To see the other types of publications on this topic, follow the link: Rainfall variability.

Books on the topic 'Rainfall variability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 books for your research on the topic 'Rainfall variability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Nicholson, Sharon E. Atlas of African rainfall and its interannual variability. Tallahasee, Fla: Florida State University, Department of Meteorology, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Doi, Ram. Analysis of rainfall variability and drought occurences in Rajasthan. Reading: University of Reading Department of Geography, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doi, Ram. Analysis of rainfall variability and drought occurrences in Rajasthan. Reading: Department of Geography, University of Reading, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

An examination of precipitation variability with respect to frontal boundaries. Middletown, Del: Legates Consulting LLC, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hermance, John F. Historical Variability of Rainfall in the African East Sahel of Sudan. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00575-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulkarni, Ashwini. Examining Indian monsoon variability in coupled climate model simulations and projections. Pune: Indian Institute of Tropical Meteorology, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mastura, Bte Mahmud. Mechanisms of winter monsoon rainfall variability across the eastern coast of peninsular Malaysia. Birmingham: University of Birmingham, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feddema, Johannes J. Evaluation of terrestrial climate variability using a moisture index. Elmer, N.J: C.W. Thornthwaite Associates, Laboratory of Climatology ; Newark, Del., 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morris, Susan E. Variability in storm rainfall over an upland catchment and its implications for storm runoff. Huddersfield: The Polytechnic, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hulme, M. The tropical easterly jet and Sudan rainfall 2: Inter- and intra-annual variability during 1968-85. Salford: University of Salford Department of Geography, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Groen, Maria Margaretha de. Modelling interception and transpiration at monthly time steps: Introducing daily variability through Markov chains. Lisse: Swets & Zeitlinger, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bandyopadhyay, Sushenjit, and Emmanuel koufias. Rainfall Variability, Occupational Choice, and Welfare in Rural Bangladesh. The World Bank, 2012. http://dx.doi.org/10.1596/1813-9450-6134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

STUDIES OF RAINFALL AND NDVI VARIABILITY OVER SELECTED REGION OF SOUTHERN ETHIOPIA: Correlation between rainfall and NDVI. Addis Abeba,Ethiopia: Mekonnen Daba, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

STUDIES OF RAINFALL AND NDVI VARIABILITY OVER SELECTED REGION OF SOUTHERN ETHIOPIA. Mekonnen Daba, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hermance, John F. Historical Variability of Rainfall in the African East Sahel of Sudan: Implications for Development. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hermance, John F. Historical Variability of Rainfall in the African East Sahel of Sudan: Implications for Development. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Eric, Servat, African Association of Hydrology, and International Association of Hydrological Sciences., eds. Water resources variability in Africa during the XXth century =: Variabilité des ressources en eau en Afrique au XXème siècle : proceedings of the international conference "Water Resources Variability in Africa during the XXth century" held at Abidjan, 16-19 November, 1998. Wallingford: International Association of Hydrological Sciences, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kucharski, Fred, and Muhammad Adnan Abid. Interannual Variability of the Indian Monsoon and Its Link to ENSO. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.615.

Full text
Abstract:
The interannual variability of Indian summer monsoon is probably one of the most intensively studied phenomena in the research area of climate variability. This is because even relatively small variations of about 10% to 20% from the mean rainfall may have dramatic consequences for regional agricultural production. Forecasting such variations months in advance could help agricultural planning substantially. Unfortunately, a perfect forecast of Indian monsoon variations, like any other regional climate variations, is impossible in a long-term prediction (that is, more than 2 weeks or so in advance). The reason is that part of the atmospheric variations influencing the monsoon have an inherent predictability limit of about 2 weeks. Therefore, such predictions will always be probabilistic, and only likelihoods of droughts, excessive rains, or normal conditions may be provided. However, even such probabilistic information may still be useful for agricultural planning. In research regarding interannual Indian monsoon rainfall variations, the main focus is therefore to identify the remaining predictable component and to estimate what fraction of the total variation this component accounts for. It turns out that slowly varying (with respect to atmospheric intrinsic variability) sea-surface temperatures (SSTs) provide the dominant part of the predictable component of Indian monsoon variability. Of the predictable part arising from SSTs, it is the El Niño Southern Oscillation (ENSO) that provides the main part. This is not to say that other forcings may be neglected. Other forcings that have been identified are, for example, SST patterns in the Indian Ocean, Atlantic Ocean, and parts of the Pacific Ocean different from the traditional ENSO region, and springtime snow depth in the Himalayas, as well as aerosols. These other forcings may interact constructively or destructively with the ENSO impact and thus enhance or reduce the ENSO-induced predictable signal. This may result in decade-long changes in the connection between ENSO and the Indian monsoon. The physical mechanism for the connection between ENSO and the Indian monsoon may be understood as large-scale adjustment of atmospheric heatings and circulations to the ENSO-induced SST variations. These adjustments modify the Walker circulation and connect the rising/sinking motion in the central-eastern Pacific during a warm/cold ENSO event with sinking/rising motion in the Indian region, leading to reduced/increased rainfall.
APA, Harvard, Vancouver, ISO, and other styles
19

(Foreword), Paul J. Hanson, and Stan D. Wullschleger (Editor), eds. North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes (Ecological Studies). Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nash, David. Changes in Precipitation Over Southern Africa During Recent Centuries. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.539.

Full text
Abstract:
Precipitation levels in southern Africa exhibit a marked east–west gradient and are characterized by strong seasonality and high interannual variability. Much of the mainland south of 15°S exhibits a semiarid to dry subhumid climate. More than 66 percent of rainfall in the extreme southwest of the subcontinent occurs between April and September. Rainfall in this region—termed the winter rainfall zone (WRZ)—is most commonly associated with the passage of midlatitude frontal systems embedded in the austral westerlies. In contrast, more than 66 percent of mean annual precipitation over much of the remainder of the subcontinent falls between October and March. Climates in this summer rainfall zone (SRZ) are dictated by the seasonal interplay between subtropical high-pressure systems and the migration of easterly flows associated with the Intertropical Convergence Zone. Fluctuations in both SRZ and WRZ rainfall are linked to the variability of sea-surface temperatures in the oceans surrounding southern Africa and are modulated by the interplay of large-scale modes of climate variability, including the El Niño-Southern Oscillation (ENSO), Southern Indian Ocean Dipole, and Southern Annular Mode.Ideas about long-term rainfall variability in southern Africa have shifted over time. During the early to mid-19th century, the prevailing narrative was that the climate was progressively desiccating. By the late 19th to early 20th century, when gauged precipitation data became more readily available, debate shifted toward the identification of cyclical rainfall variation. The integration of gauge data, evidence from historical documents, and information from natural proxies such as tree rings during the late 20th and early 21st centuries, has allowed the nature of precipitation variability since ~1800 to be more fully explored.Drought episodes affecting large areas of the SRZ occurred during the first decade of the 19th century, in the early and late 1820s, late 1850s–mid-1860s, mid-late 1870s, earlymid-1880s, and mid-late 1890s. Of these episodes, the drought during the early 1860s was the most severe of the 19th century, with those of the 1820s and 1890s the most protracted. Many of these droughts correspond with more extreme ENSO warm phases.Widespread wetter conditions are less easily identified. The year 1816 appears to have been relatively wet across the Kalahari and other areas of south central Africa. Other wetter episodes were centered on the late 1830s–early 1840s, 1855, 1870, and 1890. In the WRZ, drier conditions occurred during the first decade of the 19th century, for much of the mid-late 1830s through to the mid-1840s, during the late 1850s and early 1860s, and in the early-mid-1880s and mid-late 1890s. As for the SRZ, markedly wetter years are less easily identified, although the periods around 1815, the early 1830s, mid-1840s, mid-late 1870s, and early 1890s saw enhanced rainfall. Reconstructed rainfall anomalies for the SRZ suggest that, on average, the region was significantly wetter during the 19th century than the 20th and that there appears to have been a drying trend during the 20th century that has continued into the early 21st. In the WRZ, average annual rainfall levels appear to have been relatively consistent between the 19th and 20th centuries, although rainfall variability increased during the 20th century compared to the 19th.
APA, Harvard, Vancouver, ISO, and other styles
21

Hughes, Denis, Jean-Marie Fritsch, Mike Hulme, and Eric Servat. Series of Proceedings and Reports: Water Resources Variability in Africa During the XXth Century: Proceedings of the Abidjan 1998 Conference Held at Abidjan, ... 1998 (Series of Proceedings and Reports). IAHS Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Norrgård, Stefan. Changes in Precipitation Over West Africa During Recent Centuries. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.536.

Full text
Abstract:
Water, not temperature, governs life in West Africa, and the region is both temporally and spatially greatly affected by rainfall variability. Recent rainfall anomalies, for example, have greatly reduced crop productivity in the Sahel area. Rainfall indices from recent centuries show that multidecadal droughts reoccur and, furthermore, that interannual rainfall variations are high in West Africa. Current knowledge of historical rainfall patterns is, however, fairly limited. A detailed rainfall chronology of West Africa is currently only available from the beginning of the 19th century. For the 18th century and earlier, the records are still sporadic, and an interannual rainfall chronology has so far only been obtained for parts of the Guinea Coast. Thus, there is a need to extend the rainfall record to fully understand past precipitation changes in West Africa.The main challenge when investigating historical rainfall variability in West Africa is the scarcity of detailed and continuous data. Readily available meteorological data barely covers the last century, whereas in Europe and the United States for example, the data sometimes extend back two or more centuries. Data availability strongly correlates with the historical development of West Africa. The strong oral traditions that prevailed in the pre-literate societies meant that only some of the region’s history was recorded in writing before the arrival of the Europeans in the 16th century. From the 19th century onwards, there are, therefore, three types of documents available, and they are closely linked to the colonization of West Africa. These are: official records started by the colonial governments continuing to modern day; regular reporting stations started by the colonial powers; and finally, temporary nongovernmental observations of various kinds. For earlier periods, the researcher depends on noninstrumental observations found in letters, reports, or travel journals made by European slave traders, adventurers, and explorers. Spatially, these documents are confined to the coastal areas, as Europeans seldom ventured inland before the mid-1800s. Thus, the inland regions are generally poorly represented. Arabic chronicles from the Sahel provide the only source of information, but as historical documents, they include several spatiotemporal uncertainties. Climate researchers often complement historical data with proxy-data from nature’s own archives. However, the West African environment is restrictive. Reliable proxy-data, such as tree-rings, cannot be exploited effectively. Tropical trees have different growth patterns than trees in temperate regions and do not generate growth rings in the same manner. Sediment cores from Lake Bosumtwi in Ghana have provided, so far, the best centennial overview when it comes to understanding precipitation patterns during recent centuries. These reveal that there have been considerable changes in historical rainfall patterns—West Africa may have been even drier than it is today.
APA, Harvard, Vancouver, ISO, and other styles
23

Hameed, Saji N. The Indian Ocean Dipole. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.619.

Full text
Abstract:
Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.
APA, Harvard, Vancouver, ISO, and other styles
24

Goswami, B. N., and Soumi Chakravorty. Dynamics of the Indian Summer Monsoon Climate. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.613.

Full text
Abstract:
Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.
APA, Harvard, Vancouver, ISO, and other styles
25

Lachniet, Matthew S., and Juan Pablo Bernal-Uruchurtu. AD 550–600 Collapse at Teotihuacan. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199329199.003.0006.

Full text
Abstract:
We analyze a 2400-year rainfall reconstruction from an ultra-high-resolution absolutely-dated stalagmite (JX-6) from southwestern Mexico (Lachniet et al., 2012). Oxygen isotope variations correlate strongly to rainfall amount in the Mexico City area since 1870 CE, and for the wider southwestern Mexico region since 1948, allowing us to quantitatively reconstruct rainfall variability for the Basin of Mexico and Sierra Madre del Sur for the past 2400 years. Because oxygen isotopes integrate rainfall variations over broad geographic regions, our data suggest substantial variations in Mesoamerican monsoon strength over the past two millennia. As a result of low age uncertainties (≤ 11 yr), our stalagmite paleoclimate reconstruction allows us to place robust ages on past rainfall variations with a resolution an order of magnitude more precise than archeological dates associated with societal change. We relate our new rainfall reconstruction to the sequence of events at Teotihuacan (Millon, 1967; Cowgill, 2015a) and to other pre-Colombian civilizations in Mesoamerica. We observe a centuries long drying trend that culminated in peak drought conditions in ca. 750 CE related to a weakening monsoon, which may have been a stressor on Mesoamerican societies. Teotihuacan is an ideal location to test for links between climate change and society, because it was located in a semi-arid highland valley with limited permanent water sources, which relied upon spring fed irrigation to ensure a reliable maize harvest (Sanders, 1977). The city of Teotihuacan was one of the largest Mesoamerican cities, which apparently reached population sizes of 80,000 to 100,000 inhabitants by AD 300 (Cowgill, 1997; 2015a). Following the “Great Fire”, which dates approximately to AD 550, population decreased to lower levels and many buildings were abandoned (Cowgill, 2015). Because of the apparent reliance on rainwater capture (Linn é, 2003) and spring-fed agriculture in the Teotihuacan valley to ensure food security and drinking water, food production and domestic water supplies should have been sensitive to rainfall variations that recharge the surficial aquifer that sustained spring discharge prior recent groundwater extraction.
APA, Harvard, Vancouver, ISO, and other styles
26

Robin, Libby, Robert Heinsohn, and Leo Joseph, eds. Boom and Bust. CSIRO Publishing, 2009. http://dx.doi.org/10.1071/9780643097094.

Full text
Abstract:
In Boom and Bust, the authors draw on the natural history of Australia's charismatic birds to explore the relations between fauna, people and environment in a continent where variability is 'normal' and rainfall patterns not always seasonal. They consider changing ideas about deserts and how these have helped us understand birds and their behaviour in this driest of continents. The book describes the responses of animals and plants to environmental variability and stress. It is also a cultural concept, when it is used to capture the patterns of change wrought by humans in Australia, where landscapes began to become cultural about 55,000 years ago as ecosystems responded to Aboriginal management. In 1788, the British settlement brought, almost simultaneously, both agricultural and industrial revolutions to a land previously managed by fire for hunting. How have birds responded to this second dramatic invasion? Boom and Bust is also a tool for understanding global change. How can Australians in the 21st century better understand how to continue to live in this land as its conditions are still dynamically unfolding in response to the major anthropogenic changes to the whole Earth system? This interdisciplinary collection is written in a straightforward and accessible style. Many of the writers are practising field specialists, and have woven their personal field work into the stories they tell about the birds.
APA, Harvard, Vancouver, ISO, and other styles
27

Newman, Chris, Christina D. Buesching, and David W. Macdonald. Meline mastery of meteorological mayhem: the effects of climate changeability on European badger population dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198759805.003.0021.

Full text
Abstract:
Adaptation to climatic conditions is a major ecological and evolutionary driver. Long-term study of European badger population dynamics in Oxfordshire reveals that rainfall and temperature patterns affect food (principally earthworm) availability, energy expended in thermoregulation, and activity patterns, with badgers able to seek refuge in their setts. Cubs prove especially vulnerable to harsh weather conditions, where drought and food shortages exacerbate the severity of pandemic juvenile coccidial parasite infections. Crucially, weather variability, rather than just warming trends, stresses badgers, by destabilising their bioclimatic niche. Summer droughts cause mortality, even driving genetic selection; and while milder winters generally benefit badgers, less time spent in torpor leads to more road casualties. Similar effects also operate over a wide spatial scale in Ireland, impacting regional badger densities and bodyweights. That even an adaptable, generalist musteloid is so variously susceptible to weather conditions highlights how climate change places many species and ecosystems at risk.
APA, Harvard, Vancouver, ISO, and other styles
28

Mbow, Cheikh. The Great Green Wall in the Sahel. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.559.

Full text
Abstract:
For several decades, the Sahelian countries have been facing continuing rainfall shortages, which, coupled with anthropogenic factors, have severely disrupted the great ecological balance, leading the area in an inexorable process of desertification and land degradation. The Sahel faces a persistent problem of climate change with high rainfall variability and frequent droughts, and this is one of the major drivers of population’s vulnerability in the region. Communities struggle against severe land degradation processes and live in an unprecedented loss of productivity that hampers their livelihoods and puts them among the populations in the world that are the most vulnerable to climatic change. In response to severe land degradation, 11 countries of the Sahel agreed to work together to address the policy, investment, and institutional barriers to establishing a land-restoration program that addresses climate change and land degradation. The program is called the Pan-Africa Initiative for the Great Green Wall (GGW). The initiative aims at helping to halt desertification and land degradation in the Sahelian zone, improving the lives and livelihoods of smallholder farmers and pastoralists in the area and helping its populations to develop effective adaptation strategies and responses through the use of tree-based development programs. To make the GGW initiative successful, member countries have established a coordinated and integrated effort from the government level to local scales and engaged with many stakeholders. Planning, decision-making, and actions on the ground is guided by participation and engagement, informed by policy-relevant knowledge to address the set of scalable land-restoration practices, and address drivers of land use change in various human-environmental contexts. In many countries, activities specific to achieving the GGW objectives have been initiated in the last five years.
APA, Harvard, Vancouver, ISO, and other styles
29

Wangui, Edna. Adaptation to Current and Future Climate in Pastoral Communities Across Africa. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.604.

Full text
Abstract:
Pastoralists around the world are exposed to climate change and increasing climate variability. Various downscaled regional climate models in Africa support community reports of rising temperatures as well as changes in the seasonality of rainfall and drought. In addition to climate, pastoralists have faced a second exposure to unsupportive policy environments. Dating back to the colonial period, a lack of knowledge about pastoralism and a systemic marginalization of pastoral communities influenced the size and nature of government investments in pastoral lands. National governments prioritized farming communities and failed to pay adequate attention to drylands and pastoral communities. The limited government interventions that occurred were often inconsistent with contemporary realities of pastoralism and pastoral communities. These included attempts at sedentarization and modernization, and in other ways changing the priorities and practices of pastoral communities.The survival of pastoral communities in Africa in the context of this double exposure has been a focus for scholars, development practitioners, as well as national governments in recent years. Scholars initially drew attention to pastoralists’ drought-coping strategies, and later examined the multiple ways in which pastoralists manage risk and exploit unpredictability. It has been learned that pastoralists are rational land managers whose experience with variable climate has equipped them with the skills needed for adaptation. Pastoralists follow several identifiable adaptation paths, including diversification and modification of their herds and herding strategies; adoption of livelihood activities that did not previously play a permanent role; and a conscious decision to train the next generation for nonpastoral livelihoods. Ongoing government interventions around climate change still prioritize cropping over herding. Sometimes, such nationally supported adaptation plans can undermine community-based adaptation practices, autonomously evolving within pastoral communities. Successful adaptation hinges on recognition of the value of autonomous adaptation and careful integration of such adaptation with national plans.
APA, Harvard, Vancouver, ISO, and other styles
30

Fensholt, Rasmus, Cheikh Mbow, Martin Brandt, and Kjeld Rasmussen. Desertification and Re-Greening of the Sahel. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.553.

Full text
Abstract:
In the past 50 years, human activities and climatic variability have caused major environmental changes in the semi-arid Sahelian zone and desertification/degradation of arable lands is of major concern for livelihoods and food security. In the wake of the Sahel droughts in the early 1970s and 1980s, the UN focused on the problem of desertification by organizing the UN Conference on Desertification (UNCOD) in Nairobi in 1976. This fuelled a significant increase in the often alarmist popular accounts of desertification as well as scientific efforts in providing an understanding of the mechanisms involved. The global interest in the subject led to the nomination of desertification as focal point for one of three international environmental conventions: the UN Convention to Combat Desertification (UNCCD), emerging from the Rio conference in 1992. This implied that substantial efforts were made to quantify the extent of desertification and to understand its causes. Desertification is a complex and multi-faceted phenomenon aggravating poverty that can be seen as both a cause and a consequence of land resource depletion. As reflected in its definition adopted by the UNCCD, desertification is “land degradation in arid, semi-arid[,] and dry sub-humid areas resulting from various factors, including climate variation and human activities” (UN, 1992). While desertification was seen as a phenomenon of relevance to drylands globally, the Sahel-Sudan region remained a region of specific interest and a significant amount of scientific efforts have been invested to provide an empirically supported understanding of both climatic and anthropogenic factors involved. Despite decades of intensive research on human–environmental systems in the Sahel, there is no overall consensus about the severity of desertification and the scientific literature is characterized by a range of conflicting observations and interpretations of the environmental conditions in the region. Earth Observation (EO) studies generally show a positive trend in rainfall and vegetation greenness over the last decades for the majority of the Sahel and this has been interpreted as an increase in biomass and contradicts narratives of a vicious cycle of widespread degradation caused by human overuse and climate change. Even though an increase in vegetation greenness, as observed from EO data, can be confirmed by ground observations, long-term assessments of biodiversity at finer spatial scales highlight a negative trend in species diversity in several studies and overall it remains unclear if the observed positive trends provide an environmental improvement with positive effects on people’s livelihood.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography