Academic literature on the topic 'Radiographic simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiographic simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Radiographic simulation"

1

Derbyshire, Brian. "Correction of radiographic measurements of acetabular cup wear for variations in pelvis orientation." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232, no. 3 (2018): 299–309. http://dx.doi.org/10.1177/0954411918754924.

Full text
Abstract:
Radiographic measurement of two-dimensional acetabular cup wear is usually carried out on a series of follow-up radiographs of the patient’s pelvis. Since the orientation of the pelvis might not be consistent at every X-ray examination, the resulting change in view of the wear plane introduces error into the linear wear measurement. This effect is amplified on some designs of cup in which the centre of the socket is several millimetres below the centre of the cup or circular wire marker. This study describes the formulation of a mathematical method to correct radiographic wear measurements for changes in pelvis orientation. A mathematical simulation of changes in cup orientation and wear vectors caused by pelvic tilt was used to confirm that the formulae corrected the wear exactly if the radiographic plane of the reference radiograph was parallel to the true plane of wear. An error analysis showed that even when the true wear plane was not parallel to the reference radiographic plane, the formulae could still provide a useful correction. A published correction formula was found to be ineffective.
APA, Harvard, Vancouver, ISO, and other styles
2

Rocca, A. B. D., S. Ferriani, and L. La Porta. "Simulation by computer of radiographic process." NDT & E International 25, no. 4-5 (1992): 236. http://dx.doi.org/10.1016/0963-8695(92)90289-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Desponds, L., C. Depeursinge, M. Grecescu, C. Hessler, and J. F. Valley. "Simulation of the Radiographic Process in Mammography." Zeitschrift für Medizinische Physik 2, no. 2 (1992): 112–16. http://dx.doi.org/10.1016/s0939-3889(15)70585-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Costaridou, L., G. Panayiotakis, N. Pallikarakis, and B. Proimos. "Radiographic skills learning: procedure simulation using adaptive hypermedia." British Journal of Radiology 69, no. 826 (1996): 938–45. http://dx.doi.org/10.1259/0007-1285-69-826-938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moore, C. S., G. Avery, S. Balcam, et al. "Use of a digitally reconstructed radiograph-based computer simulation for the optimisation of chest radiographic techniques for computed radiography imaging systems." British Journal of Radiology 85, no. 1017 (2012): e630-e639. http://dx.doi.org/10.1259/bjr/47377285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robertson, Faith C., Muhammad M. Abd-El-Barr, Srinivasan Mukundan, and William B. Gormley. "Ventriculostomy-associated hemorrhage: a risk assessment by radiographic simulation." Journal of Neurosurgery 127, no. 3 (2017): 532–36. http://dx.doi.org/10.3171/2016.8.jns16538.

Full text
Abstract:
OBJECTIVEVentriculostomy entry sites are commonly selected by freehand estimation of Kocher's point or approximations from skull landmarks and a trajectory toward the ipsilateral frontal horn of the lateral ventricles. A recognized ventriculostomy complication is intracranial hemorrhage from cortical vessel damage; reported rates range from 1% to 41%. In this report, the authors assess hemorrhagic risk by simulating traditional ventriculostomy trajectories and using CT angiography (CTA) with venography (CTV) data to identify potential complications, specifically from cortical draining veins.METHODSRadiographic analysis was completed on 50 consecutive dynamic CTA/CTV studies obtained at a tertiary-care academic neurosurgery department. Image sections were 0.5 mm thick, and analysis was performed on a venous phase that demonstrated high-quality opacification of the cortical veins and sagittal sinus. Virtual ventriculostomy trajectories were determined for right and left sides using medical diagnostic imaging software. Entry points were measured along the skull surface, 10 cm posteriorly from the nasion, and 3 cm laterally for both left and right sides. Cannulation was simulated perpendicular to the skull surface. Distances between the software-traced cortical vessels and the virtual catheter were measured. To approximate vessel injury by twist drill and ventricular catheter placement, veins within a 3-mm radius were considered a hemorrhage risk.RESULTSIn 100 virtual lines through Kocher's point toward the ipsilateral ventricle, 19% were predicted to cause cortical vein injury and suspected hemorrhage (radius ≤ 3 mm). Little difference existed between cerebral hemispheres (right 18%, left 20%). The average (± SD) distance from the trajectory line and a cortical vein was 7.23 ± 4.52 mm. In all 19 images that predicted vessel injury, a site of entry for an avascular zone near Kocher's point could be achieved by moving the trajectory less than 1.0 cm laterally and less than 1.0 cm along the anterior/posterior axis, suggesting that empirical measures are suboptimal, and that patient-specific coordinates based on preprocedural CTA/CVA imaging may optimize ventriculostomy in the future.CONCLUSIONSIn this institutional radiographic imaging analysis, traditional methods of ventriculostomy site selection predicted significant rates of cortical vein injury, matching described rates in the literature. CTA/CTV imaging potentiates identification of patient-specific cannulation sites and custom trajectories that avoid cortical vessels, which may lessen the risk of intracranial hemorrhage during ventriculostomy placement. Further development of this software is underway to facilitate stereotactic ventriculostomy and improve outcomes.
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, Craig L., Dale R. Welch, David V. Rose, and Bryan V. Oliver. "Detailed Simulation of the CYGNUS Rod Pinch Radiographic Source." IEEE Transactions on Plasma Science 38, no. 10 (2010): 2507–13. http://dx.doi.org/10.1109/tps.2010.2057448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Ching-Ho, Cheng-Chung Lin, Hsuan-Lun Lu, Tung-Wu Lu, and Lih-Seng Yeh. "EFFECTS OF PELVIC AND FEMORAL POSITIONING ON CANINE NORBERG ANGLE MEASUREMENTS AND TEST–RETEST RELIABILITY: A COMPUTED TOMOGRAPHY-BASED SIMULATION STUDY." Biomedical Engineering: Applications, Basis and Communications 26, no. 06 (2014): 1450076. http://dx.doi.org/10.4015/s1016237214500768.

Full text
Abstract:
Canine hip dysplasia is a common disease in dogs, often diagnosed by using the Norberg angle (NA), an index for the laxity of the hip joint. Measurement of the NA can be affected by the pelvic and femoral positioning during imaging, the effects and test–retest reliability of which have not been documented. To bridge the gap in knowledge, computed tomography data from 11 Labrador Retriever dogs were obtained and used to generate synthetic ventrodorsal radiographs of the hip for NA measurements via a perspective projection model. Twenty-five synthetic radiographs of the hips were generated at positions defined by combinations of five pelvic tilt angles (-20° to 20° at 10° intervals) and five femoral elevation angles (from full extension to 40° at 10° intervals). For each radiograph, the NA was measured three times by each of the two experienced veterinarian examiners. It was found that both the increase in caudal pelvic tilt and femoral elevation increased the measured NA, although the intra- and inter-examiner reliability was very good for a given hip position. The current results suggest that careful positioning of the pelvis and femur during radiographic imaging is critical for accurately measuring the NA, and thus the laxity of the hip, for the clinical diagnosis of hip dysplasia.
APA, Harvard, Vancouver, ISO, and other styles
9

Omojola, AkintayoDaniel, MichaelOnoriode Akpochafor, SamuelOlaolu Adeneye, and UkemePius Aniekop. "Radiographic assessment of protective aprons and dose simulation to personnel." Journal of Radiation and Cancer Research 10, no. 2 (2019): 117. http://dx.doi.org/10.4103/jrcr.jrcr_14_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Neitzel, U., J. Kosanetzky, and G. Harding. "Coherent scatter in radiographic imaging: a Monte Carlo simulation study." Physics in Medicine and Biology 30, no. 12 (1985): 1289–96. http://dx.doi.org/10.1088/0031-9155/30/12/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Radiographic simulation"

1

Ullman, Gustaf. "Quantifying image quality in diagnostic radiology using simulation of the imaging system and model observers." Doctoral thesis, Linköping : Department of Medicine and Health, Linköping University, 2008. http://www.bibl.liu.se/liupubl/disp/disp2008/med1050s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yao, Min. "Computed radiography system modeling, simulation and optimization." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0128/document.

Full text
Abstract:
Depuis plus d’un siècle, la radiographie sur film est utilisée pour le contrôle non destructif (CND) de pièces industrielles. Avec l’introduction de méthodes numériques dans le domaine médical, la communauté du CND industriel a commencé à considérer également les techniques numériques alternatives au film. La radiographie numérique (en anglais Computed radiography -CR) utilisant les écrans photostimulables (en anglais imaging plate -IP) est une voie intéressante à la fois du point de vue coût et facilité d’implémentation. Le détecteur (IP) utilisé se rapproche du film car il est flexible et réutilisable. L’exposition de l’IP aux rayons X génère une image latente qui est ensuite lue et numérisée grâce à un système de balayage optique par laser. A basse énergie, les performances du système CR sont bonnes ce qui explique son utilisation importante dans le domaine médical. A haute énergie par contre, les performances du système CR se dégradent à la fois à cause de la mauvaise absorption de l’IP mais également de la présence de rayonnement diffusé par la pièce qui, étant d’énergie plus faible, est préférentiellement absorbée par l’IP. Les normes internationales préconisent l’utilisation d’écrans métalliques pour améliorer la réponse des systèmes CR à haute énergie. Néanmoins, la nature et l’épaisseur de ces écrans n’est pas clairement définie et la gamme des configurations possibles est large. La simulation est un outil utile pour prévoir les performances d’une expérience et déterminer les meilleures conditions opératoires. Les méthodes Monte Carlo sont communément admises comme étant les plus précises pour simuler les phénomènes de transport de rayonnement, et ainsi comprendre les phénomènes physiques en jeu. Cependant, le caractère probabiliste de ces méthodes implique des temps de calcul importants, voire prohibitifs pour des géométries complexes. Les méthodes déterministes au contraire, peuvent prendre en compte des géométries complexes avec des temps de calcul raisonnables, mais l’estimation du rayonnement diffusé est plus difficile. Dans ce travail de thèse, nous avons tout d’abord mené une étude de simulation Monte Carlo afin de comprendre le fonctionnement des IP avec écrans métalliques à haute énergie pour le contrôle de pièces de forte épaisseur. Nous avons notamment suivi le trajet des photons X mais également des électrons. Quelques comparaisons expérimentales ont pu être menées à l’ESRF (European Synchrotron Radiation Facility). Puis nous avons proposé une approche de simulation hybride, qui combine l'utilisation de codes déterministe et Monte Carlo pour simuler l'imagerie d'objets de forme complexe. Cette approche prend en compte la dégradation introduite par la diffusion des rayons X et la fluorescence dans l'IP ainsi que la diffusion des photons optiques dans l'IP. Les résultats de différentes configurations de simulation ont été comparés<br>For over a century, film-based radiography has been used as a nondestructive testing technique for industrial inspections. With the advent of digital techniques in the medical domain, the NDT community is also considering alternative digital techniques. Computed Radiography (CR) is a cost-efficient and easy-to-implement replacement technique because it uses equipment very similar to film radiography. This technology uses flexible and reusable imaging plates (IP) as a detector to generate a latent image during x-ray exposure. With an optical scanning system, the latent image can be readout and digitized resulting in a direct digital image. CR is widely used in the medical field since it provides good performance at low energies. For industrial inspection, CR application is limited by its poor response to high energy radiation and the presence of scattering phenomena. To completely replace film radiography by such a system, its performance still needs to be improved by either finding more appropriate IPs or by optimizing operating conditions. Guidelines have been addressed in international standards to ensure a good image quality supplied by CR system, where metallic screens are recommended for the case of using high energy sources. However, the type and thickness of such a screen are not clearly defined and a large panel of possible configurations does exist. Simulation is a very useful tool to predict experimental outcomes and determine the optimal operating conditions. The Monte Carlo (MC) methods are widely accepted as the most accurate method to simulate radiation transport problems. It can give insight about physical phenomena, but due to its random nature, a large amount of computational time is required, especially for simulations involving complex geometries. Deterministic methods, on the other hand, can handle easily complex geometry, and are quite efficient. However, the estimation of scattering effects is more difficult with deterministic methods. In this thesis work, we have started with a Monte Carlo simulation study in order to investigate the physical phenomena involved in IP and in metallic screens at high energies. In particular we have studied separately the behavior of X-ray photons and electrons. Some experimental comparisons have been carried out at the European Synchrotron Radiation Facility. Then, we have proposed a hybrid simulation approach, combining the use of deterministic and Monte Carlo code, for simulating the imaging of complex shapes objects. This approach takes into account degradation introduced by X-ray scattering and fluorescence inside IP, as well as optical photons scattering during readout process. Different simulation configurations have been compared
APA, Harvard, Vancouver, ISO, and other styles
3

Nascimento, Marcelo Zanchetta do. "Método computacional automático para correção do efeito \"heel\" nas imagens radiográficas." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-15052017-155328/.

Full text
Abstract:
O diagnóstico radiográfico é baseado na análise das diferenças das densidades ópticas (DO) do filme, que deveriam ser provocadas apenas pelas estruturas anatômicas do paciente. Entretanto, a intensidade do feixe de raios X não é uniforme devido a um efeito intrínseco do equipamento de aquisição de imagem, conhecido como efeito \"heel\". Estas variações prejudicam tanto a análise visual quanto o processamento computacional (CAD) das pequenas estruturas anatômicas. O presente trabalho apresenta um método computacional que corrige as diferenças de densidades ópticas produzidas na radiografia pelo efeito \"heel\". Esse método foi implementado utilizando ambiente de programação Delphi, rotinas em C e Matlab. O método simula a distribuição da intensidade ao longo do campo de radiação, determinando o caminho de absorção que os fótons sofrem dentro do alvo utilizando os modelos de Kramers e Fritz Livingston. Calcula a correlação espacial entre a radiografia e a imagem simulada, localizando o eixo anodo/catodo e o centro do campo nas duas imagens, empregando a função de correlação estatística de Pratt e a função de mapeamento de Zitová e Flusser. Calcula tanto os percentuais de radiação recebidos para cada ponto simulado em relação à radiação ao centro do campo, quanto os percentuais dos níveis de cinza de cada pixel da radiografia e corrige esse valor em função do correspondente na simulação. O algoritmo desenvolvido permitiu determinar a posição do centro do campo de radiação com precisão em torno de 1% e eliminou aproximadamente 90% do efeito \"heel\" na radiografia permitindo que os objetos apresentassem densidades ópticas coerentes com suas absorções específicas. Um estudo preliminar mostrou que esse método poderá ser utilizado como pré-processamento dos sistemas CAD.<br>The radiographic diagnosis is based on the analysis of the film optical density differences that should be created only by the patient anatomical structures. However, the intensity of the x-ray beam is not uniform due to an intrinsic effect to the image acquisition equipment, known as heel effect. These variations damage the visual analysis as well the (CAD) computer processing of the small anatomical structures. The current work presents a computer method that corrects the optical densities differences generated in the radiography by heel effect. This method was implemented using Delphi Programming Environment, routines in C and Matlab. The method simulates the intensity distribution along the radiation field, determining the absorption path that photons suffer inside the target using the models of Kramers and Fritz and Livingston. It calculates the space correlation between the radiography and the simulated image, determining the anode/cathode axis and the field center in the two images, using the statistics function of Pratt and the mapping function of Zitová and Flusser. It calculates as much the received radiation, percentage for each simulated point in relation the field center radiation, as the gray scales percentage of each radiography pixel and corrects their values as function of the correspondent in the simulation. The developed algorithm has allowed to determine the center position of the radiation field with about 1% precision and approximately eliminated 90%of the heel effect in the radiography, allowing the objects to present optical densities coherent with their specific absorptions. A preliminary study has showen that this method can be used as preprocessing of CAD systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Mason, Nicholas Andrew. "The generation of a digital phantom for testing of digitally reconstructed radiographs." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brygoo, Stephanie. "X-ray lateral migration radiography non destructive flaw detection measurements and simulations." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1000110.

Full text
Abstract:
Thesis (M.S.)--University of Florida, 2002.<br>Title from title page of source document. Document formatted into pages; contains xii, 91 p.; also contains graphics. Includes vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Plewa, Jérémie-Marie. "Etude de l'influence des plasmas dans les diodes à électrons pour la radiographie éclair." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30156/document.

Full text
Abstract:
La radiographie éclair par faisceau X intense est spécifique en ce sens qu'elle doit permettre de photographier la matière soumise à des conditions extrêmes de densification, de température et de vitesse de déplacement. Le succès de ce type de radiographie repose sur la qualité de la source X qui doit nécessairement être pénétrante (quelques MeV), intense (plusieurs rads), brève (quelques dizaines de ns) et de petite dimension (quelques mm). L'impulsion X est ainsi générée à partir du rayonnement de freinage émis lors de l'interaction avec une cible en métal d'un faisceau focalisé d'électrons de haute énergie (MeV) et de haute intensité (kA). Ce procédé lie très fortement les propriétés du faisceau d'électrons à ceux du faisceau X et donc à la qualité de la radiographie. Dans ce contexte, la thèse porte sur la compréhension de la dynamique du faisceau dans la diode à l'électron (c'est-à-dire juste avant son entrée dans la ligne accélératrice) ainsi que sur la caractérisation du plasma de velours dont sont issus les électrons qui composent le faisceau. Dans un premier temps, la dynamique du faisceau intense d'électrons a été étudiée à l'aide du code LSP reposant sur la méthode " Particle-In-Cell ". Les simulations réalisées ont été comparées avec des mesures effectuées sur l'injecteur d'un accélérateur linéaire à induction, implanté au CEA Valduc sur l'installation Epure. Grâce au modèle de simulation développé, une nouvelle diode à électrons mono-impulsion a été conçue, dimensionnée et réalisée pendant ce travail de thèse afin d'augmenter l'intensité du faisceau d'électrons de 2,0 kA à 2,6 kA permettant ainsi d'améliorer les performances radiographiques de l'installation. Dans un second temps, un modèle permettant d'étudier les mécanismes mis en jeu dans la production du faisceau d'électrons au niveau de plasma de cathode a été développé. Ce dernier est un modèle collisionnel-radiatif (MCR) 0D qui permet de décrire l'évolution de la densité des espèces d'un plasma dont la composition est directement liée aux molécules et atomes désorbés par la cathode de velours. Trois différents mélanges ont été étudiés impliquant de l'hydrogène, de l'oxygène et du carbone dont les proportions ont été estimées par des mesures LIBS (spectroscopie de plasma induit par laser).[...]<br>Intense X-ray flash radiography is used to take a stop-action picture of a material under extreme conditions like high densification, high temperature and high movement speed. The success of this kind of radiography is based on the quality of the X-ray source which must necessarily be penetrating (some MeV), intense (several rads), short (a few tens of ns) and small (a few mm). The X-ray pulse is generated from the bremsstrahlung radiation emitted during the interaction with a metal target of a focused electron beam of high energy (MeV) and high intensity (kA). This process strongly links the properties of the electron beam to those of the X-ray beam and thus to the quality of the radiography picture. In this context, the thesis is about the electron beam dynamics in the electron diode (i.e. just before electrons move towards the accelerator) as well as about the characterization of the velvet plasma from which electrons are extracted to form the beam. Firstly, the dynamics of the intense electron beam was studied using the LSP code based on the "Particle-In-Cell" method. The simulations were compared to measurements made on the injector of a linear induction accelerator, at the CEA Valduc center on the Epure facility. Based on the developed simulation model, a new single-pulse electron diode was designed, sized and realized during this thesis to increase the intensity of the electron beam from 2.0 kA to 2.6 kA, thus improving the radiographic performances of the facility. In a second step, a model allowing to study the mechanisms involved in the production of the electron beam from the cathode plasma was developed. This latter is a collisional-radiative model (CRM) 0D describing the evolution of the plasma species density of a plasma whose composition is directly related to the molecules and atoms desorbed by the velvet cathode. [...]
APA, Harvard, Vancouver, ISO, and other styles
7

Nilsson, Tore. "Simulation supported training in oral radiology : methods and impact on interpretative skill." Doctoral thesis, Umeå : Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schiabel, Homero. "Proposta de simulação computacional para avaliação de sistemas de imagem radiológica pelo método das funções de transferência." Universidade de São Paulo, 1992. http://www.teses.usp.br/teses/disponiveis/54/54132/tde-19032009-094632/.

Full text
Abstract:
A presente tese demonstra, a partir da avaliação convencional pelo método das Funções de Transferência de sistemas de imagem radiológica, que é necessário obter imagens de fenda em diversas orientações no campo para que essa análise tenha um significado mais real no caso de sistemas não isotrópicos. Isso provém da não linearidade na variação entre as FTMs obtidas para diversas direções 0 e 90&#176C relativas ao eixo do tubo de raios-X. Essa verificação, entretanto, representa um sério problema prático, pois indica um aumento no grau de complexidade de um método que, embora considerado o mais preciso pela maioria dos pesquisadores, tem sido utilizado apenas por laboratórios muito bem equipados. Assim, visando solucionar esse problema, esta tese propõe um novo método de simulação por computador que calcula a FEL e a FTM devidas ao ponto focal, dispensando, portanto, todo o complexo aparato experimental convencionalmente utilizado, o que contribui para tornar acessível à avaliação pelas funções de transferência a qualquer unidade radiológica. Por fim, faz parte desse trabalho também uma investigação do significado físico das variações registradas entre as FTMs e um estudo formal desenvolvido acerca dos conceitos da característica de campo e da magnificação lateral.<br>From the conventional evaluation by the radiological systems Transfer Functions, this work shows that it is necessary to obtain slit images at several field orientations so that this annalysis has a more real significance for non-isotropic systems. This is achieved from the non-linearity on the variations among the MTFs obtained in several directions between 0 and 90&#176C relative to the X-ray tube axis. This notification, however, represents a serious practical matter, because it shows an increase on the complexity of a method which has been used just by well structured laboratories, although many researchers have considered it the most accurate. Hence, in order to solve this problem, we present a new computer simulation method which calculates the LSF and the MTF due to the focal spot, without all the conventional complex experimental apparatus. This makes the evaluation by the transfer functions suitable to any radiological unit. Finally, it is also part of this work an investigation of the physical meaning of the variations among the MTFs and a formal study about the field characteristics and the lateral magnification concepts.
APA, Harvard, Vancouver, ISO, and other styles
9

Freud, Nicolas Babot Daniel. "Modélisation et simulation de systèmes d'imagerie par rayons X ou gamma." Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=freud.

Full text
Abstract:
Thèse doctorat : Génie des Matériaux : Villeurbanne, INSA : 2003.<br>Chap. 2 et 4 rédigés en anglais. En appendice, 1 article rédigé en anglais intitulé "Optimal calibration via virtual X-ray imaging for dual-energy techniques : application to glass wool", issu du Colloque "Six international Conference on quality control by artificial vision" et paru dans la revue "SPIE", vol. 5132, 2003, p. 422-432. Titre provenant de l'écran-titre. Bibliogr. p. 143-155.
APA, Harvard, Vancouver, ISO, and other styles
10

Freud, Nicolas. "Modélisation et simulation de systèmes d'imagerie par rayons X ou gamma." Lyon, INSA, 2003. http://theses.insa-lyon.fr/publication/2003ISAL0061/these.pdf.

Full text
Abstract:
Cette thèse est consacrée à la mise au point d'un code de calcul permettant de simuler rapidement des images radiologiques réalistes en prenant en compte les principaux paramètres physiques à l'œuvre dans une chaîne d'imagerie par rayons X ou gamma. Dans la première partie, nous effectuons un tour d'horizon de l'état de l'art en matière de simulation des phénomènes de transport de rayonnement. Cette étude nous conduit à choisir une approche déterministe et à rechercher des solutions algorithmiques spécifiques, dédiées à la simulation d'images radiologiques et limitées dans un premier temps à la prise en compte du rayonnement directement transmis. Les solutions proposées, qui mettent l'accent sur la vitesse d'exécution et la robustesse, sont implémentées dans un code appelé VXI (Virtual X-ray Imaging). VXI permet d'effectuer aisément des simulations dans des configurations d'imagerie réalistes (spectre polychromatique, objets de géométrie complexe. . . ). La deuxième partie de cette thèse aborde la simulation du rayonnement diffusé par les objets inspectés. Nous proposons une méthode déterministe pour simuler le rayonnement diffusé d'ordre 1 sans recourir à une architecture de calcul parallèle. Cette méthode est validée en comparant les résultats qu'elle fournit avec ceux que donne le code de Monte Carlo Geant4<br>This PhD thesis is devoted to the development of a computer code enabling to simulate in a short time realistic radiological images, taking into account the main physical parameters acting in an X- or gamma-ray imaging chain. In the first part, we carry out a general survey of the state of the art in the field of radiation transport simulation. This study leads us to choose a deterministic approach and to seek specific algorithms, devoted to the simulation of radiological images and, at first, accounting only for the directly transmitted radiation. The proposed solutions, which emphasize execution speed and robustness, are implemented in a code named VXI (Virtual X-ray Imaging). VXI makes it easy to carry out simulations in realistic imaging configurations (polychromatic spectrum, objects with complex geometry. . . The second part of this thesis broaches the simulation of the radiation scattered by the inspected objects. We propose a deterministic method to simulate first-order photon scattering without having recourse to a parallel computing architecture. This method is validated by comparing its results with the ones given by the Monte Carlo code Geant4
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Radiographic simulation"

1

Kerckhoffs, Roy C. P. Patient specific modeling of the cardiovascular system: Technology-driven personalized medicine. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Giger, Maryellen Lissak, and Nico Karssemeijer. Medical imaging 2009: Computer-aided diagnosis : 10-12 February 2009, Lake Buena Vista, Florida, United States. Edited by SPIE (Society) and American Association of Physicists in Medicine. SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

CAD Conference (2008 San Diego, Calif.). Medical imaging 2008, computer-aided diagnosis: 19-21 February 2008, San Diego, California, USA. Edited by Giger Maryellen Lissak 1956-, Karssemeijer Nico, SPIE (Society), and American Association of Physicists in Medicine. SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Summers, Ronald Marc, and Bram van Ginneken. Medical imaging 2011: Computer-aided diagnosis : 15-17 February 2011, Lake Buena Vista, United States. Edited by SPIE (Society), Dynasil Corporation RMD Research, and American Physiological Society (1887- ). SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Image Processing Conference (2007 San Diego, Calif.). Medical imaging 2007.: 18-20 February 2007, San Diego, California, USA. Edited by Reinhardt Joseph M, Pluim Josien P. W, Society of Photo-optical Instrumentation Engineers., American Association of Physicists in Medicine., and SPIE Medical Imaging Symposium (2007 : San Diego, Calif.). SPIE, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dachman, Abraham H. Fundamentals of Virtual Colonoscopy. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dachman, Abraham H. Fundamentals of Virtual Colonoscopy. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), K. Doi, H. Macmahon (Editor), M. L. Giger (Editor), and K. R. Hoffmann (Editor), eds. Computer-Aided Diagnosis in Medical Imaging. Elsevier Science Pub Co, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

SPIE. Medical Imaging 2014: 18-20 February 2014, San Diego, California, United States. SPIE, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

SPIE. Medical Imaging 2014: 16-18 February 2014, San Diego, California, United States. SPIE, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Radiographic simulation"

1

Tillack, Gerd-Rüdiger. "Simulation of Radiographic Techniques." In Review of Progress in Quantitative Nondestructive Evaluation. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4791-4_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Quillin, S., I. Crotch, S. McAlpin, and J. O’Malley. "The Use of MCNP in Flash Radiographic Applications at AWE." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Della Rocca, A. B., L. La Porta, and F. Valentinotti. "Radiographic process simulation by integration of Boltzmann equation on SIMD architecture (Quadrics QH4)." In High-Performance Computing and Networking. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61142-8_584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tillack, G. R., C. Bellon, and C. Nockemann. "Computer Simulation of Radiographic Process — A Study of Complex Component and Defect Geometry." In Review of Progress in Quantitative Nondestructive Evaluation. Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1987-4_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsai, Chang-Shu, Chung-Hung Tsai, and Chih-Sheng Chen. "By Using Medical Imaging of Radiographic Simulation System for Radiologic Education Program – The Example of Skeleton System." In Advances in Computer Science, Environment, Ecoinformatics, and Education. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23345-6_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Groth, Troy J., and Joseph N. Gray. "Development of a Neutron Radiography Simulation Model." In Review of Progress in Quantitative Nondestructive Evaluation. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2848-7_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doll, J., W. Schlegel, B. Bauer, R. Boesecke, B. Kober, and W. J. Lorenz. "Radiotherapy Simulation with the Digital Reconstructed Radiograph." In Computer Assisted Radiology / Computergestützte Radiologie. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-52247-5_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mendes, J. M. S., E. S. Sales Junior, C. M. M. Paschoal, C. J. Cunha, L. M. Brasil, and F. C. L. Ferreira. "Development of Object Simulator for Evaluation Periapical Radiographs." In IFMBE Proceedings. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Litjens, G. J. S., L. Hogeweg, A. M. R. Schilham, P. A. de Jong, M. A. Viergever, and B. van Ginneken. "Simulation of Nodules and Diffuse Infiltrates in Chest Radiographs Using CT Templates." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15745-5_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okamura, Kazutoshi, Kazunori Yoshiura, Kenji Tokumori, Takemasa Tanaka, and Shigenobu Kanda. "Computer simulation of an intraoral radiography using perspective projection of CT data." In CARS 2002 Computer Assisted Radiology and Surgery. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56168-9_268.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Radiographic simulation"

1

Aufderheide, Maurice B. "HADES, a radiographic simulation code." In The 27th annual review of progress in quantitative nondestructive evaluation. AIP, 2001. http://dx.doi.org/10.1063/1.1373801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonin, A. "Moderato: A Monte-Carlo radiographic simulation." In 26th Annual review of progress in quantitative nondestrictive evaluation. AIP, 2000. http://dx.doi.org/10.1063/1.1306111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Humphries, S., T. Orzechowski, and J. McCarrick. "Simulation tools for high-intensity radiographic diodes." In Proceedings of the 2003 Particle Accelerator Conference. IEEE, 2003. http://dx.doi.org/10.1109/pac.2003.1289980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Metter, Richard V., Peter L. Dillon, Kenneth E. Huff, and Majid Rabbani. "Computer Simulation Of Radiographic Screen-Film Images." In Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems (PACS IV) for Medical Applications, edited by Samuel J. Dwyer III and Roger H. Schneider. SPIE, 1986. http://dx.doi.org/10.1117/12.975380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Tao, Irene Cheng, and Mrinal K. Mandal. "Multi-Dimensional Features Recognition in Radiographic Images: A “Collaborative Discovery” Approach." In Modelling and Simulation. ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.804-058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schiabel, Homero, and Annie F. Frere. "Radiographic systems evaluation: obtaining the MTF by simulation." In IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, edited by Raj S. Acharya and Dmitry B. Goldgof. SPIE, 1993. http://dx.doi.org/10.1117/12.148688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ewert, U., A. Deresch, C. Bellon, and G. R. Jaenisch. "A benchmark concept for simulation in radiographic testing." In 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jaenisch, G. R., A. Deresch, C. Bellon, A. Schumm, and P. Guerin. "A proposed benchmark for simulation in radiographic testing." In 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miller, C. L., D. R. Welch, D. V. Rose, and B. V. Oliver. "Detailed simulation of the Cygnus rod pinch radiographic source." In 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deresch, A., C. Bellon, G. R. Jaenisch, and U. Ewert. "Fast model of electron transport for radiographic spectrum simulation." In 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Volume 34. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4914656.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Radiographic simulation"

1

Mathews, A., T. Kwan, K. Buescher, C. Snell, and K. Adams. End-to-End Radiographic Systems Simulation. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/759186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klasky, Marc, Balasubramanya Nadiga, Jennifer Disterhaupt, et al. Uncertainties in Density and Simulation Parameters for Radiographic Reconstructions Using Machine Learning. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1632660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laguna, G. Visual simulation of radiographs. Office of Scientific and Technical Information (OSTI), 1985. http://dx.doi.org/10.2172/5780723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Laguna, G. W. An improved method for simulating radiographs. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/6710964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography