Academic literature on the topic 'Ramified Covers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ramified Covers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ramified Covers"

1

Pries, Rachel J. "Conductors of wildly ramified covers, I." Comptes Rendus Mathematique 335, no. 5 (2002): 481–84. http://dx.doi.org/10.1016/s1631-073x(02)02491-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pries, Rachel J. "Conductors of wildly ramified covers, II." Comptes Rendus Mathematique 335, no. 5 (2002): 485–87. http://dx.doi.org/10.1016/s1631-073x(02)02492-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pries, Rachel J. "Wildly ramified covers with large genus." Journal of Number Theory 119, no. 2 (2006): 194–209. http://dx.doi.org/10.1016/j.jnt.2005.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cho, Yong Seung. "Hurwitz number of triple Ramified covers." Journal of Geometry and Physics 58, no. 4 (2008): 542–55. http://dx.doi.org/10.1016/j.geomphys.2007.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TONINI, FABIO. "RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS." Transformation Groups 22, no. 3 (2016): 845–68. http://dx.doi.org/10.1007/s00031-016-9395-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pries, Rachel J. "Conductors of wildly ramified covers, III." Pacific Journal of Mathematics 211, no. 1 (2003): 163–82. http://dx.doi.org/10.2140/pjm.2003.211.163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pries, Rachel J. "Families of wildly ramified covers of curves." American Journal of Mathematics 124, no. 4 (2002): 737–68. http://dx.doi.org/10.1353/ajm.2002.0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Colombo, Elisabetta, Paola Frediani, Alessandro Ghigi, and Matteo Penegini. "Shimura curves in the Prym locus." Communications in Contemporary Mathematics 21, no. 02 (2019): 1850009. http://dx.doi.org/10.1142/s0219199718500098.

Full text
Abstract:
We study Shimura curves of PEL type in [Formula: see text] generically contained in the Prym locus. We study both the unramified Prym locus, obtained using étale double covers, and the ramified Prym locus, corresponding to double covers ramified at two points. In both cases, we consider the family of all double covers compatible with a fixed group action on the base curve. We restrict to the case where the family is one-dimensional and the quotient of the base curve by the group is [Formula: see text]. We give a simple criterion for the image of these families under the Prym map to be a Shimur
APA, Harvard, Vancouver, ISO, and other styles
9

Hong, Kyusik. "Factorial quartic double solids." International Journal of Algebra and Computation 25, no. 07 (2015): 1179–86. http://dx.doi.org/10.1142/s0218196715500368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Costa, A. F., and P. Turbek. "Lifting involutions to ramified covers of Riemann surfaces." Archiv der Mathematik 81, no. 2 (2003): 161–68. http://dx.doi.org/10.1007/s00013-003-4709-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ramified Covers"

1

Bell, Renee Hyunjeong. "Local-to-Global extensions for wildly ramified covers of curves." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117883.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (page 41).<br>Given a Galois cover of curves X --> Y with Galois group G which is totally ramified at a point x and unramified elsewhere, restriction to the punctured formal neighborhood of x induces a Galois extension of Laurent series rings k((u))/k((t)). If we fix a base curve Y, we can ask when a Galois extension of Laurent series fields comes from a global cover of Y in this way. Harbater proved that over a separably closed
APA, Harvard, Vancouver, ISO, and other styles
2

Ahlqvist, Eric. "Building Data for Stacky Covers and the Étale Cohomology Ring of an Arithmetic Curve : Du som saknar dator/datorvana kan kontakta phdadm@math.kth.se för information." Licentiate thesis, KTH, Matematik (Avd.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272733.

Full text
Abstract:
This thesis consists of two papers with somewhat different flavours. In Paper I we compute the étale cohomology ring H^*(X,Z/nZ) for X the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim. We also give examples of two distinct number fields whose rings of integers have isomorphic cohomology groups but distinct cohomology ring structures. In Paper II we define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2, 1)-categories between the category of stacky covers and the ca
APA, Harvard, Vancouver, ISO, and other styles
3

Serrano, Luis. "Transitive Factorizations of Permutations and Eulerian Maps in the Plane." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/1128.

Full text
Abstract:
The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity. Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is
APA, Harvard, Vancouver, ISO, and other styles
4

Gonzalez, Pagotto Pablo. "Sur les monoïdes des classes de groupes de tresses." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM049.

Full text
Abstract:
Hurwitz a montre qu’un revêtement ramifié f:M→N de surfaces avec lieu de ramification P⊂N détermine et est déterminé, à un automorphisme intérieur près du groupe symétrique S_m , par un homomorphisme π_1(NP, ∗) → S_m . Ce résultat réduit les questions d’existence et d’unicité à un problème combinatoire. Pour un ensemble de générateurs convenable de π_1(NP, ∗), une représentation π_1(NP, ∗) → S_m détermine et est déterminée par une suite (a_1 , b_1 , . . . , a_g , b_g , z_1, . . . , z_k ) d’éléments de S_m satisfaisant [a_1 , b_1 ] · · · [a_g , b_g ]z_1 · · · z_k = 1. La suite (a_1, b_1 , . . .
APA, Harvard, Vancouver, ISO, and other styles
5

Çelik, Türkü Özlüm. "Propriétés géométriques et arithmétiques explicites des courbes." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S032/document.

Full text
Abstract:
Les courbes algébriques sont des objets centraux de la géométrie algébrique. Dans cette thèse, nous étudions ces objets sous différents angles de la géométrie algébrique tels que la géométrie algébrique effective et la géométrie arithmétique. Dans le premier chapitre, nous étudions les courbes non-hyperelliptiques de genre g et leurs jacobiennes liées par l’intermédiaire de diviseurs thêta caractéristiques. Ces derniers contiennent des propriétés géométriques extrinsèques qui permettent de calculer les constantes thêta. Dans le deuxième chapitre, nous nous concentrons sur les courbes hyperelli
APA, Harvard, Vancouver, ISO, and other styles
6

Javan, Peykar Ariyan. "Explicit polynomial bounds for Arakelov invariants of Belyi curves." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112075/document.

Full text
Abstract:
On borne explicitement la hauteur de Faltings d'une courbe sur le corps de nombres algèbriques en son degré de Belyi. Des résultats similaires sont démontré pour trois autres invariants arakeloviennes : le discriminant, l'invariant delta et l'auto-intersection de omega. Nos résultats nous permettent de borner explicitement les invariantes arakeloviennes des courbes modulaires, des courbes de Fermat et des courbes de Hurwitz. En plus, comme application, on montre que l'algorithme de Couveignes-Edixhoven-Bruin est polynomial sous l’hypothèse de Riemann pour les fonctions zeta des corps de nombre
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ramified Covers"

1

Tretkoff, Paula. Introduction. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0001.

Full text
Abstract:
This chapter explains that the book deals with quotients of the complex 2-ball yielding finite coverings of the projective plane branched along certain line arrangements. It gives a complete list of the known weighted line arrangements that can produce such ball quotients, and then provides a justification for the existence of the quotients. The Miyaoka-Yau inequality for surfaces of general type, and its analogue for surfaces with an orbifold structure, plays a central role. The book also examines the explicit computation of the proportionality deviation of a complex surface for finite covers
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ramified Covers"

1

Colombo, Elisabetta, and Paola Frediani. "Second Fundamental Form of the Prym Map in the Ramified Case." In Galois Covers, Grothendieck-Teichmüller Theory and Dessins d'Enfants. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51795-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yuan, Xinyi, Shou-Wu Zhang, and Wei Zhang. "Local Heights of CM Points." In The Gross-Zagier Formula on Shimura Curves. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691155913.003.0008.

Full text
Abstract:
This chapter computes the local heights and compares them with the derivatives computed before. It checks the theorem place by place and takes into account all the assumptions on the Schwartz function. According to the reduction of the Shimura curve, the situation is divided to the following four cases: archimedean case, supersingular case, superspecial case, and ordinary case. The treatments in different cases are similar in spirit, except that the fourth case is slightly different. The supersingular case is divided into two subcases: unramified case and ramified case. The chapter also describes local heights of CM points at any archimedean place v. The discussion covers the multiplicity function, the kernel function, unramified quadratic extension, ramified quadratic extension, ordinary components, supersingular components, and superspecial components.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!