Academic literature on the topic 'Raman shift'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raman shift.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Raman shift"

1

Yang, XueXian, Yonghui Liu, Xin Juan Liu, Jin Zhang Peng, Heping Zhao, and Chang Qing Sun. "Composition- and Temperature-Resolved Raman Shift of Silicon." Applied Spectroscopy 72, no. 4 (2018): 598–603. http://dx.doi.org/10.1177/0003702817744218.

Full text
Abstract:
We formulated the composition and temperature dependence of the Si and Si1– xGe x Raman shift from the perspectives of bond order–length–strength correlation and local bond average approach. It is verified that the Raman shift Δω varies in the form of Δω ∝ zE1/2/ d, with inclusion of bond length d and energy E changing with temperature and composition. Numerical reproduction of the thermally induced Si1– xGe x phonon softening indicates that bond thermal expansion and energy loss dictate the frequency redshift, which resulted in quantitative information on the bond energy and the reference frequencies from which the Raman shifts proceed. Observations not only gain deeper insight into the mechanism of the Raman shift but also demonstrate the revealing power of Raman technique for the bonding thermodynamics.
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Yukun, and PG Yin. "Synthesis of cubic CdSe nanocrystals and their spectral properties." Nanomaterials and Nanotechnology 7 (January 1, 2017): 184798041770174. http://dx.doi.org/10.1177/1847980417701747.

Full text
Abstract:
The cadmium selenide nanocrystals are prepared by colloidal chemistry under mild conditions. X-ray diffraction and high-resolution transmission electron microscopy measurements indicate that as-prepared cadmium selenide nanocrystals are zinc blende cubic structure. We carry out an analysis of quantum size effect in the Raman spectra of cadmium selenide nanocrystals performed by utilizing the chemical bond theory of Raman peak shift developed recently. It is revealed that the shifts of Raman peaks in cadmium selenide nanocrystals result from the overlapping of the quantum effect shifts and surface effect shifts. The sizes of the as-prepared cadmium selenide nanocrystals obtained by employing the Raman peak shift theory are in good agreement with the nanocrystal sizes determined by high-resolution transmission electron microscopy.
APA, Harvard, Vancouver, ISO, and other styles
3

Fountain, Augustus W., Charles K. Mann, and Thomas J. Vickers. "Routine Wavenumber Calibration of an FT-Raman Spectrometer." Applied Spectroscopy 49, no. 7 (1995): 1048–53. http://dx.doi.org/10.1366/0003702953964886.

Full text
Abstract:
A readily automated procedure for testing and calibrating the wavenumber shift scale of an FT-Raman spectrometer is described. The procedure uses atomic lines as wavenumber standards. An apodization procedure is used in accurately determining the line positions to a fraction of the sampling interval. A fiber-optic bundle conveniently couples the output from a hollow cathode lamp to the collection optics of the Raman accessory. Results are reported and compared for both thorium and neon atomic lines. Acetonitrile is suggested as a wavenumber shift standard, and peak shifts have been measured for its major features. Peak shift values are reported for 11 lines of cyclohexane.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Minghao, and Rongying Dai. "Study on Characteristic Raman Shift Screening Method Based on MPA for Raman Spectrum of Mine Water Inrush Source." Scientific Programming 2022 (August 23, 2022): 1–8. http://dx.doi.org/10.1155/2022/5202265.

Full text
Abstract:
In the process of mine water inrush disaster prevention, accurate and rapid identification of water inrush source type is of great significance to coal mine safety production. However, traditional hydrochemical methods have shortcomings such as time-consuming and complex detection. Therefore, a new idea of identifying mine water inrush source by Raman spectroscopy is proposed. Goaf water, roof sandstone fissure water, Ordovician limestone water, Taiyuan limestone water, and surface water as well as their mixed water samples are selected as research objects, and Raman spectral data of different water samples are collected by the Raman spectroscopy system. To eliminate the influence of laser power fluctuation and spectrometer system noise in Raman spectrum acquisition, detrend correction (DC), multiplicative scatter correction (MSC), standard normal variate transformation (SNV), first derivative (FD), and mean centering (MC) were used to preprocess the raw Raman spectra. Due to the large dimension and long analysis time of Raman spectrum data, the marine predator algorithm (MPA) is used to screen the characteristic Raman shifts of the Raman spectrum of water samples, and the characteristic Raman shift information that can best characterize the mine water samples is obtained. Finally, to verify the feasibility of MPA screening the characteristic Raman shifts of Raman spectrum of mine water inrush source, the selected characteristic Raman displacement information is used as input to construct BP neural network (BP), k-nearest neighbor algorithm (KNN), support vector machine (SVM), and decision tree (DT) classification models, respectively. Experiments show that SNV has the best preprocessing effect on the raw Raman spectrum, which can effectively eliminate part of the noise in the Raman spectrum data and improve the accuracy of Raman spectrum identification. Using MPA, 226 characteristic Raman shifts can be screened from 2048 Raman data points, reducing the number of Raman shifts to 11.04%, and the modeling accuracy of characteristic Raman shift information screened by MPA is higher than that of full Raman data. In addition, the average analysis speed of BP, KNN, SVM, and DT water source identification models is 7.61 times faster than that of all Raman data. The results show that MPA is adopted to screen the characteristic Raman displacement of mine water source Raman spectrum, which can effectively reduce the redundancy of Raman spectral data and greatly improve the speed of Raman spectral analysis, which is of great significance to ensure the real-time detection of the mine water source.
APA, Harvard, Vancouver, ISO, and other styles
5

Izadshenas, Saeid, Piotr Masłowski, Tobias Herr, and Karolina Słowik. "Multiresonant metasurface for Raman spectroscopy beyond single molecule detection level." EPJ Applied Metamaterials 9 (2022): 11. http://dx.doi.org/10.1051/epjam/2022009.

Full text
Abstract:
A metasurface in the metal-insulator-grating configuration is designed and optimised to support enhancement of coherent Raman signal of selected molecules orders of magnitude above the single-molecule detection threshold. The tunability is demonstrated by adjusting the structure to match selected Raman peaks of rhodamine, however, its spectral response is broad enough to cover a range of Raman shifts. Finally, the grating allows switching between distinct values of Raman shift with a single metasurface illuminated at different angles.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Can, Bo Lin Cheng, S. Y. Wang, S. Y. Dai, and Zhao Hui Chen. "Raman Spectra Study on Multilayered Compositional Graded (Ba0.8Sr0.2)(Ti1-xZrx)O3 Thin Films." Key Engineering Materials 280-283 (February 2007): 1909–12. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1909.

Full text
Abstract:
Compositional graded thin films of (Ba0.8Sr0.2)(Ti1-xZrx)O3 (BSTZ) are grown on MgO by pulsed laser deposition technique with four BSTZ ceramic targets. Gradients of composition are achieved by artificially tailoring composition in multilayered thin films to form compositional graded layers (CGL). In each CGL four individual layers of BSTZ with x = 0.36, 0.18, 0.08 and 0 are grown^in series with equal thickness. Three kinds of CGL samples comprising one, two or four CGLs have been elaborated with the same total thickness by varying the thickness of each CGL. Raman spectra show existence of tetragonal structure in all the multilayered BSTZ thin films. Raman peak at 535 cm-1 shifts to high frequency with increasing of compositional gradient, and the peak at 750 cm-1 also shows a small shift to high frequency. Moreover, other Raman peak is observed at about 830 cm-1, which is associated with phonon mode of cubic phase, and such peak shifts towards lower frequency with increasing of compositional gradient. The shift of Raman peak is related to variation of internal stress in BSTZ thin film due to increasing compositional gradient.
APA, Harvard, Vancouver, ISO, and other styles
7

Amaechi, Ifeanyichukwu C., Andreas Ruediger, and Alain Pignolet. "Phonon confinement and particle size effect on the low-frequency Raman mode of aurivillius phase Bi4Ti3O12 powders." RSC Advances 13, no. 8 (2023): 4917–23. http://dx.doi.org/10.1039/d2ra06297f.

Full text
Abstract:
Both Raman shift, ω ∝ x−0.73, and linewidth, Γ ∝ x−0.38, exhibit a power law dependence on the particle size. The particle size-dependent lattice constant contributed to satisfactory explanation of the Raman shift.
APA, Harvard, Vancouver, ISO, and other styles
8

Piluso, Nicolò, Massimo Camarda, Ruggero Anzalone, et al. "Raman Stress Characterization of Hetero-Epitaxial 3C-SiC Free Standing Structures." Materials Science Forum 679-680 (March 2011): 141–44. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.141.

Full text
Abstract:
Raman microscopy has been used to study the stress distribution on 3C-SiC/Si(100) micro-machined free standing structures. Linear scans along different structures reveal similar trends of the TO mode Raman Shift. We have found that, independently of the microstructure considered, the Raman frequency decreases close to the undercut. We compare our experimental measurements with FEM simulations finding that, close to the undercut, the stress tensor becomes non-diagonal, modifying the Raman shift to stress relation.
APA, Harvard, Vancouver, ISO, and other styles
9

Suda, Jun, and Petr Zverev. "Temperature Dependence of Raman Frequency Shift in SrWO4 Crystal Studied by Lattice Dynamical Calculations." Crystals 9, no. 4 (2019): 197. http://dx.doi.org/10.3390/cryst9040197.

Full text
Abstract:
The frequency shift of the Raman modes in strontium tungstate (SrWO4) was investigated in the temperature range from 15 to 295 K. The experimental temperature dependence of the shift was analyzed using both the lattice dynamical calculations and the lattice perturbative approach. We found that the quartic anharmonic term of the first-order perturbation and the cubic term of the second-order perturbation, as well as the thermal expansion, contribute to the temperature shift of the highest-frequency Ag(ν1) mode. The values of the temperature sensitivity of the frequency shift of the Raman modes at room temperature were measured, which is important for developing high-power crystalline Raman lasers and frequency shifters.
APA, Harvard, Vancouver, ISO, and other styles
10

Shin, Y. J., W. J. Kim, H. Y. Kim, and W. Bahng. "Dislocation Analysis of 4H-/6H-SiC Single Crystals Using Micro-Raman Spectroscopy." Materials Science Forum 740-742 (January 2013): 481–84. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.481.

Full text
Abstract:
Micro-Raman spectroscopy is an excellent non-destructive analysis method, which compensates for disadvantages of KOH method. Raman shift of A1(LO) and E1(TO) band at threading screw dislocation(TSD) were investigated in n-type on/off-axis 4H- and 6H-SiC single crystal wafers by Micro-Raman scattering at room temperature. The results showed that A1(LO) band were shifted toward higher frequency while the E1(TO) band were shifted toward lower frequency on the on-axis wafers. The shifts are caused by increasing electron concentration and lattice disorder near the dislocation core, respectively. In the off-axis wafers, no shifts were observed possibly due to the measurement geometry which does not contain whole dislocation core.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography