Journal articles on the topic 'Radius of gyration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Radius of gyration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tanner, John J. "Empirical power laws for the radii of gyration of protein oligomers." Acta Crystallographica Section D Structural Biology 72, no. 10 (2016): 1119–29. http://dx.doi.org/10.1107/s2059798316013218.
Full textMcMullen, William E., Karl F. Freed, and Binny J. Cherayil. "Apparent radius of gyration of diblock copolymers." Macromolecules 22, no. 4 (1989): 1853–62. http://dx.doi.org/10.1021/ma00194a057.
Full textZhou, Zhiping, and Deyue Yan. "Mean-square radius of gyration of polysiloxanes." Macromolecular Theory and Simulations 6, no. 1 (1997): 161–68. http://dx.doi.org/10.1002/mats.1997.040060111.
Full textSmirnov, Alexander V., Ivan N. Deryabin, and Boris A. Fedorov. "Small-angle scattering: the Guinier technique underestimates the size of hard globular particles due to the structure-factor effect." Journal of Applied Crystallography 48, no. 4 (2015): 1089–93. http://dx.doi.org/10.1107/s160057671501078x.
Full textKawaguchi, Takeshi. "Scattering curve and radius of gyration of a straight chain of identical spheres." Journal of Applied Crystallography 34, no. 6 (2001): 771–72. http://dx.doi.org/10.1107/s0021889801014558.
Full textLi, Zhigang, Yan Shi, and Shanzhi Chen. "Exploring the influence of human mobility on information spreading in mobile networks." International Journal of Modern Physics C 27, no. 06 (2016): 1650066. http://dx.doi.org/10.1142/s0129183116500662.
Full textJensen, Robert K. "Body segment mass, radius and radius of gyration proportions of children." Journal of Biomechanics 19, no. 5 (1986): 359–68. http://dx.doi.org/10.1016/0021-9290(86)90012-6.
Full textZuo, Haochen, Shouqi Cao, and Qingzhao Yin. "Molecular dynamics study of alloying process of Cu–Au nanoparticles with different heating rates." International Journal of Modern Physics B 35, no. 04 (2021): 2150060. http://dx.doi.org/10.1142/s0217979221500600.
Full textBluhm, T. L., and M. D. Whitmore. "Styrene/butadiene block copolymer micelles in heptane." Canadian Journal of Chemistry 63, no. 1 (1985): 249–52. http://dx.doi.org/10.1139/v85-041.
Full textStojanovic, Zeljko, Katarina Jeremic, Slobodan Jovanovic, Wolfgang Nierling, and Manfred Lechner. "Influence of substituent type on properties of starch derivates." Chemical Industry 64, no. 6 (2010): 555–64. http://dx.doi.org/10.2298/hemind101125076s.
Full textNechaev, Sergei, and Alexander Valov. "Fixman problem revisited: when fluctuations of inflated ideal polymer loop are non-Gaussian?" Journal of Physics A: Mathematical and Theoretical 54, no. 46 (2021): 465001. http://dx.doi.org/10.1088/1751-8121/ac2ea4.
Full textBudkov, Yury A., and Andrei L. Kolesnikov. "On gyration radius distributions of star-like macromolecules." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 6 (2021): 063213. http://dx.doi.org/10.1088/1742-5468/ac096a.
Full textAbramowicz, M. A., J. C. Miller, and Z. Stuchlík. "Concept of radius of gyration in general relativity." Physical Review D 47, no. 4 (1993): 1440–47. http://dx.doi.org/10.1103/physrevd.47.1440.
Full textZhou, Zhiping, and Deyue Yan. "Mean-square radius of gyration of polymer chains." Macromolecular Theory and Simulations 6, no. 3 (1997): 597–611. http://dx.doi.org/10.1002/mats.1997.040060302.
Full textSUZUKI, Akihiro, and Rinji ABE. "Algorithm Estimating Radius of Gyration for Rotational Motion." Transactions of the Society of Instrument and Control Engineers 59, no. 2 (2023): 88–90. http://dx.doi.org/10.9746/sicetr.59.88.
Full textVega Paz, A., F. De J. Guevara Rodríguez, J. F. Palomeque Santiago, and And N. Victorovna Likhanova. "Polymer weight determination from numerical and experimental data of the reduced viscosity of polymer in brine." Revista Mexicana de Física 65, no. 4 Jul-Aug (2019): 321. http://dx.doi.org/10.31349/revmexfis.65.321.
Full textWEN, DE-HUA, WEI CHEN, YI-GANG LU, and LIANG-GANG LIU. "FRAME DRAGGING EFFECT ON MOMENT OF INERTIA AND RADIUS OF GYRATION OF NEUTRON STAR." Modern Physics Letters A 22, no. 07n10 (2007): 631–36. http://dx.doi.org/10.1142/s0217732307023225.
Full textSumardiono, Sumardiono, and I. Putu Wibawa. "Sensitivity of Mass Distribution with Respect to Pitch Motions of High-Speed Craft." Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) 67, no. 2 (2023): 55–57. http://dx.doi.org/10.36842/jomase.v67i2.332.
Full textZhai, Baihui, Qiang Tian, Na Li, Minhao Yan, and Mark J. Henderson. "SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles." Journal of Synchrotron Radiation 29, no. 2 (2022): 281–87. http://dx.doi.org/10.1107/s1600577521012923.
Full textZhong, Hongzhi, and Minmao Liao. "Higher-Order Nonlinear Vibration Analysis of Timoshenko Beams by the Spline-Based Differential Quadrature Method." Shock and Vibration 14, no. 6 (2007): 407–16. http://dx.doi.org/10.1155/2007/146801.
Full textYanao, Tomohiro, Wang S. Koon, Jerrold E. Marsden, and Ioannis G. Kevrekidis. "Gyration-radius dynamics in structural transitions of atomic clusters." Journal of Chemical Physics 126, no. 12 (2007): 124102. http://dx.doi.org/10.1063/1.2710272.
Full textMa, Haizhu, and Linxi Zhang. "Unperturbed Mean-Square Radius of Gyration of 1,2-Polybutadiene." Polymer Journal 26, no. 2 (1994): 121–31. http://dx.doi.org/10.1295/polymj.26.121.
Full textEliezer, D., P. A. Jennings, P. E. Wright, S. Doniach, K. O. Hodgson, and H. Tsuruta. "The Radius of Gyration of an Apomyoglobin Folding Intermediate." Science 270, no. 5235 (1995): 487. http://dx.doi.org/10.1126/science.270.5235.487.
Full textLeung, Alfred F. "Radius of Gyration of a Sphere and a Barrel." Physics Teacher 44, no. 4 (2006): 222–25. http://dx.doi.org/10.1119/1.2186232.
Full textHoshen, Joseph. "Percolation and cluster structure parameters: The radius of gyration." Journal of Physics A: Mathematical and General 30, no. 24 (1997): 8459–69. http://dx.doi.org/10.1088/0305-4470/30/24/011.
Full textChia-chung, Sun, Xiao Xing-cai, Huang Xu-ri, and Li Ze-sheng. "Thekth Radius of Gyration of Aa1, Aa2–BbCcType Polymerization." Bulletin of the Chemical Society of Japan 66, no. 11 (1993): 3185–88. http://dx.doi.org/10.1246/bcsj.66.3185.
Full textKozlov, G. V., and I. V. Dolbin. "Carbon Nanotubes/Nanofibers as Coil Macromolecules: Radius of Gyration." Russian Physics Journal 61, no. 3 (2018): 498–502. http://dx.doi.org/10.1007/s11182-018-1425-3.
Full textZhang, Danhui, Houbo Yang, Zhongkui Liu, and Anmin Liu. "Molecular dynamics simulations of single-walled carbon nanotubes and polynylon66." International Journal of Modern Physics B 33, no. 23 (2019): 1950258. http://dx.doi.org/10.1142/s0217979219502588.
Full textEgorov, Sergei A. "Depletion Interactions between Nanoparticles: The Effect of the Polymeric Depletant Stiffness." Polymers 14, no. 24 (2022): 5398. http://dx.doi.org/10.3390/polym14245398.
Full textLi, Qibin, Tao Fu, Tiefeng Peng, Xianghe Peng, Chao Liu, and Xiaoyang Shi. "Coalescence of Cu contacted nanoparticles with different heating rates: A molecular dynamics study." International Journal of Modern Physics B 30, no. 30 (2016): 1650212. http://dx.doi.org/10.1142/s021797921650212x.
Full textKawaguchi, Takeshi. "Radii of gyration and scattering functions of a torus and its derivatives." Journal of Applied Crystallography 34, no. 5 (2001): 580–84. http://dx.doi.org/10.1107/s0021889801009517.
Full textGao, Yue Kai, Xue Jia Ding, Tao Hu, Yi Li, and Si Zhu Wu. "Study on the Stress Relaxation of Polychloroprene Rubber by Molecular Dynamics Simulation at Different Temperature." Advanced Materials Research 532-533 (June 2012): 311–15. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.311.
Full textLiu, Li-Yan, Zhong-Xun Yu, Li-Xiang Liu, et al. "Self-assembly of polyelectrolyte diblock copolymers within mixtures of monovalent and multivalent counterions." Physical Chemistry Chemical Physics 22, no. 28 (2020): 16334–44. http://dx.doi.org/10.1039/d0cp01019g.
Full textLi, Yonghua, Fanling Meng, Jinkuan Wang, and Yuming Wang. "The characterization of crystalline particle growth in TiNi thin films." Journal of Applied Crystallography 37, no. 6 (2004): 1007–9. http://dx.doi.org/10.1107/s0021889804022332.
Full textSaneifard, Rahim, and Rasoul Saneifard. "Defuzzification Method for Ranking Fuzzy Numbers Through Radius of Gyration." Journal of Fuzzy Set Valued Analysis 2016 (2016): 131–39. http://dx.doi.org/10.5899/2016/jfsva-00282.
Full textNakamura, Yo, Yunan Wan, Jimmy W. Mays, Hermis Iatrou, and Nikos Hadjichristidis. "Radius of Gyration of Polystyrene Combs and Centipedes in Solution." Macromolecules 34, no. 6 (2001): 2018. http://dx.doi.org/10.1021/ma992460m.
Full textWei, Gaoyuan. "Distribution function of the radius of gyration for Gaussian molecules." Journal of Chemical Physics 90, no. 10 (1989): 5873–77. http://dx.doi.org/10.1063/1.456394.
Full textMansfield, Marc L. "Change in radius of gyration of semicrystalline polymers upon crystallization." Macromolecules 19, no. 3 (1986): 851–54. http://dx.doi.org/10.1021/ma00157a063.
Full textSlater, Gary W., Jaan Noolandi, and Adi Eisenberg. "Radius of gyration of charged reptating chains in electric fields." Macromolecules 24, no. 25 (1991): 6715–20. http://dx.doi.org/10.1021/ma00025a024.
Full textNakamura, Yo, Yunan Wan, Jimmy W. Mays, Hermis Iatrou, and Nikos Hadjichristidis. "Radius of Gyration of Polystyrene Combs and Centipedes in Solution." Macromolecules 33, no. 22 (2000): 8323–28. http://dx.doi.org/10.1021/ma0007076.
Full textHeymans, Nicole. "Radius of gyration, maximum extensibility and intrinsic crazing in thermoplastics." Journal of Materials Science 23, no. 7 (1988): 2394–402. http://dx.doi.org/10.1007/bf01111894.
Full textSaneifard, Rahim, and Rasoul Saneifard. "A new effect of radius of gyration with neural networks." Neural Computing and Applications 23, no. 5 (2012): 1257–63. http://dx.doi.org/10.1007/s00521-012-1067-2.
Full textLobanov, M. Yu, N. S. Bogatyreva, and O. V. Galzitskaya. "Radius of gyration as an indicator of protein structure compactness." Molecular Biology 42, no. 4 (2008): 623–28. http://dx.doi.org/10.1134/s0026893308040195.
Full textZhou, Zhiping, and Deyue Yan. "Mean-square Radius of Gyration of Poly[oxy(1-alkylethylenes)]." Polymers for Advanced Technologies 8, no. 4 (1997): 270–74. http://dx.doi.org/10.1002/(sici)1099-1581(199704)8:4<270::aid-pat640>3.0.co;2-o.
Full textZhou, Zhiping. "The Radius of Gyration of the Products of Hyperbranched Polymerization." Macromolecular Theory and Simulations 23, no. 3 (2014): 218–26. http://dx.doi.org/10.1002/mats.201300145.
Full textJayaram, M. A., G. K. Prashanth, and Sachin C. Patil. "Inertia-Based Ear Biometrics: A Novel Approach." Journal of Intelligent Systems 25, no. 3 (2016): 401–16. http://dx.doi.org/10.1515/jisys-2015-0047.
Full textAlavijeh, Hossein Nouri, and Ruth E. Baltus. "Can Hindered Transport Models for Rigid Spheres Predict the Rejection of Single Stranded DNA from Porous Membranes?" Membranes 12, no. 11 (2022): 1099. http://dx.doi.org/10.3390/membranes12111099.
Full textCen, Weifu, and Xin He. "Study on the Effect of Ce Doping Concentration on the Kinetics of Graphene Formation." Frontiers in Science and Engineering 4, no. 9 (2024): 1–10. http://dx.doi.org/10.54691/pgdq5z31.
Full textBakos, Jack D., and James A. OLeary. "An Equivalent Radius of Gyration Approach to Flexural-Torsional Buckling for Singly Symmetric Sections." Engineering Journal 29, no. 1 (1992): 26–44. http://dx.doi.org/10.62913/engj.v29i1.582.
Full textZuo, Haochen, Shouqi Cao, Qingzhao Yin, and Junjun Huang. "Investigation of alloying process of Cu and Au nanoparticles based on molecular dynamics simulation." International Journal of Modern Physics B 34, no. 26 (2020): 2050239. http://dx.doi.org/10.1142/s0217979220502392.
Full text