To see the other types of publications on this topic, follow the link: Radical pairs; Recombination.

Journal articles on the topic 'Radical pairs; Recombination'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Radical pairs; Recombination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hansen, Martin J., and J. Boiden Pedersen. "Recombination yield of initially separated geminate radical pairs." Chemical Physics Letters 360, no. 5-6 (July 2002): 453–58. http://dx.doi.org/10.1016/s0009-2614(02)00726-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scott, T. W., and S. N. Liu. "Picosecond geminate recombination of phenylthiyl free-radical pairs." Journal of Physical Chemistry 93, no. 4 (February 1989): 1393–96. http://dx.doi.org/10.1021/j100341a042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roth, Heinz D. "Recombination of radical ion pairs of triplet multiplicity." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2, no. 2 (December 2001): 93–116. http://dx.doi.org/10.1016/s1389-5567(01)00013-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roth, Heinz D. "Biradicals by triplet recombination of radical ion pairs." Photochemical & Photobiological Sciences 7, no. 5 (2008): 540. http://dx.doi.org/10.1039/b800524a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Benniston, Andrew C., Anthony Harriman, Douglas Philp, and J. Fraser Stoddart. "Charge recombination in cyclophane-derived, intimate radical ion pairs." Journal of the American Chemical Society 115, no. 12 (June 1993): 5298–99. http://dx.doi.org/10.1021/ja00065a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Delbaere, Stephanie, Maylis Orio, Jerome Berthet, Michel Sliwa, Sayaka Hatano, and Jiro Abe. "Insights into the recombination of radical pairs in hexaarylbiimidazoles." Chemical Communications 49, no. 52 (2013): 5841. http://dx.doi.org/10.1039/c3cc43037e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popov, A. V., P. A. Purtov, and A. B. Doktorov. "The CIDNP kinetics in recombination of successive radical pairs." Applied Magnetic Resonance 23, no. 2 (December 2002): 149–70. http://dx.doi.org/10.1007/bf03166192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hansen, Martin J., and J. Boiden Pedersen. "Recombination yield of geminate radical pairs in low magnetic fields." Chemical Physics Letters 361, no. 3-4 (July 2002): 219–25. http://dx.doi.org/10.1016/s0009-2614(02)00724-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Serelis, AK, DH Solomon, and PJ Steel. "Stereospecificity in the Geminate Recombination of 1,3-Diphenylpropyl Radical Pairs." Australian Journal of Chemistry 42, no. 3 (1989): 395. http://dx.doi.org/10.1071/ch9890395.

Full text
Abstract:
1,3,4,6-Tetraphenylhexanes (3m) and (3r), formed by the geminate recombination of 1,3- diphenylpropyl (1) radical pairs generated at 90� from diastereomerically pure meso - and rac-1,1′,3,3'-tetraphenylazopropane (2m) and (2r), are obtained with substantial retention (up to 46% d.e .) of precursor stereochemistry. The stable nitroxyls 1,1,3,3-tetramethylisoindolin-2-yloxyl (4) and 2,2,6,6-tetramethylpiperidin-1-yloxyl (5) were used as scavengers to isolate the geminate reaction (30-35% cage effect). A slight selectivity (64% d.e .) in favour of meso-l,3,4,6-tetraphenylhexane (3m) is found in the encounter reaction of (1). The nature of the molecular motions associated with the partial loss of stereochemistry during the reaction (2) → (1) →(3) is discussed. n.m.r. spectroscopy, particularly 13C, was used for correlating product and precursor stereochemistries and for diastereomer identification. The structural assignments were confirmed by single-crystal X-ray diffraction analysis of (3r).
APA, Harvard, Vancouver, ISO, and other styles
10

van Dijk, B., J. K. H. Carpenter, A. J. Hoff, and P. J. Hore. "Magnetic Field Effects on the Recombination Kinetics of Radical Pairs." Journal of Physical Chemistry B 102, no. 2 (January 1998): 464–72. http://dx.doi.org/10.1021/jp9721816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Roth, Heinz D. "ChemInform Abstract: Recombination of Radical Ion Pairs of Triplet Multiplicity." ChemInform 33, no. 23 (May 21, 2010): no. http://dx.doi.org/10.1002/chin.200223273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Markovic, Dejan. "Photochemistry of aromatic ketones in sodium dodecyl sulphate micelles in the presence of unsaturated fatty acids." Journal of the Serbian Chemical Society 69, no. 2 (2004): 107–15. http://dx.doi.org/10.2298/jsc0402107m.

Full text
Abstract:
Laser-flash photolysis has been employed to characterize the behaviour of the free radicals created in the photochemical reaction of benzophenone (BZP), as well as of its lipoidal derivative, benzophenone-4-heptyl-4?-pentanoic acid (BHPA), with chosen unsaturated fatty acids in sodium dodecyl sulphate micelles. The calculated rate constants were used to study the "cage effect" i.e., the recombination of the created radical-pairs (BZP, BHPA ketyl radical - lipid radical) inside the highly limited space of the SDS micelles. The "cage effect" appears to be the dominant event inside SDS micelles, dependent on the structure of both the reactants-precursors. The fractions of the initially created radical-pairs which escape the "cage effect" and exit into the surrounding aqueous phase do not exceed 16 %. This fact is of enormous importance for the self-control of the pathogenic process of lipid peroxidation.
APA, Harvard, Vancouver, ISO, and other styles
13

Sailer, Christian F., and Eberhard Riedle. "Photogeneration and reactions of benzhydryl cations and radicals: A complex sequence of mechanisms from femtoseconds to microseconds." Pure and Applied Chemistry 85, no. 7 (June 30, 2013): 1487–98. http://dx.doi.org/10.1351/pac-con-13-04-01.

Full text
Abstract:
Benzhydryl radicals and cations are reactive intermediates central to the understanding of organic reactivity. They can be generated from benzhydryl halides by UV irradiation. We performed transient absorption (TA) measurements over the range from femtoseconds to microseconds to unravel the complete reaction scheme. The 290–720-nm probe range allows the unambiguous monitoring of all fragments. The appearance of the radical is delayed to the optical excitation, the onset of the cation signal is found even later. Ab initio calculations show that this non-rate behavior in the 100 fs range is due to wavepacket motion from the Franck–Condon region to two distinct conical intersections. The rise of the optical signal with a quasi-exponential time of 300 fs is assigned to the planarization and solvation of the photoproducts. The bond cleavage predominantly generates radical pairs. A subsequent electron transfer (ET) transforms radical pairs into ion pairs. Due to the broad interradical distance distribution and the distance dependence, the ET is strongly non-exponential. Part of the ion pairs recombine geminately. The ET and the recombination are terminated by the depletion of close pairs and diffusional separation. The remaining free radicals and cations undergo further reactions in the nanosecond to microsecond regime.
APA, Harvard, Vancouver, ISO, and other styles
14

Natarajan, Ettaya, and Charles B. Grissom. "The Origin of Magnetic Field Dependent Recombination in Alkylcobalamin Radical Pairs." Photochemistry and Photobiology 64, no. 2 (August 1996): 286–95. http://dx.doi.org/10.1111/j.1751-1097.1996.tb02460.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kuz'min, V. A., P. P. Levin, and I. V. Khudyakov. "Kinetics of the geminal recombination of triplet radical pairs in glycerin." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 35, no. 2 (February 1986): 443–45. http://dx.doi.org/10.1007/bf00952949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Levin, P. P., V. A. Kuz'min, V. B. Ivanov, and V. V. Selikhov. "Laser photolysis study of recombination of radical pairs in polymer films." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 37, no. 8 (August 1988): 1552–55. http://dx.doi.org/10.1007/bf00961094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mikhailov, S. A., P. A. Purtov, and A. B. Doktorov. "Theory of geminate recombination of radical pairs with instantaneously changing spin Hamiltonian. III. Radical recombination in switched high magnetic field." Chemical Physics 166, no. 1-2 (October 1992): 35–49. http://dx.doi.org/10.1016/0301-0104(92)87003-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Levin, P. P., I. V. Khudyakov, and V. A. Kuzmin. "Geminate recombination kinetics of triplet radical pairs in glycerol: magnetic field effect." Journal of Physical Chemistry 93, no. 1 (January 1989): 208–14. http://dx.doi.org/10.1021/j100338a045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sosnovsky, Denis V., Olga B. Morozova, Alexandra V. Yurkovskaya, and Konstantin L. Ivanov. "Relation between CIDNP formed upon geminate and bulk recombination of radical pairs." Journal of Chemical Physics 147, no. 2 (July 14, 2017): 024303. http://dx.doi.org/10.1063/1.4986243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ponomarev, O. A., S. I. Kubarev, I. S. Kubareva, I. P. Susak, and A. S. Shigaev. "The recombination of the geminate radical pairs in parallel combined magnetic fields." Chemical Physics Letters 388, no. 4-6 (April 2004): 231–35. http://dx.doi.org/10.1016/j.cplett.2004.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bagryansky, Victor A., Vsevolod I. Borovkov, Yurii N. Molin, Mikhail P. Egorov, and Oleg M. Nefedov. "Quantum beats in the recombination of radical ion pairs caused by hyperfine interaction in radical anions." Mendeleev Communications 7, no. 4 (January 1997): 132–33. http://dx.doi.org/10.1070/mc1997v007n04abeh000810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mutoh, Katsuya, Hiroki Arai, Yoichi Kobayashi, and Jiro Abe. "Photo-control of the thermal radical recombination reaction: photochromism of an azobenzene-bridged imidazole dimer." Pure and Applied Chemistry 87, no. 6 (June 1, 2015): 511–23. http://dx.doi.org/10.1515/pac-2014-0910.

Full text
Abstract:
AbstractAmong various kinds of photochromic compounds, bridged imidazole dimers have been known as fast photo-switch molecules. Bridged imidazole dimers have opened up various potential applications to photochromic lenses and real-time holographic displays. The optical properties of bridged imidazole dimers strongly depend on the bridging moiety to tether two imidazole rings. Therefore, the control of the bridging structure by introducing another photochromic moiety would increase the versatility of bridged imidazole dimers. In this study, we designed and synthesized a new type of the bridged imidazole dimer 1 which has the azobenzene moiety as the photo-responsive linker. The cis–trans isomerization of the azobenzene moiety enables to change the distance between the photogenerated radical pairs. The two structural isomers, cis–1 and trans–1, are observed and both compounds undergo the photochromism to produce the imidazolyl radicals. We found that the two imidazolyl radicals generated from cis–1 are close enough to form the intramolecular C–N bond, whereas the imidazolyl radicals of trans–1 undergo the intermolecular recombination reaction due to the long distance between the radicals. Our results demonstrate the control of intra-/intermolecular radical recombination reactions by the combination of the two photochromic compounds.
APA, Harvard, Vancouver, ISO, and other styles
23

Autrey, Tom, Chelladurai Devadoss, Bjorn Sauerwein, James A. Franz, and Gary B. Schuster. "Solvent Cage Recombination of 4-Benzoylphenylthiyl Radicals: Fast Intersystem Crossing of Triplet Sulfur-Centered Radical Pairs." Journal of Physical Chemistry 99, no. 3 (January 1995): 869–71. http://dx.doi.org/10.1021/j100003a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Batchelor, S. N., K. A. McLauchlan, and I. A. Shkrob. "Spin-selective recombination in geminate radical pairs involving electronically excited radicals studied by MFE and CIDEP." Chemical Physics Letters 214, no. 5 (November 1993): 507–12. http://dx.doi.org/10.1016/0009-2614(93)85674-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Saik, V. O., O. A. Anisimov, V. V. Lozovoy, and Yu N. Molin. "Fast Reactions Involving Radical-Cations During their Geminate Recombination as Studied by the OD ESR Method." Zeitschrift für Naturforschung A 40, no. 3 (March 1, 1985): 239–45. http://dx.doi.org/10.1515/zna-1985-0305.

Full text
Abstract:
The new method of optically detected ESR (OD ESR) of radical-ion pairs has been used to study fast radical-cation reactions in non-polar liquid solutions. Dimeric radical-cations have been observed to occur within the time of geminate recombination with radical-ions; their generation rate has been determined. The spectral line broadening with increasing acceptor concentration has been associated with ion-molecular charge transfer; the rate of this process has also been determined.
APA, Harvard, Vancouver, ISO, and other styles
26

Bagryansky, V. A., O. M. Usov, V. I. Borovkov, T. V. Kobzeva, and Yu N. Molin. "Quantum beats in recombination of spin-correlated radical ion pairs with equivalent protons." Chemical Physics 255, no. 2-3 (May 2000): 237–45. http://dx.doi.org/10.1016/s0301-0104(00)00078-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gladkikh, V. S., A. I. Burshtein, G. Angulo, and G. Grampp. "Quantum yields of singlet and triplet recombination products of singlet radical ion pairs." Physical Chemistry Chemical Physics 5, no. 12 (2003): 2581. http://dx.doi.org/10.1039/b301009k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Melnikov, A. R., E. V. Kalneus, V. V. Korolev, I. G. Dranov, and D. V. Stass. "Exciplex formation upon recombination of radiation-generated radical ion pairs in nonpolar solutions." Doklady Physical Chemistry 452, no. 2 (October 2013): 257–60. http://dx.doi.org/10.1134/s0012501613100084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lüders, K., and K. M. Salikhov. "Theoretical treatment of differential recombination probabilities of radical pairs in high magnetic fields." Chemical Physics 134, no. 1 (June 1989): 31–36. http://dx.doi.org/10.1016/0301-0104(89)80234-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bagryansky, V. A., V. I. Borovkov, Yu N. Molin, M. P. Egorov, and O. M. Nefedov. "Quantum beats in the recombination fluorescence of radical ion pairs caused by the hyperfine coupling in radical anions." Chemical Physics Letters 295, no. 3 (October 1998): 230–36. http://dx.doi.org/10.1016/s0009-2614(98)00956-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Male, Jonathan L., Britt E. Lindfors, Katharine J. Covert, and David R. Tyler. "The Effect of Radical Size and Mass on the Cage Recombination Efficiency of Photochemically Generated Radical Cage Pairs." Journal of the American Chemical Society 120, no. 50 (December 1998): 13176–86. http://dx.doi.org/10.1021/ja980911x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hatano, Sayaka, and Jiro Abe. "Activation Parameters for the Recombination Reaction of Intramolecular Radical Pairs Generated from the Radical Diffusion-Inhibited HABI Derivative." Journal of Physical Chemistry A 112, no. 27 (July 2008): 6098–103. http://dx.doi.org/10.1021/jp801909k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fellows, Christopher. "Preliminary observations on the copolymerisation of acceptor monomer:donor monomer systems under microwave irradiation." Open Chemistry 3, no. 1 (March 1, 2005): 40–52. http://dx.doi.org/10.2478/bf02476236.

Full text
Abstract:
AbstractThe mechanistic rationalisation of specific ‘microwave effects’ previously reported in a range of chemical reactions suggests that they may be observable in the freeradical copolymerisation of comonomer pairs capable of forming donor-acceptor complexes. Polymerisation under microwave irradiation is carried out for several comonomer pairs with weak donor-acceptor interactions, and no acceleration in rate or change in degree of alternation attributable to changes in propagation are observed. An increase in reaction rate of 150–200 % is observed for all systems, with trends in molecular weight suggesting this was due to an increase in radical flux. This is consistent with earlier reports of rate enhancement for free-radical polymerisations using the initiator 2,2′-azobis-isobutyronitrile, and it is proposed that microwave irradiation may reduce the amount of geminate radical recombination.
APA, Harvard, Vancouver, ISO, and other styles
34

Maeda, Kiminori, Paul Liddell, Devens Gust, and P. J. Hore. "Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators." Journal of Chemical Physics 139, no. 23 (December 21, 2013): 234309. http://dx.doi.org/10.1063/1.4844355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gladkikh, V. S., and A. I. Burshtein. "Double-Channel Contact Recombination of Radical Pairs Subjected to Spin Conversion via the ΔgMechanism." Journal of Physical Chemistry A 110, no. 10 (March 2006): 3364–76. http://dx.doi.org/10.1021/jp0550107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Roth, Heinz D., and Ronald S. Sauers. "Triplet recombination of radical ion pairs: CIDNP effects and DFT calculations on 1,2-dicyanoethylene." Photochemical & Photobiological Sciences 12, no. 11 (2013): 2036. http://dx.doi.org/10.1039/c3pp50213a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gladkikh, V. S., and A. I. Burshtein. "Double-channel recombination of the radical pairs via incoherent Δg-mechanism of spin-conversion." Chemical Physics 323, no. 2-3 (April 2006): 351–57. http://dx.doi.org/10.1016/j.chemphys.2005.09.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Burshtein, A. I. "Recombination and separation of photochemically created radical–ion pairs subjected to incoherent spin-conversion." Chemical Physics 323, no. 2-3 (April 2006): 341–50. http://dx.doi.org/10.1016/j.chemphys.2005.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Doktorov, A. B., M. J. Hansen, and J. Boiden Pedersen. "Recombination yield of geminate radical pairs in low magnetic fields – A Green’s function method." Chemical Physics 328, no. 1-3 (September 2006): 333–37. http://dx.doi.org/10.1016/j.chemphys.2006.07.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Salikhov, K. M. "Comment on a shape of EPR spectra of spin-correlated radical pairs and separate radicals escaped geminate recombination." Applied Magnetic Resonance 13, no. 3-4 (November 1997): 415–37. http://dx.doi.org/10.1007/bf03162218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Barry, Justin T., Daniel J. Berg, and David R. Tyler. "Radical Cage Effects: Comparison of Solvent Bulk Viscosity and Microviscosity in Predicting the Recombination Efficiencies of Radical Cage Pairs." Journal of the American Chemical Society 138, no. 30 (July 21, 2016): 9389–92. http://dx.doi.org/10.1021/jacs.6b05432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Morozova, Olga B., Peter S. Sherin, and Alexandra V. Yurkovskaya. "Competition of singlet and triplet recombination of radical pairs in photoreactions of carboxy benzophenones and aromatic amino acids." Physical Chemistry Chemical Physics 21, no. 4 (2019): 2017–28. http://dx.doi.org/10.1039/c8cp06760k.

Full text
Abstract:
Time-resolved chemically induced dynamic nuclear polarization and transient absorption were applied to reveal the branching ratio of the singlet and triplet recombination channels in the reaction of short-lived radicals of carboxy benzophenones and the aromatic amino acids.
APA, Harvard, Vancouver, ISO, and other styles
43

Grigoryants, V. M., B. M. Tadjikov, O. M. Usov, and Yu N. Molin. "Phase shift of quantum oscillations in the recombination luminescence of spin-correlated radical ion pairs." Chemical Physics Letters 246, no. 4-5 (December 1995): 392–98. http://dx.doi.org/10.1016/0009-2614(95)01115-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Engel, Paul S., Shaoming Duan, and Graciela B. Arhancet. "Thermolysis of a Tertiary Alkoxyamine. Recombination and Disproportionation of α-Phenethyl/Diethyl Nitroxyl Radical Pairs." Journal of Organic Chemistry 62, no. 11 (May 1997): 3537–41. http://dx.doi.org/10.1021/jo961852d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Buchachenko, A. L. "Experimental testing of molecular dynamic functions of pairs by the isotope selectivity of radical recombination." Russian Chemical Bulletin 44, no. 9 (September 1995): 1571–77. http://dx.doi.org/10.1007/bf01151272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Levin, P. P., V. A. Kuz'min, and I. V. Khudyakov. "Kinetics of the geminal recombination of radical pairs in the photoreduction of uranyl in micelles." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 37, no. 4 (April 1988): 760–62. http://dx.doi.org/10.1007/bf01455496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Iglev, Hristo, Martin K. Fischer, and Alfred Laubereau. "Electron detachment from anions in aqueous solutions studied by two- and three-pulse femtosecond spectroscopy." Pure and Applied Chemistry 82, no. 10 (June 30, 2010): 1919–26. http://dx.doi.org/10.1351/pac-con-09-12-04.

Full text
Abstract:
The electron photodetachment of the aqueous halides and hydroxide is studied after resonant excitation in the lowest charge-transfer-to-solvent (CTTS) state. The initially excited state is followed by an intermediate assigned to a donor-electron pair that displays a competition of recombination and separation. Using pump–repump–probe (PREP) spectroscopy, the pair species is verified via a secondary excitation with separation of the pairs so that the yield of released electrons is increased. The observed recombination process on the one hand and the similar absorptions of the intermediate and the hydrated electron on the other hand suggest that the donor-electron pairs incorporate only few if not just one water molecule. The geminate dynamics measured in the various CTTS systems reveal a strong influence of the parent radical. The electron survival probability decreases significantly from 0.77 to 0.29 going from F– to OH–. The extracted dissociation rates of the halogen-electron pairs seem to be proportional to the mutual diffusion coefficients of the geminate particles, while such a relation between the recombination rate and the diffusion coefficient is not found. Results for I– show that excitation of a higher-lying CTTS state opens a new relaxation channel, which directly leads to a fully hydrated electron, while the relaxation channel discussed above is not significantly affected.
APA, Harvard, Vancouver, ISO, and other styles
48

Tarasov, V. F., N. D. Ghatlia, A. L. Buchachenko, and Nicholas J. Turro. "Probing the exchange interaction through micelle size. 1. Probability of recombination of triplet geminate radical pairs." Journal of the American Chemical Society 114, no. 24 (November 1992): 9517–26. http://dx.doi.org/10.1021/ja00050a034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Werner, U., and H. Staerk. "Magnetic Field Effect in the Recombination Reaction of Radical Ion Pairs: Dependence on Solvent Dielectric Constant." Journal of Physical Chemistry 99, no. 1 (January 1995): 248–54. http://dx.doi.org/10.1021/j100001a038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ivanov, Anatoly I., and Anatoly I. Burshtein. "The Double-Channel Contact Recombination and Separation of Geminate Radical Ion Pairs in a Coulomb Well." Journal of Physical Chemistry A 112, no. 28 (July 2008): 6392–97. http://dx.doi.org/10.1021/jp800008n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography