Academic literature on the topic 'Random forest regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Random forest regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Random forest regression"
Rigatti, Steven J. "Random Forest." Journal of Insurance Medicine 47, no. 1 (January 1, 2017): 31–39. http://dx.doi.org/10.17849/insm-47-01-31-39.1.
Full textKaymak, Sertan, and Ioannis Patras. "Multimodal random forest based tensor regression." IET Computer Vision 8, no. 6 (December 2014): 650–57. http://dx.doi.org/10.1049/iet-cvi.2013.0320.
Full textCosta, Iago Sousa Lima, Isabelle Cavalcanti Corrêa de Oliveira Serafim, Felipe Mattos Tavares, and Hugo José de Oliveira Polo. "Uranium anomalies detection through Random Forest regression." Exploration Geophysics 51, no. 5 (February 23, 2020): 555–69. http://dx.doi.org/10.1080/08123985.2020.1725387.
Full textTsagkrasoulis, Dimosthenis, and Giovanni Montana. "Random forest regression for manifold-valued responses." Pattern Recognition Letters 101 (January 2018): 6–13. http://dx.doi.org/10.1016/j.patrec.2017.11.008.
Full textPal, Mahesh, N. K. Singh, and N. K. Tiwari. "Pier scour modelling using random forest regression." ISH Journal of Hydraulic Engineering 19, no. 2 (June 2013): 69–75. http://dx.doi.org/10.1080/09715010.2013.772763.
Full textMendez, Guillermo, and Sharon Lohr. "Estimating residual variance in random forest regression." Computational Statistics & Data Analysis 55, no. 11 (November 2011): 2937–50. http://dx.doi.org/10.1016/j.csda.2011.04.022.
Full textGrömping, Ulrike. "Variable Importance Assessment in Regression: Linear Regression versus Random Forest." American Statistician 63, no. 4 (November 2009): 308–19. http://dx.doi.org/10.1198/tast.2009.08199.
Full textA, Dr Akila, and Ms Padma R. "Breast Cancer Tumor Categorization using Logistic Regression, Decision Tree and Random Forest Classification Techniques." International Journal of Research in Arts and Science 5, Special Issue (August 30, 2019): 282–89. http://dx.doi.org/10.9756/bp2019.1002/27.
Full textMilanović, Slobodan, Nenad Marković, Dragan Pamučar, Ljubomir Gigović, Pavle Kostić, and Sladjan D. Milanović. "Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method." Forests 12, no. 1 (December 22, 2020): 5. http://dx.doi.org/10.3390/f12010005.
Full textSekulić, Aleksandar, Milan Kilibarda, Gerard B. M. Heuvelink, Mladen Nikolić, and Branislav Bajat. "Random Forest Spatial Interpolation." Remote Sensing 12, no. 10 (May 25, 2020): 1687. http://dx.doi.org/10.3390/rs12101687.
Full textDissertations / Theses on the topic "Random forest regression"
Linusson, Henrik, Robin Rudenwall, and Andreas Olausson. "Random forest och glesa datarespresentationer." Thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-16672.
Full textProgram: Systemarkitekturutbildningen
Linusson, Henrik. "Multi-Output Random Forests." Thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167.
Full textProgram: Magisterutbildning i informatik
Adriansson, Nils, and Ingrid Mattsson. "Forecasting GDP Growth, or How Can Random Forests Improve Predictions in Economics?" Thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243028.
Full textAsritha, Kotha Sri Lakshmi Kamakshi. "Comparing Random forest and Kriging Methods for Surrogate Modeling." Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20230.
Full textWålinder, Andreas. "Evaluation of logistic regression and random forest classification based on prediction accuracy and metadata analysis." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35126.
Full textBjörk, Gustaf, and Carlsson Tobias. "Klassificeringsmetoder med medicinska tillämpningar : En jämförande studie mellan logistisk regression, elastic net och random forest." Thesis, Umeå universitet, Statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122698.
Full textAnkaräng, Marcus, and Jakob Kristiansson. "Comparison of Logistic Regression and an Explained Random Forest in the Domain of Creditworthiness Assessment." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301907.
Full textI takt med att AI används allt oftare för att fatta beslut i samhället, har kravet på förklarbarhet ökat. En utmaning med flera moderna maskininlärningsmodeller är att de, på grund av sina komplexa strukturer, sällan ger tillgång till mänskligt förståeliga motiveringar. Forskning inom förklarar AI har lett fram till metoder som kan appliceras ovanpå icke- förklarbara modeller för att tolka deras beslutsgrunder. Det här arbetet syftar till att jämföra en icke- förklarbar maskininlärningsmodell i kombination med en förklaringsmetod, och en modell som är förklarbar genom sin struktur. Den icke- förklarbara modellen var random forest och förklaringsmetoden som användes var SHAP. Den förklarbara modellen var logistisk regression, som är förklarande genom sina vikter. Jämförelsen utfördes inom området kreditvärdighet och grundades i prediktiv prestanda och förklarbarhet. Vidare användes dessa modeller för att undersöka vilka egenskaper som var kännetecknande för låntagare som inte förväntades kunna betala tillbaka sitt lån. Jämförelsen visade att ingen av de båda metoderna presterande signifikant mycket bättre än den andra sett till prediktiv prestanda. Kännetecknande särdrag för dåliga låntagare skiljde sig åt mellan metoderna. Tre viktiga aspekter var låntagarens °ålder, vart denna bodde och huruvida personen ägde en hemtelefon. Gällande förklarbarheten framträdde flera fördelar med SHAP, däribland möjligheten att kunna producera både lokala och globala förklaringar. Vidare konstaterades att SHAP gör det möjligt att dra fördel av den höga prestandan som många moderna maskininlärningsmetoder uppvisar och samtidigt uppfylla dagens ökade krav på transparens.
Jonsson, Estrid, and Sara Fredrikson. "An Investigation of How Well Random Forest Regression Can Predict Demand : Is Random Forest Regression better at predicting the sell-through of close to date products at different discount levels than a basic linear model?" Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302025.
Full textAs the climate crisis continues to evolve many companies focus their development on becoming more sustainable. With greenhouse gases being highlighted as the main problem, food waste has obtained a great deal of attention after being named the third largest contributor to global emissions. One way retailers have attempted to improve is through offering close-to-date produce at discount, hence decreasing levels of food being thrown away. To minimize waste the level of discount must be optimized, and as the products can be seen as flawed the known price-to-demand relation of the products may be insufficient. The optimization process historically involves generalized linear regression models, however demand is a complex concept influenced by many factors. This report investigates whether a Machine Learning model, Random Forest Regression, is better at estimating the demand of close-to-date products at different discount levels than a basic linear regression model. The discussion also includes an analysis on whether discounts always increase the will to buy and whether this depends on product type. The results show that Random Forest to a greater extent considers the many factors influencing demand and is superior as a predictor in this case. Furthermore it was concluded that there is generally not a clear linear relation however this does depend on product type as certain categories showed some linearity.
Maginnity, Joseph D. "Comparing the Uses and Classification Accuracy of Logistic and Random Forest Models on an Adolescent Tobacco Use Dataset." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586997693789325.
Full textBraff, Pamela Hope. "Not All Biomass is Created Equal: An Assessment of Social and Biophysical Factors Constraining Wood Availability in Virginia." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/63997.
Full textMaster of Science
Books on the topic "Random forest regression"
Elwood, Mark. Combining results from several studies: systematic reviews and meta-analyses. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682898.003.0009.
Full textBook chapters on the topic "Random forest regression"
Vadlamani, Ravi, and Anurag Sharma. "Support Vector–Quantile Regression Random Forest Hybrid for Regression Problems." In Lecture Notes in Computer Science, 149–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13365-2_14.
Full textKacete, Amine, Renaud Séguier, Michel Collobert, and Jérôme Royan. "Unconstrained Gaze Estimation Using Random Forest Regression Voting." In Computer Vision – ACCV 2016, 419–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54187-7_28.
Full textSumit, Shahriar Shakir, Junzo Watada, Fatema Nasrin, Nafiz Ishtiaque Ahmed, and D. R. A. Rambli. "Imputing Missing Values: Reinforcement Bayesian Regression and Random Forest." In Studies in Computational Intelligence, 81–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49536-7_8.
Full textAsad, Muhammad, and Greg Slabaugh. "Hand Orientation Regression Using Random Forest for Augmented Reality." In Lecture Notes in Computer Science, 159–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13969-2_13.
Full textWlaszczyk, Agata, Agnieszka Kaminska, Agnieszka Pietraszek, Jakub Dabrowski, Mikolaj A. Pawlak, and Hanna Nowicka. "Predicting Fluid Intelligence from Structural MRI Using Random Forest regression." In Adolescent Brain Cognitive Development Neurocognitive Prediction, 83–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31901-4_10.
Full textAliyeva, Aysel. "Predicting Stock Prices Using Random Forest and Logistic Regression Algorithms." In 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021, 95–101. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92127-9_16.
Full textLasota, Tadeusz, Zbigniew Telec, Bogdan Trawiński, and Grzegorz Trawiński. "Investigation of Random Subspace and Random Forest Regression Models Using Data with Injected Noise." In Lecture Notes in Computer Science, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37343-5_1.
Full textRoberts, M. G., Timothy F. Cootes, and J. E. Adams. "Automatic Location of Vertebrae on DXA Images Using Random Forest Regression." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, 361–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33454-2_45.
Full textYadav, Chandra Shekhar, and Aditi Sharan. "Feature Learning Using Random Forest and Binary Logistic Regression for ATDS." In Algorithms for Intelligent Systems, 341–52. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3357-0_22.
Full textCootes, Tim F., Mircea C. Ionita, Claudia Lindner, and Patrick Sauer. "Robust and Accurate Shape Model Fitting Using Random Forest Regression Voting." In Computer Vision – ECCV 2012, 278–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33786-4_21.
Full textConference papers on the topic "Random forest regression"
Lee, Sangkyu, Sarah Kerns, Barry Rosenstein, Harry Ostrer, Joseph O. Deasy, and Jung Hun Oh. "Preconditioned Random Forest Regression." In BCB '17: 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3107411.3108201.
Full textZhu, Lin, Jiaxing Lu, and Yihong Chen. "HDI-Forest: Highest Density Interval Regression Forest." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/621.
Full textRodrigues, Nigel, Nelson Sequeira, Stephen Rodrigues, and Varsha Shrivastava. "Cricket Squad Analysis Using Multiple Random Forest Regression." In 2019 1st International Conference on Advances in Information Technology (ICAIT). IEEE, 2019. http://dx.doi.org/10.1109/icait47043.2019.8987367.
Full textKurniawati, Nazmia, Dianing Novita Nurmala Putri, and Yuli Kurnia Ningsih. "Random Forest Regression for Predicting Metamaterial Antenna Parameters." In 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE). IEEE, 2020. http://dx.doi.org/10.1109/iciee49813.2020.9276899.
Full textYadav, Manish, and Vadlamani Ravi. "Quantile Regression Random Forest Hybrids Based Data Imputation." In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2018. http://dx.doi.org/10.1109/icci-cc.2018.8482040.
Full textJunning Gao and Xiaochun Lu. "Forecast of China railway freight volume by random forest regression model." In 2015 International Conference on Logistics, Informatics and Service Sciences (LISS). IEEE, 2015. http://dx.doi.org/10.1109/liss.2015.7369654.
Full textHao, Zhulin, Jianqiang Du, Bin Nie, Fang Yu, Riyue Yu, and Wangping Xiong. "Random Forest Regression Based on Partial Least Squares Connect Partial Least Squares and Random Forest." In 2016 International Conference on Artificial Intelligence: Technologies and Applications. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icaita-16.2016.48.
Full textLuo, Hanwu, Xiubao Pan, Qingshun Wang, Shasha Ye, and Ying Qian. "Logistic Regression and Random Forest for Effective Imbalanced Classification." In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2019. http://dx.doi.org/10.1109/compsac.2019.00139.
Full textShreyas, R., D. M. Akshata, B. S. Mahanand, B. Shagun, and C. M. Abhishek. "Predicting popularity of online articles using Random Forest regression." In 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP). IEEE, 2016. http://dx.doi.org/10.1109/ccip.2016.7802890.
Full textLutfi, Moch, Sheilla Putri Agustin, and Intan Nurma Yulita. "LQ45 Stock Price Prediction Using Linear Regression Algorithm, Smo Regression, And Random Forest." In 2021 International Conference on Artificial Intelligence and Big Data Analytics (ICAIBDA). IEEE, 2021. http://dx.doi.org/10.1109/icaibda53487.2021.9689749.
Full textReports on the topic "Random forest regression"
Puttanapong, Nattapong, Arturo M. Martinez Jr, Mildred Addawe, Joseph Bulan, Ron Lester Durante, and Marymell Martillan. Predicting Poverty Using Geospatial Data in Thailand. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200434-2.
Full textLiu, Hongrui, and Rahul Ramachandra Shetty. Analytical Models for Traffic Congestion and Accident Analysis. Mineta Transportation Institute, November 2021. http://dx.doi.org/10.31979/mti.2021.2102.
Full text