Academic literature on the topic 'Radiation pyrometers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiation pyrometers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radiation pyrometers"
Shilin, A. N., B. V. Mac, and I. A. Koptelova. "DIGITAL PYROMETER OF SPECTRAL RATIO." Kontrol'. Diagnostika, no. 285 (March 2022): 52–57. http://dx.doi.org/10.14489/td.2022.03.pp.052-057.
Full textTschudi, Hans Rudolf, and Gerd Morian. "Pyrometric Temperature Measurements in Solar Furnaces." Journal of Solar Energy Engineering 123, no. 2 (January 1, 2001): 164–70. http://dx.doi.org/10.1115/1.1355035.
Full textVashchenko, P. V., S. S. Boldova, and V. A. Labusov. "High-speed spectral pyrometer based on a «Kolibri-2» spectrometer." Industrial laboratory. Diagnostics of materials 85, no. 1II) (February 15, 2019): 122–25. http://dx.doi.org/10.26896/1028-6861-2019-85-1-ii-122-125.
Full textKim, A. A., M. I. Podglazova, and K. S. Shatokhin. "Errors of non-contact temperature measurement." Izvestiya. Ferrous Metallurgy 66, no. 2 (June 6, 2023): 229–35. http://dx.doi.org/10.17073/0368-0797-2023-2-229-235.
Full textShilin, A. N., B. V. Mac, and I. A. Koptelova. "ANALYSIS OF THE METHODOLOGY FOR USING THE INTEGRAL RADIATION COEFFICIENT IN ENERGY PYROMETERS." Kontrol'. Diagnostika, no. 303 (September 2023): 42–48. http://dx.doi.org/10.14489/td.2023.09.pp.042-048.
Full textBruhaug, G., H. G. Rinderknecht, Y. E, M. S. Wei, R. B. Brannon, D. Guy, R. G. Peck, et al. "Development of a hardened THz energy meter for use on the kilojoule-scale, short-pulse OMEGA EP laser." Review of Scientific Instruments 93, no. 12 (December 1, 2022): 123502. http://dx.doi.org/10.1063/5.0099328.
Full textKhodunkov, V. P. "Reduced emissivity – a factor for the accuracy in pyrometric measurements." Izmeritel`naya Tekhnika, no. 12 (2019): 14–19. http://dx.doi.org/10.32446/0368-1025it.2019-12-14-19.
Full textZasimenko, V. M., Yu B. Obruchnikov, and V. T. Negrutsak. "Standardizing metrological characteristics for industrial radiation pyrometers." Measurement Techniques 35, no. 3 (March 1992): 329–31. http://dx.doi.org/10.1007/bf00978020.
Full textJones, T. P., J. L. Gardner, and A. J. Richards. "Radiation pyrometers for temperature measurement during aluminium processing." Journal of Physics E: Scientific Instruments 20, no. 6 (June 1987): 615–20. http://dx.doi.org/10.1088/0022-3735/20/6/007.
Full textCherepaschuk, G., E. Kalashnikov, V. Siroklin, and О. Goptsiy. "Features of the Application of Radiation Pyrometers, which Influence on the Accuracy of Measurement." Metrology and instruments, no. 3 (March 7, 2018): 41–46. http://dx.doi.org/10.33955/2307-2180(3)2018.41-46.
Full textDissertations / Theses on the topic "Radiation pyrometers"
Taccoli, Cinzia. "Experimental and computational analysis of purge systems for radiation pyrometers." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/10198.
Full textMacKay, James D. "Analytical method for turbine blade temperature mapping to estimate a pyrometer input signal." Thesis, Virginia Tech, 1987. http://hdl.handle.net/10919/45797.
Full textThe purpose of this thesis is to develop a method to estimate local blade temperatures in a gas turbine for comparison with the output signal of an experimental pyrometer. The goal of the method is to provide a temperature measurement benchmark based on a knowledge of blade geometry and engine operating conditions. A survey of currently available methods is discussed including both experimental and analytical techniques.The purpose of this thesis is to develop a method to estimate local blade temperatures in a gas turbine for comparison with the output signal of an experimental pyrometer. The goal of the method is to provide a temperature measurement benchmark based on a knowledge of blade geometry and engine operating conditions. A survey of currently available methods is discussed including both experimental and analytical techniques.
An analytical approach is presented as an example, using the output from a cascade flow solver to estimate local blade temperatures from local flow conditions. With the local blade temperatures, a grid is constructed which maps the temperatures onto the blade. A predicted pyrometer trace path is then used to interpolate temperature values from the grid, predicting the temperature history a pyrometer would record as the blade rotates through the pyrometer line of sight. Plotting the temperature history models a pyrometer input signal. An analytical approach is presented as an example, using the output from a cascade flow solver to estimate local blade temperatures from local flow conditions. With the local blade temperatures, a grid is constructed which maps the temperatures onto the blade. A predicted pyrometer trace path is then used to interpolate temperature values from the grid, predicting the temperature history a pyrometer would record as the blade rotates through the pyrometer line of sight. Plotting the temperature history models a pyrometer input signal.
Master of Science
Williams, David A. "A 3-d model for the operation of a radiation pyrometer in an axial flow turbine." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/80097.
Full textMaster of Science
Jordan, Jorge J. "UNDERSTANDING THE NON-CONTACT TEMPERATURE MEASUREMENT TECHNOLOGY." International Foundation for Telemetering, 2005. http://hdl.handle.net/10150/605042.
Full textThe ability to accurately measure the temperature of different materials has always been a challenge for the Instrumentation Engineer. The use the classic contact type temperature detector such as thermocouples or RTD’s (Resistance Temperature Detectors) has not always shown to be the best approach to obtain the expected measurement. When not used carefully in closed environments, thermocouples and RTD’s could report the environmental temperature rather than the temperature from the product under examination. They are also temperature limited and when needed for applications above those limits, very expensive and low reliable materials are necessary to do the job. The use of non-contact thermometers has become the preferred choice for such applications. They have also come as a solution for the difficulties involved in the temperature measurements of moving targets. The industry has used portable and spot type infrared thermometers for some time, but the demand for better and more precise measurements has brought an incredible number of new products to the market. By means of advanced electronics and new software developments these products are used to cope with the difficulties of acquiring challenging measurements. Some of the same demands have made necessary the use of non-contact temperature measurement devices on aircraft instrumentation applications. The use of these capabilities has allowed the data acquisition community to get valuable data that was very difficult if not impossible to obtain before. In spite of all these facts, this promising emerging technology demands very careful attention before it is put to good use. The many products and solutions available do not accurately address every problem and the selection of the wrong technology for a specific task can prove to be fatal. The use of non-contact temperature devices is not an easy “off the shelf” pick but rather an option that demands knowledge of the infrared measurement theory as well as a complete understanding of the material under observation. The intention of this paper is to provide a practical understanding on the non-contact temperature measurement methods to the Aircraft Instrumentation Engineer who has not benefited from the use of this exiting technology.
Villalta, Lara David. "RADIATION HEAT TRANSFER IN DIRECT-INJECTION DIESEL ENGINES." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/114793.
Full textEn els últims anys, la recerca en motors de combustió ha estat focalitzada principalment en la reducció de les emissions contaminants i la millora de la eficiència. Aquests fets afegits al fet del augment de la conscienciació del canvi climàtic han impulsat el interés per incrementar la eficiència tèrmica per damunt de altres criteris en el disseny de motors de combustió interna alternatius (MCIA). Per aconseguir aquest objectiu, existixen diferents estratègies a aplicar. Concretament, la transferència de calor a les parets de la càmera de combustió pot ser considerada un dels principals focs de reducció de eficiència indicada. En particular, en els moderns motors dièsel de injecció directa, la emissió de radiació de les partícules de sutja pot constituir un component important de les pèrdues de eficiència. En aquest context s'emmarca el objectiu principal de la tesis: contribuir a la comprensió de la transferència de calor per radiació en la combustió dièsel de injecció directa i la millora del coneixement del procés de formació-oxidació de la sutja. El treball esta basat tant en resultats experimentals mediant l'aplicació de tècniques òptiques en diverses tipologies de motor com en resultants simulats a partir de models unidimensionals validats. En la primera part dels resultats experimentals, s'ha avaluat la quantitat de energia per radiació respecte a la energia química del combustible mediant la aplicació de una sonda optoelectrònica (basada en la tècnica del 2-Colors) tant en un motor òptic DI com en un motor poli-cilíndric DI de producció en serie. En aquest estudi s'han obtingut valors de intensitat espectral emesa per la sutja i posteriorment, la radiació total emesa per les partícules de sutja en tot el espectre. Com s'ha citat amb anterioritat, les partícules de sutja son les principals responsables de la transferència de calor per radiació, a més de un del principals agents contaminants emès per els motors dièsel. Les emissions de sutja son el resultat de dos processos antagonistes: la formació i la oxidació de sutja. Els mecanismes de formació de sutja es discuteixen àmpliament en la literatura. No obstant això, existeixen deficiències pel que fa al coneixement de l'oxidació de sutja. Per tant, l'objectiu d'aquesta secció ha sigut avaluar l'impacte del procés de mescla i la temperatura del gas sobre el procés d'oxidació de sutja durant l'última part de la combustió sota condicions reals d'operació. Finalment, i en base als resultats i coneixements adquirits fins aquest moment, s'ha desenvolupat un model que permet predir les perdudes de calor però radiació per a un raig dièsel. El model esta basat en tres sub-models: model de raig, el qual analitza i caracteritza la estructura interna del raig en termes de mescla i combustió en un procés de injecció amb resolució temporal i espacial. Un model de sutja, en el qual els resultats es justifiquen en funció del procés de formació i oxidació de la sutja. La cohesió d'aquests dos sub-models s'utilitza per obtindre els valors d'entrada al model de radiació, amb el que s'obté els valors de transferència de calor per radiació per a una flama dièsel.
In the last two decades engine research has been mainly focused on reducing pollutant emissions and increasing efficiency. These facts together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). To achieve the objective, there are different strategies to apply. The heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminution. In particular, in modern direct-injection diesel engines, the radiation emission from soot particles can constitute a significant component of the efficiency losses. In this context, the main objective of the thesis is framed: to contribute to the understanding of the radiation heat transfer in DI diesel combustion together with the improvement of the knowledge in the soot formation-oxidation processes. The work has been based on experimental results through the optical technique application in different types of engine and on simulated results from validated one-dimensional models. In the first part of experimental results, the amount of energy lost to soot radiation relative to the input fuel chemical energy has been evaluated by means of the optoelectronic probe application (based on the 2-Color technique) in both an optical engine DI and a production 4-cylinder DI engine. In this study, the values of soot spectral intensity emitted have been obtained and later, the total radiation emitted by the soot particles in the whole spectrum. As mentioned above, soot particles are the main responsible for the radiation heat transfer, in addition to one of the important concern in meeting emissions regulations. Soot emissions are the result of two competing processes: soot formation and soot oxidation. Mechanisms of soot formation are discussed extensively in the literature. However, there are deficiencies in the knowledge of soot oxidation. Therefore, the objective of this section has been to evaluate the impact of mixing process and bulk gas temperature on late-cycle soot oxidation process under real operating conditions. Finally, based on the results and knowledge acquired, a model able to predict heat losses by radiation for a spray diesel has been developed. The model is based on three sub-models: spray model, which analyzes and characterizes the internal spray structure in terms of mixing and combustion process with temporal and spatial resolution. A soot model, in which the results have been justified according to soot formation and oxidation processes. The link of these two sub-models has been used to obtain the input values to the radiation model, which the radiation heat transfer values for a diesel flame are obtained.
Villalta Lara, D. (2018). RADIATION HEAT TRANSFER IN DIRECT-INJECTION DIESEL ENGINES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114793
TESIS
Dilhac, Jean-Marie. "Evaluation des traitements thermiques rapides infrarouges en microelectronique silicium." Toulouse 3, 1988. http://www.theses.fr/1988TOU30164.
Full textNavello, Lorris. "Développement d’un pyromètre bichromatique impulsionnel pour mesures de températures de surfaces solides et liquides en milieux perturbés." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100143/document.
Full textOptical passive methods of temperature measurements such as thermography or optical pyrometry are very interesting because they allow a non-intrusive measurement with the target object provided to know the emission factor. The knowledge of this factor is critical for determining the actual temperature of a surface from the thermal radiation emitted in a wavelength band. The bichromatic pulsed pyrometer allows to overcome the knowledge of this parameter provided that precautions are taken in the choice of the values of wavelengths. When the object to be measured is placed in industrial environments, such passive optical methods are greatly disturbed by the presence of an optically absorbing medium. It is also distorted for objects located in very hot environments emitting intense interfering radiation. In this thesis, we present an active bichromatic radiometric method for measuring the temperature of a surface in harsh environments. The method is based on a localized excitation by a modulated laser source in the infrared range. Detecting the temperature range which is correlated with the excitation allows a synchronous detection to extract the signal embedded in a noise up to 106 times superior. Working at short wavelengths (visible range and near infrared range) offers a large dynamic range and minimizes the error due to variations in emissivity with the wavelength. This system collects the radiation emitted by the object at a distance from a few meters up to dozens of meters depending on the configuration of the optical system. The principle of the measurement method, the optical wavelength separation system and the telemetry apparatus are presented in this report as well as the theoretical and experimental study of the sensitivity of the device, its calibration and the results obtained in different industrial sites
Macé, Olivier. "Etude des champs de températures dans des écoulements hétérogènes : applications aux flammes de charbon pulverisé et aux lits fluidisés circulants." Rouen, 1989. http://www.theses.fr/1989ROUES032.
Full textBooks on the topic "Radiation pyrometers"
Organisation Internationale de Métrologie Légale. Total radiation pyrometers =: Pyromètres à radiation totale. Troyes: Grande Imprimerie de Troyes, 1996.
Find full text1934-, DeWitt David P., and Nutter Gene D, eds. Theory and practice of radiation thermometry. New York: Wiley, 1988.
Find full textC, Richmond Joseph, DeWitt David P. 1934-, ASTM Committee E-20 on Temperature Measurement., United States. National Bureau of Standards., and Symposium on Applications of Radiation Thermometry (1984 : National Bureau of Standards), eds. Applications of radiation thermometry: A symposium. Philadelphia, PA: American Society for Testing and Materials, 1985.
Find full textUnited States. National Aeronautics and Space Administration., ed. Seven-wavelength pyrometer for determining surface temperature of ablation materials. Washington DC: National Aeronautics and Space Administration, 1985.
Find full textUnited States. National Aeronautics and Space Administration., ed. Seven-wavelength pyrometer for determining surface temperature of ablation materials. Washington DC: National Aeronautics and Space Administration, 1985.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multiwavelength pyrometry to correct for reflected radiation. [Washington, D.C.]: National Aeronautics and Space Administration, 1990.
Find full textM, Zhang Zhuomin, Tsai Benjamin K, and Machin Graham, eds. Radiometric temperature measurements. Amsterdam: Academic Press, 2009.
Find full textSaunders, Peter. Radiation thermometry in the petrochemical industry. Bellingham, Wash: SPIE Press, 2007.
Find full textUnited States. National Aeronautics and Space Administration., ed. Temperature measurement of a glass material using a multiwavelength pyrometer. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Find full textC, Fralick Gustave, and Lewis Research Center, eds. Temperature measurement of ceramic materials using a multiwavelength pyrometer. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.
Find full textBook chapters on the topic "Radiation pyrometers"
Claggett, T. J., R. W. Worrall, and B. G. Lipták. "Radiation and Infrared Pyrometers." In Temperature Measurement, 59–72. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063919-11.
Full textMüller, W., H. Piazena, A. R. Thomsen, and Peter Vaupel. "Thermography and Thermometry in wIRA-Hyperthermia." In Water-filtered Infrared A (wIRA) Irradiation, 55–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92880-3_4.
Full textde Lemos, L. Teixeira, and R. Bouriannes. "A New Infrared Emission-Absorption Pyrometer for Dust-Air Explosions Temperature Measurements." In Heat Transfer in Radiating and Combusting Systems, 287–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84637-3_17.
Full text"Front Matter." In Applications of Radiation Thermometry, FM1—FM18. ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1985. http://dx.doi.org/10.1520/stp38702s.
Full text"Radiation pyrometers: infrared (IR), Total, and optical." In Measurement and Safety, 1022–39. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370330-86.
Full textJones, H. R. N. "Measurement of temperature." In Radiation Heat Transfer. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198564553.003.0008.
Full text"Radiation Pyrometry." In High Temperature Experiments in Chemistry and Materials Science, 93–128. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118457795.ch4.
Full textConference papers on the topic "Radiation pyrometers"
Moulla, L., Z. Salhi, M. P. Planche, M. Cherigui, and C. Coddet. "On the Measurement of Substrate Temperature During Thermal Spraying." In ITSC2005, edited by E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0679.
Full textKlein, D., Z. Salhi, and C. Coddet. "Influence of Reflected Radiations on in Flight Particle Temperature Measurements." In ITSC2005, edited by E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p1304.
Full textMoon, H. K., B. Glezer, B. Mink, and W. Marvin. "Development of a Wide Range Temperature Pyrometer for Gas Turbine Application." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-126.
Full textFrank, Stefan L. F., Tim O. Holt, Holger Eisenlohr, and Dieter Raake. "Application of a High Resolution Turbine Pyrometer to Heavy Duty Gas Turbines." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0577.
Full textVladimirov, V. I., Yu A. Gorshkov, V. S. Dozhdikov, and V. N. Senchenko. "A BRIGHTNESS PYROMETER TECHNIQUE FOR TEMPERATURE MEASUREMENTS IN THE FLAMES OF HYDROCARBON FUELS." In Radiative Transfer I. Proceedings of the First International Symposium on Radiation Transfer. Connecticut: Begellhouse, 1995. http://dx.doi.org/10.1615/ichmt.1995.radtransfproc.450.
Full textKerr, Clive, Paul Ivey, and Neil Oxley. "Computational Comparison of the RB199 and GE90 Pyrometer Purging Systems." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30049.
Full textLi, Hejie, Guanghua Wang, Nirm Nirmalan, Samhita Dasgupta, and Edward R. Furlong. "Passive Absorption/Emission Spectroscopy for Gas Temperature Measurements in Gas Turbine Engines." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45152.
Full textRav, Amit S., A. K. Saxena, K. D. Joshi, T. C. Kaushik, Satish C. Gupta, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Time Resolved Radiation Pyrometer For Transient Temperature Measurement." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605928.
Full textBerthet, O., and J. J. Greffet. "Pyrometry using a photothermal effect." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.wg43.
Full textMoulla, L., M. P. Planche, and C. Coddet. "Effective Spectral Emissivity Measurement of Thermally Sprayed YSZ Thermal Barrier Coating at High Temperature Using a Wide-Band Single Wavelength Pyrometer." In ITSC2006, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima, and J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p1005.
Full text