Academic literature on the topic 'Radiation dosimetry. Thermoluminescence dosimetry. Ruthenium Metal oxide semiconductor field-effect transistors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiation dosimetry. Thermoluminescence dosimetry. Ruthenium Metal oxide semiconductor field-effect transistors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Radiation dosimetry. Thermoluminescence dosimetry. Ruthenium Metal oxide semiconductor field-effect transistors"

1

Damulira, Edrine, Muhammad Nur Salihin Yusoff, Ahmad Fairuz Omar, and Nur Hartini Mohd Taib. "A Review: Photonic Devices Used for Dosimetry in Medical Radiation." Sensors 19, no. 10 (May 14, 2019): 2226. http://dx.doi.org/10.3390/s19102226.

Full text
Abstract:
Numerous instruments such as ionization chambers, hand-held and pocket dosimeters of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications. Of recent, photonic devices have also been adopted. This article evaluates recent research and advancements in the applications of photonic devices in medical radiation detection primarily focusing on four types; photodiodes – including light-emitting diodes (LEDs), phototransistors—including metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive analysis of the operating principles and recent technologies of these devices is performed. Further, critical evaluation and comparison of their benefits and limitations as dosimeters is done based on the available studies. Common factors barring photonic devices from being used as radiation detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally, the potentials of these devices and the challenges of realizing their applications as quintessential dosimeters are highlighted for future research and improvements.
APA, Harvard, Vancouver, ISO, and other styles
2

"A Comparative study of radiation doses and treatment area dependence in thermoluminescence dosimetry systems and metal oxide semiconductor field effect transistors." Journal of Turgut Ozal Medical Center, March 15, 2015. http://dx.doi.org/10.7247/jtomc.2014.1764.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Radiation dosimetry. Thermoluminescence dosimetry. Ruthenium Metal oxide semiconductor field-effect transistors"

1

Takam, Rungdham. "Determination of dose distribution of Ruthenium-106 Ophthalmic applicators." Title page, contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09SM/09smt1363.pdf.

Full text
Abstract:
"August 2003" Bibliography: leaves 108-117. 1. Ruthenium-106 ophthalmic applicators -- 2. General principle of thermoluminescent dosimeter -- 3. Study of basic characteristics of CaSO4:Dy TLD -- 4. Measurements of COB and CCA type ruthenium-106 ophthalmic applicator dose distributions -- 5. Determination of the dose rate distribution using a MOSFET detector -- 6. Summary and conclusion. In this project, small CaSO4:Dy TLDs and a semiconductor MOSFET dosimeter were used for the determination of on-axis depth dose-rate distributions of 15-mm and 20-mm ruthenium-106 applicators in acrylic eye phantoms. The TLDs were also used to determine off-axis dose distributions.
APA, Harvard, Vancouver, ISO, and other styles
2

Peszynski, R. I. "A procedure to verify the accuracy of delivery of prescribed radiation doses in radiotherapy : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Medical Physics in the University of Canterbury /." 2008. http://hdl.handle.net/10092/1962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morton, Jason. "Clinical implementation of MOSFETs for entrance dose in-vitro dosimetry with high energy photons for external beam radiation therapy." 2006. http://hdl.handle.net/2440/37882.

Full text
Abstract:
In external beam radiotherapy quality assurance is carried out on the individual components of the treatment chain. The patient simulating device, planning system and linear accelerators are tested regularly according to set protocols developed by national and international organizations. Even though these individual systems are tested errors can be made in the transfer between systems. The best quality assurance for the system is at the end of the treatment planning chain. In-vivo dosimetry measures the dose to the target volume through indirect measures at the end of the treatment planning chain and is therefore the most likely method for picking up errors which might occur earlier in the chain. Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) have been shown to have a similar error in estimating entrance dose for in-vivo dosimetry to diodes, but no studies have been done clinically with entrance dose in-vivo dosimetry with MOSFETs. The time savings for using MOSFETs makes them preferable to TLD's. Due to their small size and versatility in other applications they are useful as more than dedicated in-vivo dosimetry systems using diodes. Clinical implementation of external beam in-vivo dosimetry would add another use to the MOSFETs without purchasing more specialized equipment. My studies have shown that MOSFETs can be used clinically for external beam in-vivo dosimetry using entrance dose measurements. After the MOSFET measurement system was implemented using a custom built aluminium build up cap clinical measurements were performed. A total of 23 patients and 54 fields were studied. The mean for all clinical measurements was 1.3 %, with a standard deviation of 2.6 %. Results were normally distributed around a mean with skewness and kurtosis as -0.39 and 0.34 respectively. For breasts the mean was 1.8 %, with a standard deviation of 2.7 %. For prostates and hips the mean was 1.3 % with a standard deviation of 2.9 %. These results are similar to studies conducted with diodes and TLD's. From these results one can conclude that MOSFETs can be used for entrance dose in-vivo dosimetry and are no worse than diodes or TLD's in terms of their measurement accuracy.
Thesis (M.Sc.)--School of Chemistry and Physics, 2006.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography