Academic literature on the topic 'Random effect model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Random effect model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Random effect model"
Huang, Hung-Yu, and Wen-Chung Wang. "The Random-Effect DINA Model." Journal of Educational Measurement 51, no. 1 (March 2014): 75–97. http://dx.doi.org/10.1111/jedm.12035.
Full textŠiaulys, Jonas, and Rokas Puišys. "Survival with Random Effect." Mathematics 10, no. 7 (March 29, 2022): 1097. http://dx.doi.org/10.3390/math10071097.
Full textKalhori, Lida, and Mohsen Mohhamadzadeh. "Spatial Beta Regression Model with Random Effect." Journal of Statistical Research of Iran 13, no. 2 (March 1, 2017): 215–30. http://dx.doi.org/10.18869/acadpub.jsri.13.2.215.
Full textWang, Wen-Chung, and Shiu-Lien Wu. "The Random-Effect Generalized Rating Scale Model." Journal of Educational Measurement 48, no. 4 (December 2011): 441–56. http://dx.doi.org/10.1111/j.1745-3984.2011.00154.x.
Full textKayid, M., S. Izadkhah, and D. ALmufarrej. "Random Effect Additive Mean Residual Life Model." IEEE Transactions on Reliability 65, no. 2 (June 2016): 860–66. http://dx.doi.org/10.1109/tr.2015.2491600.
Full textMotarjem, K., M. Mohammadzadeh, and A. Abyar. "Geostatistical survival model with Gaussian random effect." Statistical Papers 61, no. 1 (June 20, 2017): 85–107. http://dx.doi.org/10.1007/s00362-017-0922-8.
Full textSpineli, Loukia M., and Nikolaos Pandis. "Fixed-effect versus random-effects model in meta-regression analysis." American Journal of Orthodontics and Dentofacial Orthopedics 158, no. 5 (November 2020): 770–72. http://dx.doi.org/10.1016/j.ajodo.2020.07.016.
Full textWen, Limin, Jing Fang, Guoping Mei, and Xianyi Wu. "Optimal credibility estimation of random parameters in hierarchical random effect linear model." Journal of Systems Science and Complexity 28, no. 5 (July 30, 2015): 1058–69. http://dx.doi.org/10.1007/s11424-015-3202-5.
Full textHernández, Freddy, and Viviana Giampaoli. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model." Stats 1, no. 1 (May 31, 2018): 48–76. http://dx.doi.org/10.3390/stats1010005.
Full textADACHI, Kohei. "A Random Effect Model in Metric Multidimensional Unfolding." Kodo Keiryogaku (The Japanese Journal of Behaviormetrics) 27, no. 1 (2000): 12–23. http://dx.doi.org/10.2333/jbhmk.27.12.
Full textDissertations / Theses on the topic "Random effect model"
Kwong, Grace Pui Sze. "Model misspecification and random effect models in survival analysis." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398729.
Full textCao, Hongmei. "A random effect model with quality score for meta-analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58754.pdf.
Full textCheng, Yang. "Maximum likelihood estimation and computation in a random effect factor model." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1782.
Full textThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Choi, Ga Eun, and Stephanie Galonja. "The Euro Effect on Trade : The Trade Effect of the Euro on non-EMU and EMU Members." Thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Economics, Finance and Statistics, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-20114.
Full textHE, Ran. "Carry-over and interaction effects of different hand-milking techniques and milkers on milk." Thesis, Uppsala universitet, Statistiska institutionen, 1986. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154641.
Full textPuschmann, Martin. "Anderson transitions on random Voronoi-Delaunay lattices." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-231900.
Full textDiese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet
Ren, Weijia. "Impact of Design Features for Cross-Classified Logistic Models When the Cross-Classification Structure Is Ignored." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322538958.
Full textWang, Yu. "A study on the type I error rate and power for generalized linear mixed model containing one random effect." Kansas State University, 2017. http://hdl.handle.net/2097/35301.
Full textDepartment of Statistics
Christopher Vahl
In animal health research, it is quite common for a clinical trial to be designed to demonstrate the efficacy of a new drug where a binary response variable is measured on an individual experimental animal (i.e., the observational unit). However, the investigational treatments are applied to groups of animals instead of an individual animal. This means the experimental unit is the group of animals and the response variable could be modeled with the binomial distribution. Also, the responses of animals within the same experimental unit may then be statistically dependent on each other. The usual logit model for a binary response assumes that all observations are independent. In this report, a logit model with a random error term representing the group of animals is considered. This is model belongs to a class of models referred to as generalized linear mixed models and is commonly fit using the SAS System procedure PROC GLIMMIX. Furthermore, practitioners often adjust the denominator degrees of freedom of the test statistic produced by PROC GLIMMIX using one of several different methods. In this report, a simulation study was performed over a variety of different parameter settings to compare the effects on the type I error rate and power of two methods for adjusting the denominator degrees of freedom, namely “DDFM = KENWARDROGER” and “DDFM = NONE”. Despite its reputation for fine performance in linear mixed models with normally distributed errors, the “DDFM = KENWARDROGER” option tended to perform poorly more often than the “DDFM = NONE” option in the logistic regression model with one random effect.
Mingolini, Riccardo. "Investimenti in lobby: Un modello per stimare il loro impatto sull'azienda." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13291/.
Full textOberhardt, Tobias. "A micromechanical model for the nonlinearity of microcracks in random distributions and their effect on higher harmonic Rayleigh wave generation." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54365.
Full textBooks on the topic "Random effect model"
Dunson, David B., ed. Random Effect and Latent Variable Model Selection. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5.
Full textCao, Hongmei. A random effect model with quality score for meta-analysis. Ottawa: National Library of Canada, 2001.
Find full textLee, Youngjo. Generalized Linear Models with Random Effects. Second edition. | Boca Raton, Florida : CRC Press, [2017] |: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315119953.
Full textLinear and nonlinear models: Fixed effects, random effects, and mixed models. Berlin: Walter de Gruyter, 2006.
Find full textGrafarend, Erik. Linear and Nonlinear Models: Fixed effects, random effects, and total least squares. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textArulampalam, Wiji. A note on estimated coefficients in random effects probit models. Coventry: University of Warwick, Department of Economics, 1998.
Find full textYi, Qilong. Random effects and AR(1) models in longitudinal data analysis. Ottawa: National Library of Canada, 2000.
Find full textYi, Qian. Investigating the dynamic effects of counterfeits with a random changepoint simultaneous equation model. Cambridge, MA: National Bureau of Economic Research, 2011.
Find full textMealli, Fabrizia. Occupational pensions and job mobility in Britain: Estimation of a random-effects competing risks model. Leicester: University of Leicester, Department of Economics, 1993.
Find full text1973-, Warzel Simone, ed. Random operators: Disorder effects on quantum spectra and dynamics. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBook chapters on the topic "Random effect model"
Kinney, Satkartar K., and David B. Dunson. "Bayesian Model Uncertainty in Mixed Effects Models." In Random Effect and Latent Variable Model Selection, 37–62. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_3.
Full textLee, Sik-Yum, and Xin-Yuan Song. "Bayesian Model Comparison of Structural Equation Models." In Random Effect and Latent Variable Model Selection, 121–50. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_6.
Full textGhosh, Joyee, and David B. Dunson. "Bayesian Model Selection in Factor Analytic Models." In Random Effect and Latent Variable Model Selection, 151–63. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_7.
Full textCrainiceanu, Ciprian M. "Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models." In Random Effect and Latent Variable Model Selection, 3–17. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_1.
Full textZhang, Daowen, and Xihong Lin. "Variance Component Testing in Generalized Linear Mixed Models for Longitudinal/Clustered Data and other Related Topics." In Random Effect and Latent Variable Model Selection, 19–36. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_2.
Full textCai, Bo, and David B. Dunson. "Bayesian Variable Selection in Generalized Linear Mixed Models." In Random Effect and Latent Variable Model Selection, 63–91. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_4.
Full textBentler, Peter M., and Jiajuan Liang. "A Unified Approach to Two-Level Structural Equation Models and Linear Mixed Effects Models." In Random Effect and Latent Variable Model Selection, 95–119. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_5.
Full textVannucci, Giulia, Anna Gottard, Leonardo Grilli, and Carla Rampichini. "Random effects regression trees for the analysis of INVALSI data." In Proceedings e report, 29–34. Florence: Firenze University Press, 2021. http://dx.doi.org/10.36253/978-88-5518-304-8.07.
Full textElishakoff, Isaac. "Random Vibration of a Vehicle Model." In Dramatic Effect of Cross-Correlations in Random Vibrations of Discrete Systems, Beams, Plates, and Shells, 51–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40394-2_3.
Full textSperling, L. H. "The “Katz Effect” on the Random Coil Model for Polymer Chains." In Pioneers in Polymer Science, 41–46. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2407-9_4.
Full textConference papers on the topic "Random effect model"
OKI, KAZUYA, HAJIME MASE, and TERRY S. HEDGES. "ENERGY BALANCE EQUATION MODEL WITH DIFFRACTION EFFECT FOR RANDOM WAVES." In Proceedings of the 29th International Conference. World Scientific Publishing Company, 2005. http://dx.doi.org/10.1142/9789812701916_0070.
Full textYin, J., S. H. Ng, and K. M. Ng. "Kriging model with modified nugget effect for random simulation with heterogeneous variances." In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2008. http://dx.doi.org/10.1109/ieem.2008.4738165.
Full textMa, Zhuanglin, Honglu Zhang, Rui Qiao, and Yang Yang. "Modeling Traffic Accident Frequency on a Freeway Using the Random Effect Negative Binomial Model." In 15th COTA International Conference of Transportation Professionals. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479292.278.
Full textZhou, Xianbo, and Kui-Wai Li. "The effects of openness and indigeneity on Growth: Evidence from nonparametric panel data model with two-way random effect." In 2011 International Conference on E-Business and E-Government (ICEE). IEEE, 2011. http://dx.doi.org/10.1109/icebeg.2011.5882239.
Full textLi, Zhifeng, Liangzhi Cao, Hongchun Wu, Chenghui Wan, and Tianliang Hu. "Effects of Applying the Implicit Particle Fuel Model for Pebble-Bed Reactors." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60382.
Full textAdam, Fia Fridayanti, Anang Kurnia, I. Gusti Putu Purnaba, and I. Wayan Mangku. "Prediction of Number of Claims using Poisson Linear Mixed Model with AR(1) random effect." In Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-8-2019.2290464.
Full textZAPPERI, STEFANO, HANS J. HERRMANN, and STÉPHANE ROUX. "EFFECT OF DAMAGE ON THE ROUGHNESS OF PLANAR CRACKS: THE CASE OF THE RANDOM FUSE MODEL." In International Workshop and Collection of Articles Honoring Professor Antonio Coniglio on the Occasion of his 60th Birthday. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778109_0034.
Full textChernomordik, Victor V., Amir H. Gandjbakhche, Jeremy C. Hebden, and Giovanni Zaccanti. "Random walk model of the effect of lateral boundaries on time-resolved measurements in optical tomography." In BiOS '99 International Biomedical Optics Symposium, edited by Britton Chance, Robert R. Alfano, and Bruce J. Tromberg. SPIE, 1999. http://dx.doi.org/10.1117/12.356804.
Full textMyrhaug, Dag, Carl Trygve Stansberg, and Hanne Therese Wist. "Aspects of Nonlinear Random Wave Kinematics." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28205.
Full textBeirow, Bernd, Arnold Kühhorn, Felix Figaschewsky, and Jens Nipkau. "Effect of Mistuning and Damping on the Forced Response of a Compressor Blisk Rotor." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42036.
Full textReports on the topic "Random effect model"
Gautier, Eric, and Stefan Hoderlein. A triangular treatment effect model with random coefficients in the selection equation. Institute for Fiscal Studies, December 2012. http://dx.doi.org/10.1920/wp.cem.2012.3912.
Full textZhang, Yongping, Wen Cheng, and Xudong Jia. Enhancement of Multimodal Traffic Safety in High-Quality Transit Areas. Mineta Transportation Institute, February 2021. http://dx.doi.org/10.31979/mti.2021.1920.
Full textSigeti, David Edward, and Scott Alan Vander Wiel. Doubly-Hierarchical One-Way Random Effects Model: Multivariate Data. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329823.
Full textWeidner, Martin, Hyungsik Roger Moon, and Matthew Shum. Estimation of random coefficients logit demand models with interactive fixed effects. Institute for Fiscal Studies, March 2012. http://dx.doi.org/10.1920/wp.cem.2012.0812.
Full textMoon, Hyungsik Roger, Matthew Shum, and Martin Weidner. Estimation of random coefficients logit demand models with interactive fixed effects. The IFS, February 2017. http://dx.doi.org/10.1920/wp.cem.2017.1217.
Full textShum, Matthew, Hyungsik Roger Moon, and Martin Weidner. Estimation of random coefficients logit demand models with interactive fixed effects. Institute for Fiscal Studies, April 2014. http://dx.doi.org/10.1920/wp.cem.2014.2014.
Full textQian, Yi, and Hui Xie. Investigating the Dynamic Effects of Counterfeits with a Random Changepoint Simultaneous Equation Model. Cambridge, MA: National Bureau of Economic Research, January 2011. http://dx.doi.org/10.3386/w16692.
Full textUkkusuri, Satish, Lu Ling, Tho V. Le, and Wenbo Zhang. Performance of Right-Turn Lane Designs at Intersections. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317277.
Full textPettit, Chris, and D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41034.
Full textSadowski, Dieter. Board-Level Codetermination in Germany - The Importance and Economic Impact of Fiduciary Duties. Association Inter-University Centre Dubrovnik, May 2021. http://dx.doi.org/10.53099/ntkd4304.
Full text