no. 3 (March 2005): 403–10. http://dx.doi.org/10.1016/j.polymdegradstab.2004.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miyahira, T. F., and A. H. Johnston. "Trends in optocoupler radiation degradation." IEEE Transactions on Nuclear Science 49, no. 6 (December 2002): 2868–73. http://dx.doi.org/10.1109/tns.2002.805350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Abad, L. V., H. Kudo, S. Saiki, N. Nagasawa, M. Tamada, Y. Katsumura, C. T. Aranilla, L. S. Relleve, and A. M. De La Rosa. "Radiation degradation studies of carrageenans." Carbohydrate Polymers 78, no. 1 (August 2009): 100–106. http://dx.doi.org/10.1016/j.carbpol.2009.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kuruc, J., M. K. Sahoo, J. Ločaj, and M. Hutta. "Radiation degradation of waste waters." Journal of Radioanalytical and Nuclear Chemistry Articles 183, no. 1 (September 1994): 99–107. http://dx.doi.org/10.1007/bf02043121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ito, Masayuki. "Radiation Induced Degradation of Elastomer." Seikei-Kakou 33, no. 8 (July 20, 2021): 271–75. http://dx.doi.org/10.4325/seikeikakou.33.271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Villafán-Vidales, H. I., S. A. Cuevas, and C. A. Arancibia-Bulnes. "Modeling the Solar Photocatalytic Degradation of Dyes." Journal of Solar Energy Engineering 129, no. 1 (January 13, 2006): 87–93. http://dx.doi.org/10.1115/1.2391255.

Full text
Abstract:
Background. The calculation of radiation absorption by the catalyst in solar photocatalytic reactors has been addressed by some authors, because it is a necessary step for the modeling of the detoxification of polluted water in these systems. Generally transparent pollutants have been considered, which somewhat simplifies the calculations. However, there has been an increasing interest in the study of solar photocatalytic degradation of dyes. These substances are not transparent to the radiation that the catalyst is able to absorb, and therefore their optical properties must be taken into account in the radiative modeling. Method of Approach. Absorption of radiation by the catalyst suspended in colored water is modeled by using the P1 approximation of radiative transfer theory. The absorption coefficient of the dye is taken into account in these calculations. A kinetic model is used to model degradation rates, based on the results of the radiative calculations. This has to be done through an Euler type method, because the reduction of dye concentration constantly modifies the optical conditions on the reactor, requiring a recalculation of radiation absorption at each step. Also, photocatalytic degradation experiments were carried out in a CPC solar photocatalytic reactor with tubular reaction space. Degradation of the Acid Orange 24 Azo dye was studied. The experimental degradation rates are compared with theoretical predictions. Results. An important influence of dye concentration is observed in the distribution of absorbed radiation, and also this parameter has a notorious effect on the predicted degradation rates. As a function of catalyst concentration, the degradation rate first increases rapidly and then at a smaller pace with an apparent linear trend. The experimental results can be reproduced well by the model. Conclusions. The proposed methodology allows modeling the solar photocatalytic degradation of dyes. The method should be applicable as long as the dye absorption coefficient is not too high in the wavelength region where the catalyst absorbs.
APA, Harvard, Vancouver, ISO, and other styles
15

Bhattacharya, Anindita, and Alka Tangri. "Organic Wastes Degradation by U.V. Radiation." International Journal of Engineering Research and Applications 07, no. 06 (July 2017): 74–78. http://dx.doi.org/10.9790/9622-0706067478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kubát, Pavel, Svatopluk Civiš, Alexander Muck, Jiři Barek, and Jiřı́ Zima. "Degradation of pyrene by UV radiation." Journal of Photochemistry and Photobiology A: Chemistry 132, no. 1-2 (March 2000): 33–36. http://dx.doi.org/10.1016/s1010-6030(99)00245-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nagasawa, Naotsugu, Hiroshi Mitomo, Fumio Yoshii, and Tamikazu Kume. "Radiation-induced degradation of sodium alginate." Polymer Degradation and Stability 69, no. 3 (September 2000): 279–85. http://dx.doi.org/10.1016/s0141-3910(00)00070-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Popov, Petar, and Nikola Getoff. "Radiation-induced degradation of aqueous fluoranthene." Radiation Physics and Chemistry 72, no. 1 (January 2005): 19–24. http://dx.doi.org/10.1016/j.radphyschem.2003.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Şen, Murat, Burcu Yolaçan, and Olgun Güven. "Radiation-induced degradation of galactomannan polysaccharides." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 265, no. 1 (December 2007): 429–33. http://dx.doi.org/10.1016/j.nimb.2007.09.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Douki, T., T. Delatour, R. Martini, and J. Cadet. "Radiation-induced degradation of DNA bases." Journal de Chimie Physique et de Physico-Chimie Biologique 96, no. 1 (January 1999): 138–42. http://dx.doi.org/10.1051/jcp:1999121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Siddiqui, M. R. H., A. S. N. Al-Arifi, S. Al-Resayes, A. I. Al-Wassil, and R. Mahfouz. "Radiation-induced degradation of solid fluorene." Radiation Effects and Defects in Solids 161, no. 8 (August 2006): 473–77. http://dx.doi.org/10.1080/10420150600799716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Telnov, A. V., N. V. Zavyalov, Yu A. Khokhlov, N. P. Sitnikov, M. L. Smetanin, V. P. Tarantasov, D. N. Shadrin, I. V. Shorikov, A. L. Liakumovich, and F. K. Miryasova. "Radiation degradation of spent butyl rubbers." Radiation Physics and Chemistry 63, no. 3-6 (March 2002): 245–48. http://dx.doi.org/10.1016/s0969-806x(01)00645-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chulkov, V. N., A. V. Bludenko, and A. V. Ponomarev. "Radiation-Thermal Degradation of Waste Plastics." High Energy Chemistry 53, no. 5 (September 2019): 365–70. http://dx.doi.org/10.1134/s0018143919040052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bremner, Tim, David J. T. Hill, James H. O'Donnell, M. C. Senake Perera, and Peter J. Pomery. "Mechanism of radiation degradation of polyisobutylene." Journal of Polymer Science Part A: Polymer Chemistry 34, no. 6 (April 30, 1996): 971–84. http://dx.doi.org/10.1002/(sici)1099-0518(19960430)34:6<971::aid-pola6>3.0.co;2-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Johnston, A. H., and T. F. Miyahira. "Radiation degradation mechanisms in laser diodes." IEEE Transactions on Nuclear Science 51, no. 6 (December 2004): 3564–71. http://dx.doi.org/10.1109/tns.2004.839166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Hai-Li, Xiao-Yan Tang, Hui Guo, Yi-Men Zhang, Yu-Tian Wang, and Yu-Ming Zhang. "Simulation of SiC radiation detector degradation." Chinese Physics B 28, no. 1 (January 2019): 010701. http://dx.doi.org/10.1088/1674-1056/28/1/010701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zong, Xiang-Fu, Cheng-Fu Shen, Song Liu, Zhong-chi Wu, Yi Chen, Y. Chen, B. D. Evans, R. Gonzalez, and C. H. Sellers. "Radiation-induced electrical degradation in crystallineAl2O3." Physical Review B 49, no. 22 (June 1, 1994): 15514–24. http://dx.doi.org/10.1103/physrevb.49.15514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hu, Zhi-Yuan, Zhang-Li Liu, Hua Shao, Zheng-Xuan Zhang, Bing-Xu Ning, Ming Chen, Da-Wei Bi, and Shi-Chang Zou. "Radiation induced inter-device leakage degradation." Chinese Physics C 35, no. 8 (August 2011): 769–73. http://dx.doi.org/10.1088/1674-1137/35/8/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wilski, Hans. "The radiation induced degradation of polymers." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 29, no. 1 (January 1987): 1–14. http://dx.doi.org/10.1016/1359-0197(87)90054-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zue-Teh, Ma, and Zhou Rui-Min. "Radiation degradation of short-cotton linters." Radiation Physics and Chemistry (1977) 25, no. 4-6 (January 1985): 911–16. http://dx.doi.org/10.1016/0146-5724(85)90174-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Karmakar, Sanat, Falix Lawrence, C. Mallika, and U. Kamachi Mudali. "Radiation Degradation of Polytetrafluoroethylene-Lead Composites." Journal of Materials Engineering and Performance 24, no. 11 (September 18, 2015): 4409–14. http://dx.doi.org/10.1007/s11665-015-1702-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bartoníček, B., V. Hnát, I. Janovský, and R. Pejša. "Radiation degradation of plastic insulating materials." Radiation Physics and Chemistry 46, no. 4-6 (October 1995): 797–800. http://dx.doi.org/10.1016/0969-806x(95)00264-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mori, M. N., H. Oikawa, M. H. O. Sampa, and C. L. Duarte. "Degradation of chlorpyrifos by ionizing radiation." Journal of Radioanalytical and Nuclear Chemistry 270, no. 1 (October 2006): 99–102. http://dx.doi.org/10.1007/s10967-006-0314-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Katoh, Ryuzi, and Kenji Takahashi. "Photo-degradation of imidazolium ionic liquids." Radiation Physics and Chemistry 78, no. 12 (December 2009): 1126–28. http://dx.doi.org/10.1016/j.radphyschem.2009.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Schmid, S., P. Krajnik, R. M. Quint, and S. Solar. "Degradation of monochlorophenols by γ-irradiation." Radiation Physics and Chemistry 50, no. 5 (November 1997): 493–502. http://dx.doi.org/10.1016/s0969-806x(97)00075-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wasiewicz, Malgorzata, Andrzej G. Chmielewski, and Nikola Getoff. "Radiation-induced degradation of aqueous 2,3-dihydroxynaphthalene." Radiation Physics and Chemistry 75, no. 2 (February 2006): 201–9. http://dx.doi.org/10.1016/j.radphyschem.2005.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Niedzielska, Ewelina, and Anna Masek. "Polymer materials with controlled degradation time." E3S Web of Conferences 44 (2018): 00122. http://dx.doi.org/10.1051/e3sconf/20184400122.

Full text
Abstract:
The aim of this work was carry out accelarated process of ageing for cyclic olefin copolymer ethylene – norbornene (Topas). The Topas cyclic olefin copolymer (COC) family characterize high transparency, excellent mechanical properties and low water permeability. The influence of external factors such as UV radiation, elevated temperature, oxygen effect and humidity causing degradation of polymer macroparticles was also investigated. The properties of the polymer before and after weathering and UV radiation were also compared. Degradability was examinated by measuring color change, FTIR spectrum analysis and determination of the ageing factor k. The tensile strength, elongation at break and hardness of composites by Shore A method were measured. The synergistic effect of temperature, humidity and UV radiation reduces the mechanical properties of the samples tested, while the interaction of only UV radiation on the samples causes a significant change color.
APA, Harvard, Vancouver, ISO, and other styles
38

Gurovich, B. A., D. A. Kuleshov, D. A. Maltsev, O. K. Chugunov, A. S. Frolov, and Ya I. Shtrombakh. "Radiation degradation mechanisms of reactor graphites properties." Procedia Structural Integrity 23 (2019): 589–94. http://dx.doi.org/10.1016/j.prostr.2020.01.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Choi, Jong-il, Hee Sub Lee, Jae-Hun Kim, Kwang-Won Lee, Ju-Woon Lee, Seog-jin Seo, Ke Won Kang, and Myung-Woo Byun. "Controlling the radiation degradation of carboxymethylcellulose solution." Polymer Degradation and Stability 93, no. 1 (January 2008): 310–15. http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ge, G., V. I. Korepanov, and P. V. Petikar’. "Radiation-Induced Degradation of LiF:W-Based Scintillators." Technical Physics Letters 45, no. 7 (July 2019): 714–17. http://dx.doi.org/10.1134/s1063785019070216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

ITO, Hitoshi, Awang Mat RASOL, Tamikazu KUME, and Isao ISHIGAKI. "Fungal degradation of bagasse after radiation pasteurization." NIPPON SHOKUHIN KOGYO GAKKAISHI 36, no. 8 (1989): 643–46. http://dx.doi.org/10.3136/nskkk1962.36.8_643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Stojadinović, N., S. Golubović, V. Davidović, S. Djorić-Veljković, and S. Dimitrijev. "Modeling Radiation-Induced Mobility Degradation in MOSFETs." physica status solidi (a) 169, no. 1 (September 1998): 63–66. http://dx.doi.org/10.1002/(sici)1521-396x(199809)169:1<63::aid-pssa63>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nemţanu, Monica R., and Mirela Braşoveanu. "Degradation of amylose by ionizing radiation processing." Starch - Stärke 69, no. 3-4 (May 20, 2016): 1600027. http://dx.doi.org/10.1002/star.201600027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dartnell, Lewis R., Michael C. Storrie-Lombardi, Conrad W. Mullineaux, Alexander V. Ruban, Gary Wright, Andrew D. Griffiths, Jan-Peter Muller, and John M. Ward. "Degradation of Cyanobacterial Biosignatures by Ionizing Radiation." Astrobiology 11, no. 10 (December 2011): 997–1016. http://dx.doi.org/10.1089/ast.2011.0663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Miskiewicz, S. A., A. F. Komarov, F. F. Komarov, G. M. Zayats, and S. A. Soroka. "Radiation Degradation of Bipolar Transistor Current Gain." Acta Physica Polonica A 132, no. 2 (August 2017): 288–90. http://dx.doi.org/10.12693/aphyspola.132.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Deeble, D. J., G. O. Phillips, E. Bothe, H. P. Schuchmann, and C. von Sonntag. "The radiation-induced degradation of hyaluronic acid." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 37, no. 1 (January 1991): 115–18. http://dx.doi.org/10.1016/1359-0197(91)90208-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rauf, M. A., and S. Salman Ashraf. "Radiation induced degradation of dyes—An overview." Journal of Hazardous Materials 166, no. 1 (July 2009): 6–16. http://dx.doi.org/10.1016/j.jhazmat.2008.11.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

McConnell, J. W., D. A. Johnson, and R. D. Sanders. "Radiation degradation in organic ion exchange resins." Waste Management 13, no. 1 (January 1993): 65–75. http://dx.doi.org/10.1016/0956-053x(93)90035-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cardoso dos Santos, Luis Geraldo, and Yoshio Kawano. "Degradation of polyacrylonitrile by X-ray radiation." Polymer Degradation and Stability 44, no. 1 (January 1994): 27–32. http://dx.doi.org/10.1016/0141-3910(94)90028-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Braun, Dietrich, Norbert Arnold, and Ingrid Schmidtke. "Liquid-crystalline polysulfones, 4. Radiation-induced degradation." Macromolecular Chemistry and Physics 195, no. 5 (May 1994): 1603–10. http://dx.doi.org/10.1002/macp.1994.021950512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography