To see the other types of publications on this topic, follow the link: Raman Amplification.

Journal articles on the topic 'Raman Amplification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Raman Amplification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Haberberger, D., A. Davies, J. L. Shaw, R. K. Follett, J. P. Palastro, and D. H. Froula. "Hot Raman amplification." Physics of Plasmas 28, no. 6 (2021): 062311. http://dx.doi.org/10.1063/5.0049222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Namiki, S., Koji Seo, N. Tsukiji, and S. Shikii. "Challenges of Raman Amplification." Proceedings of the IEEE 94, no. 5 (2006): 1024–35. http://dx.doi.org/10.1109/jproc.2006.873444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blair, S., and K. Zheng. "Microresonator-enhanced Raman amplification." Journal of the Optical Society of America B 23, no. 6 (2006): 1117. http://dx.doi.org/10.1364/josab.23.001117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kashima, N. "Systematic Studies of Distributed and Hybrid Raman Amplification in 10G-EPON and TWDM-PON." Journal of Optical Communications 37, no. 1 (2016): 1–7. http://dx.doi.org/10.1515/joc-2014-0092.

Full text
Abstract:
AbstractWe have studied distributed Raman amplification (DRA) and hybrid Raman amplification to apply both 10G-EPON and TWDM-PON systems. Two types of access networks, 50 km and 10 km, are assumed for case studies. Using the calculated optical received signal power Ps and optical signal noise ratio (OSNR), we consider the cases where the hybrid Raman amplification is necessary or not. In the case of coexistence of both systems, co-use of lumped Raman amplification (LRA) located at a central office (CO) may be possible. The co-use of LRA for both systems is discussed using the calculated Ps and
APA, Harvard, Vancouver, ISO, and other styles
5

de la Cruz-May, L., J. A. Álvarez-Chavez, E. B. Mejía, A. Flores-Gil, F. Mendez-Martinez, and S. Wabnitz. "Raman threshold for nth-order cascade Raman amplification." Optical Fiber Technology 17, no. 3 (2011): 214–17. http://dx.doi.org/10.1016/j.yofte.2011.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Polley, Arup, and Stephen E. Ralph. "Raman Amplification in Multimode Fiber." IEEE Photonics Technology Letters 19, no. 4 (2007): 218–20. http://dx.doi.org/10.1109/lpt.2006.890752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bounds, J. K., and H. A. Haus. "Quantum noise of Raman amplification." Quantum Optics: Journal of the European Optical Society Part B 6, no. 2 (1994): 79–85. http://dx.doi.org/10.1088/0954-8998/6/2/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Xiaoping, Feifei Feng, Yabin Ye, Hanyi Zhang, and Yanhe Li. "Analysis in distributed Raman amplification." Optics Communications 207, no. 1-6 (2002): 321–26. http://dx.doi.org/10.1016/s0030-4018(02)01522-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bashkansky, M., and J. Reintjes. "Incoherent multimode Raman amplification theory." Journal of the Optical Society of America B 8, no. 9 (1991): 1843. http://dx.doi.org/10.1364/josab.8.001843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Solli, Daniel R., Prakash Koonath, and Bahram Jalali. "Broadband Raman amplification in silicon." Applied Physics Letters 93, no. 19 (2008): 191105. http://dx.doi.org/10.1063/1.3005408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ahmed, Nabih Zaki Rashed, E. A. Ubuoh, and A. Metawe'e Mohamed. "High Performance Efficiency of Distributed Multi Pumped Wide Gain Optical Fiber Raman Amplifiers." American Based Research Journal 2, no. 1 (2013): 1–9. https://doi.org/10.5281/zenodo.3406050.

Full text
Abstract:
<em>Optical pump powers required for Raman amplification were significantly higher than that for Erbium doped fiber amplifier (EDFA), and the pump laser technology could not reliably deliver the required powers. However, with the improvement of pump laser technology Raman amplification is now an important means of expanding span transmission reach and capacity. In the present paper, we have deeply investigated the proposed model for optical distributed fiber Raman amplifiers in the transmission signal power and pump power within Raman amplification technique in co-pumped, counter-pumped, and b
APA, Harvard, Vancouver, ISO, and other styles
12

Leplingard, F., S. Borne, L. Lorcy, et al. "Six output wavelength Raman fibre laser for Raman amplification." Electronics Letters 38, no. 16 (2002): 886. http://dx.doi.org/10.1049/el:20020600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rukhlenko, Ivan D., and Vineetha Kalavally. "Raman Amplification in Silicon-Nanocrystal Waveguides." Journal of Lightwave Technology 32, no. 1 (2014): 130–34. http://dx.doi.org/10.1109/jlt.2013.2291009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vieux, G., A. Lyachev, X. Yang, et al. "Chirped pulse Raman amplification in plasma." New Journal of Physics 13, no. 6 (2011): 063042. http://dx.doi.org/10.1088/1367-2630/13/6/063042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Muga, Nelson J., Mário F. S. Ferreira, and Armando N. Pinto. "Broadband polarization pulling using Raman amplification." Optics Express 19, no. 19 (2011): 18707. http://dx.doi.org/10.1364/oe.19.018707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Duncan, M. D., R. Mahon, L. L. Tankersley, and J. Reintjes. "Transient stimulated Raman amplification in hydrogen." Journal of the Optical Society of America B 5, no. 1 (1988): 37. http://dx.doi.org/10.1364/josab.5.000037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Durteste, Y., M. Monerie, and P. Lamouler. "Raman amplification in fluoride glass fibres." Electronics Letters 21, no. 17 (1985): 723. http://dx.doi.org/10.1049/el:19850510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bromage, J. "Raman Amplification for Fiber Communications Systems." Journal of Lightwave Technology 22, no. 1 (2004): 79–93. http://dx.doi.org/10.1109/jlt.2003.822828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fulghum, Stephen F., David Korff, Daniel Klimek, et al. "Stokes phase preservation during Raman amplification." Journal of the Optical Society of America B 3, no. 10 (1986): 1448. http://dx.doi.org/10.1364/josab.3.001448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Céreyon, A., A. M. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon. "Raman amplification in nanoparticles doped glasses." Journal of Non-Crystalline Solids 354, no. 29 (2008): 3458–61. http://dx.doi.org/10.1016/j.jnoncrysol.2008.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wu, Jingshown, and Ming-Seng Kao. "Light amplification using backward Raman pumping." Microwave and Optical Technology Letters 1, no. 4 (1988): 129–31. http://dx.doi.org/10.1002/mop.4650010406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Supe, Andis, Kaspars Zakis, Lilita Gegere, et al. "Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System." Fibers 9, no. 2 (2021): 9. http://dx.doi.org/10.3390/fib9020009.

Full text
Abstract:
In this paper we present results from the study of optical signal amplification using Raman assisted fiber optical parametric amplifier with considerable benefits for S-band telecommunication systems where the use of widely used erbium-doped fiber amplifier is limited. We have created detailed models and performed computer simulations of combined Raman and fiber optical parametric amplification in a 16-channel 40 Gbps/channel wavelength division multiplexed transmission system. Achieved gain bandwidth, as well as transmission system parameters—signal-to-noise ratio and bit-error-ratio—were ana
APA, Harvard, Vancouver, ISO, and other styles
23

Tan, Mingming, Md Asif Iqbal, Tu T. Nguyen, et al. "Raman Amplification Optimization in Short-Reach High Data Rate Coherent Transmission Systems." Sensors 21, no. 19 (2021): 6521. http://dx.doi.org/10.3390/s21196521.

Full text
Abstract:
We compared the transmission performances of 600 Gbit/s PM-64QAM WDM signals over 75.6 km of single-mode fibre (SMF) using EDFA, discrete Raman, hybrid Raman/EDFA, and first-order or second-order (dual-order) distributed Raman amplifiers. Our numerical simulations and experimental results showed that the simple first-order distributed Raman scheme with backward pumping delivered the best transmission performance among all the schemes, notably better than the expected second-order Raman scheme, which gave a flatter signal power variation along the fibre. Using the first-order backward Raman pum
APA, Harvard, Vancouver, ISO, and other styles
24

Nardou, Eric, Dominique Vouagner, Anne-Marie Jurdyc, et al. "Surface enhanced Raman scattering in an amorphous matrix for Raman amplification." Journal of Non-Crystalline Solids 357, no. 8-9 (2011): 1895–99. http://dx.doi.org/10.1016/j.jnoncrysol.2010.11.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Balakin, A. A., G. M. Fraiman, and N. J. Fisch. "Three-dimensional simulation of backward Raman amplification." IEEE Transactions on Plasma Science 33, no. 2 (2005): 488–89. http://dx.doi.org/10.1109/tps.2005.845905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lou, J. W., F. K. Fatemi, and M. Currie. "Brillouin fibre laser enhanced by Raman amplification." Electronics Letters 40, no. 17 (2004): 1044. http://dx.doi.org/10.1049/el:20040603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Karasik, A. Ya, and D. S. Chunaev. "Nonstationary Raman amplification of superluminescence in crystals." JETP Letters 85, no. 7 (2007): 315–18. http://dx.doi.org/10.1134/s0021364007070028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Colin, Mathieu, and Thierry Colin. "A multi-D model for Raman amplification." ESAIM: Mathematical Modelling and Numerical Analysis 45, no. 1 (2010): 1–22. http://dx.doi.org/10.1051/m2an/2010037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Malkin, V. M., and N. J. Fisch. "Backward Raman amplification of ionizing laser pulses." Physics of Plasmas 8, no. 10 (2001): 4698–99. http://dx.doi.org/10.1063/1.1400791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Perkins, A. E., and N. M. Lawandy. "Light amplification in a disordered Raman medium." Optics Communications 162, no. 4-6 (1999): 191–94. http://dx.doi.org/10.1016/s0030-4018(99)00118-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Trillo, S., and S. Wabnitz. "Parametric and Raman amplification in birefringent fibers." Journal of the Optical Society of America B 9, no. 7 (1992): 1061. http://dx.doi.org/10.1364/josab.9.001061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Claps, Ricardo, Varun Raghunathan, Ozdal Boyraz, Prakash Koonath, Dimitrios Dimitropoulos, and Bahram Jalali. "Raman amplification and lasing in SiGe waveguides." Optics Express 13, no. 7 (2005): 2459. http://dx.doi.org/10.1364/opex.13.002459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Balakin, A. A., I. Y. Dodin, G. M. Fraiman, and N. J. Fisch. "Backward Raman amplification of broad-band pulses." Physics of Plasmas 23, no. 8 (2016): 083115. http://dx.doi.org/10.1063/1.4960835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Boscolo, S., S. K. Turitsyn, J. D. Ania Castañón, and K. J. Blow. "“Magic” Dispersion Maps with Distributed Raman Amplification." Theoretical and Mathematical Physics 137, no. 3 (2003): 1652–62. http://dx.doi.org/10.1023/b:tamp.0000007914.82254.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Byron, K. C., D. Burns, R. S. Grant, G. T. Kennedy, C. I. Johnston, and W. Sibbett. "High speed synchronously pumped Raman fibre amplification." Electronics Letters 27, no. 7 (1991): 597. http://dx.doi.org/10.1049/el:19910376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jia, Qing, Kenan Qu, and Nathaniel J. Fisch. "Optical phase conjugation in backward Raman amplification." Optics Letters 45, no. 18 (2020): 5254. http://dx.doi.org/10.1364/ol.397321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nicholson, B. W., J. A. Russell, D. W. Trainor, T. Roberts, and C. Higgs. "Phasefront preservation in high-gain Raman amplification." IEEE Journal of Quantum Electronics 26, no. 7 (1990): 1285–91. http://dx.doi.org/10.1109/3.59669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

André, Paulo, Berta Neto, Antonio Teixeira, and Naoya Wada. "Raman amplification impact in packet base networks." Microwave and Optical Technology Letters 50, no. 12 (2008): 3083–85. http://dx.doi.org/10.1002/mop.23864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ismail, Aiman, Hazwani Mohammad Helmi, Md Zaini Jamaludin, Fairuz Abdullah, Abdul Hadi Sulaiman, and Ker Pin Jern. "Erbium-Doped Fiber Amplification Assisted Multi-Wavelength Brillouin-Raman Fiber Laser." International Journal of Engineering & Technology 7, no. 4.35 (2018): 854. http://dx.doi.org/10.14419/ijet.v7i4.35.26269.

Full text
Abstract:
Multi-wavelength fiber laser based on Brillouin scattering in optical fiber has the potential of application in dense wavelength division multiplexing (DWDM) system. To enhance the performance of the fiber lasers, researchers proposed usages of erbium, or Raman amplification techniques. In an earlier work, it was reported that extracting residual Raman pump out of the laser cavity improves the performance of a multi-wavelength Raman fiber laser. In this paper, we proposed a setup utilizing the residual Raman pump to pump an erbium-doped fiber in multi-wavelength Brillouin-Raman fiber laser. Re
APA, Harvard, Vancouver, ISO, and other styles
40

Yakimchuk, Dzmitry V., Soslan A. Khubezhov, Uladzislau V. Prigodich, et al. "Comparative Analysis of Raman Signal Amplifying Effectiveness of Silver Nanostructures with Different Morphology." Coatings 12, no. 10 (2022): 1419. http://dx.doi.org/10.3390/coatings12101419.

Full text
Abstract:
To increase the attractiveness of the practical application of molecular sensing methods, the experimental search for the optimal shape of silver nanostructures allowing to increase the Raman cross section by several orders of magnitude is of great interest. This paper presents a detailed study of spatially separated plasmon-active silver nanostructures grown in SiO2/Si template pores with crystallite, dendrite, and “sunflower-like” nanostructures shapes. Nile blue and 2-mercaptobenzothiazole were chosen as the model analytes for comparative evaluation of the Raman signal amplification efficie
APA, Harvard, Vancouver, ISO, and other styles
41

LISINETSKII, V. A., I. I. MISHKEL', R. V. CHULKOV, et al. "RAMAN GAIN COEFFICIENT OF BARIUM NITRATE MEASURED FOR THE SPECTRAL REGION OF TI:SAPPHIRE LASER." Journal of Nonlinear Optical Physics & Materials 14, no. 01 (2005): 107–14. http://dx.doi.org/10.1142/s0218863505002530.

Full text
Abstract:
We report the measurements of the Raman gain coefficient for a barium nitrate crystal in the spectral region of a Ti:Sapphire laser using Raman amplification. The experimentally-obtained data are well described by the known empirical formula.
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Cong, Xing Yu Zhang, Qing Pu Wang, et al. "A Brief Study on Silicon Crystal Materials as a Mid-IR Raman Amplifier." Advanced Materials Research 531 (June 2012): 185–88. http://dx.doi.org/10.4028/www.scientific.net/amr.531.185.

Full text
Abstract:
We consider a bulk silicon crystal as a Mid-IR Raman amplifier and study its Raman amplification. A Raman amplifier is established when an intense pump laser pulse and a Raman laser pulse pass through one silicon simultaneously, with good spatial and temporal overlap. Considering the situation of pumping wavelength at 2.94 μm achievable by using an Er:YAG laser and Raman laser wavelength at 3.47 μm with the 521 cm-1 Raman shift, the properties of the output amplified Raman laser are investigated by numerically solving the coupled transfer equations.
APA, Harvard, Vancouver, ISO, and other styles
43

Mishra, S. K., and A. Andreev. "Amplification of ultra-short laser pulses via resonant backward Raman amplification in plasma." Physics of Plasmas 23, no. 8 (2016): 083108. http://dx.doi.org/10.1063/1.4960216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Yuan-Yuan, Xian-Zhi Wang, Jia-Jun Song, Xu Zhang, Zhao-Hua Wang, and Zhi-Yi Wei. "Amplification mechanism in stimulated Raman backward scattering of ultraintense laser in uniform plasma." Acta Physica Sinica 71, no. 5 (2022): 055202. http://dx.doi.org/10.7498/aps.71.20211270.

Full text
Abstract:
The density, temperature and length of the plasma used in the backward Raman amplification will all influence the result. To explore the influence of the plasma density and the pump intensity, this work uses the one-dimensional particle in cell (PIC) algorithm to simulate the process of the 800 nm pump laser injecting into the plasma. By analyzing the Raman scattered light, it is found that as the density of plasma increases, the wavelengths of the scattered light shorten. It is also found that the forward Raman scattering will cause the plasma density to change, which in turn influences the s
APA, Harvard, Vancouver, ISO, and other styles
45

Khalis, A. Mohammed, and M. K. Younis Basma. "Comparative performance of optical amplifiers: Raman and EDFA." TELKOMNIKA Telecommunication, Computing, Electronics and Control 18, no. 4 (2020): 1701–7. https://doi.org/10.12928/TELKOMNIKA.v18i4.15706.

Full text
Abstract:
The in-line optical signal amplification is often used in optical communication systems to accomplish longer transmission distances and larger capacity. In this proposed paper, the operation of two types of optical amplifiers for 16&times;10 Gbps wavelength division multiplexing system had been examined by changing transmission distance from 10 to 200 km with a dispersion equals to 16.75 ps/nm/km. The analysis and design of such systems ordinarily includes many signal channels, nonlinear devices, several topologies with many noise sources, is extremely complex and effort-exhaustive. Therefore,
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang Zhi-Meng, Zhang Bo, Wu Feng-Juan, et al. "Plasma density effect on backward Raman laser amplification." Acta Physica Sinica 64, no. 10 (2015): 105201. http://dx.doi.org/10.7498/aps.64.105201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Thielen, P. A., L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal. "Small-core As-Se fiber for Raman amplification." Optics Letters 28, no. 16 (2003): 1406. http://dx.doi.org/10.1364/ol.28.001406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Farmer, J. P., B. Ersfeld, and D. A. Jaroszynski. "Raman amplification in plasma: Wavebreaking and heating effects." Physics of Plasmas 17, no. 11 (2010): 113301. http://dx.doi.org/10.1063/1.3492713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Suzuki, Kazunori, and Masataka Nakazawa. "Raman amplification in a P_2O_5-doped optical fiber." Optics Letters 13, no. 8 (1988): 666. http://dx.doi.org/10.1364/ol.13.000666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gouveia-Neto, A. S., P. G. J. Wigley, and J. R. Taylor. "Soliton generation through Raman amplification of noise bursts." Optics Letters 14, no. 20 (1989): 1122. http://dx.doi.org/10.1364/ol.14.001122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!