Dissertations / Theses on the topic 'Random forest'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Random forest.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Linusson, Henrik, Robin Rudenwall, and Andreas Olausson. "Random forest och glesa datarespresentationer." Thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-16672.
Full textProgram: Systemarkitekturutbildningen
Karlsson, Isak. "Order in the random forest." Doctoral thesis, Stockholms universitet, Institutionen för data- och systemvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-142052.
Full textSiegel, Kathryn I. (Kathryn Iris). "Incremental random forest classifiers in spark." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106105.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 53).
The random forest is a machine learning algorithm that has gained popularity due to its resistance to noise, good performance, and training efficiency. Random forests are typically constructed using a static dataset; to accommodate new data, random forests are usually regrown. This thesis presents two main strategies for updating random forests incrementally, rather than entirely rebuilding the forests. I implement these two strategies-incrementally growing existing trees and replacing old trees-in Spark Machine Learning(ML), a commonly used library for running ML algorithms in Spark. My implementation draws from existing methods in online learning literature, but includes several novel refinements. I evaluate the two implementations, as well as a variety of hybrid strategies, by recording their error rates and training times on four different datasets. My benchmarks show that the optimal strategy for incremental growth depends on the batch size and the presence of concept drift in a data workload. I find that workloads with large batches should be classified using a strategy that favors tree regrowth, while workloads with small batches should be classified using a strategy that favors incremental growth of existing trees. Overall, the system demonstrates significant efficiency gains when compared to the standard method of regrowing the random forest.
by Kathryn I. Siegel.
M. Eng.
Cheng, Chuan. "Random forest training on reconfigurable hardware." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/28122.
Full textNelson, Marc. "Evaluating Multitemporal Sentinel-2 data for Forest Mapping using Random Forest." Thesis, Stockholms universitet, Institutionen för naturgeografi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-146657.
Full textLak, Kameran Majeed Mohammed <1985>. "Retina-inspired random forest for semantic image labelling." Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5970.
Full textLinusson, Henrik. "Multi-Output Random Forests." Thesis, Högskolan i Borås, Institutionen Handels- och IT-högskolan, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167.
Full textProgram: Magisterutbildning i informatik
Nygren, Rasmus. "Evaluation of hyperparameter optimization methods for Random Forest classifiers." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301739.
Full textFör att skapa en maskininlärningsmodell behöver en ofta välja olika hyperparametrar som konfigurerar modellens egenskaper. Prestandan av en sådan modell beror starkt på valet av dessa hyperparametrar, varför det är relevant att undersöka hur optimering av hyperparametrar kan påverka klassifikationssäkerheten av en maskininlärningsmodell. I denna studie tränar och utvärderar vi en Random Forest-klassificerare vars hyperparametrar sätts till särskilda standardvärden och jämför denna med en klassificerare vars hyperparametrar bestäms av tre olika metoder för optimering av hyperparametrar (HPO) - Random Search, Bayesian Optimization och Particle Swarm Optimization. Detta görs på tre olika dataset, och varje HPO- metod utvärderas baserat på den ändring av klassificeringsträffsäkerhet som den medför över dessa dataset. Vi fann att varje HPO-metod resulterade i en total ökning av klassificeringsträffsäkerhet på cirka 2-3% över alla dataset jämfört med den träffsäkerhet som kruleslassificeraren fick med standardvärdena för hyperparametrana. På grund av begränsningar i form av tid och data kunde vi inte fastställa om den positiva effekten är generaliserbar till en större skala. Slutsatsen som kunde dras var istället att användbarheten av metoder för optimering av hyperparametrar är beroende på det dataset de tillämpas på.
Lazic, Marko, and Felix Eder. "Using Random Forest model to predict image engagement rate." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229932.
Full textSyftet med denna forskning är att undersöka om Google Cloud Vision API kombinerat med Random Forest Machine Learning algoritmer är tillräckligt avancerade för att skapa en mjukvara som tillförlitligt kan evaluera hur mycket ett Instagram-inlägg kan bidra till bilden av ett varumärke. Datamängden innehåller bilder hämtade från Instagrams publika flöde filtrerat av #Nike, tillsammans med metadatan för inlägget. Varje bild var bearbetad av Google Cloud Vision API för att få tag på en mängd deskriptiva etiketter för innehållet av en bild. Datamängden skickades till Random Forest-algoritmen för att träna dess model. Undersökningens resultat är inte särskilt exakta, vilket främst beror på de begränsade faktorerna från Google Cloud Vision API. Slutsatsen som dras är att det inte är möjligt att tillförlitligt förutspå en bilds kvalitet med tekniken som finns allmänt tillgänglig idag.
Asritha, Kotha Sri Lakshmi Kamakshi. "Comparing Random forest and Kriging Methods for Surrogate Modeling." Thesis, Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20230.
Full textWilliams, Alyssa. "Hybrid Recommender Systems via Spectral Learning and a Random Forest." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etd/3666.
Full textElfving, Jan, and Sebastian Kalucza. "Random Forest för överlevnadsanalys med konkurrerande utfall : Prediktion av demens." Thesis, Umeå universitet, Statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184927.
Full textAdriansson, Nils, and Ingrid Mattsson. "Forecasting GDP Growth, or How Can Random Forests Improve Predictions in Economics?" Thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243028.
Full textWonkye, Yaa Tawiah. "Innovations of random forests for longitudinal data." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1563054152739397.
Full textSILVA, J. P. M. "PROGNOSE DA PRODUÇÃO FLORESTAL UTILIZANDO SISTEMA NEURO-FUZZY E RANDOM FOREST." Universidade Federal do Espírito Santo, 2018. http://repositorio.ufes.br/handle/10/7680.
Full textO objetivo deste estudo foi avaliar o emprego das técnicas Random Forest (RF) e Sistema Neuro-Fuzzy (SNF) na prognose da produção florestal. Os dados utilizados foram provenientes de inventários florestais contínuos conduzidos em povoamentos de clones de eucalipto, localizados no sul da Bahia. O processamento dos dados foi realizado no software Matlab R2016a. Os dados foram divididos em 70% para de treinamento e 30% para validação. Os algoritmos usados para geração de regras no SNF foram Subtractive Clustering (SC) e Fuzzy-C-Means (FCM). O treinamento foi feito com o algoritmo híbrido (gradiente descente e mínimos quadrados) com o número de épocas variando de 1 a 20. As funções de pertinências associadas às variáveis de entradas foram do tipo gaussianas e a função linear na de saída. Foram treinadas várias RF variando o número de árvores de 50 a 850 e o número de observações por folhas de 5 a 35. A modelagem da produção florestal de povoamentos clonais de eucalipto pode ser realizada com SNF e RF. Os algoritmos SC e FCM fornecem estimativas acuradas na projeção de área basal e volume. A RF apresentou estatísticas inferiores em relação a SNF para prognose da produção florestal. Ambas as técnicas são boas alternativas para seleção de variáveis empregadas na modelagem da produção florestal. Palavras-chave: Inteligência artificial, ensemble learning, mensuração florestal.
Kindbom, Hannes. "LSTM vs Random Forest for Binary Classification of Insurance Related Text." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252748.
Full textDet vetenskapliga området språkteknologi har fått ökad uppmärksamhet den senaste tiden, men mindre fokus riktas på att jämföra modeller som skiljer sig i komplexitet. Den här kandidatuppsatsen jämför Random Forest med LSTM, genom att undersöka hur väl modellerna kan användas för att klassificera ett meddelande som fråga eller icke-fråga. Jämförelsen gjordes genom att träna och optimera modellerna på historisk chattdata från det svenska försäkringsbolaget Hedvig. Olika typer av word embedding, så som Word2vec och Bag of Words, testades också. Resultaten visade att LSTM uppnådde något högre F1 och accuracy än Random Forest. Modellernas prestanda förbättrades inte signifikant efter optimering och resultatet var också beroende av vilket korpus modellerna tränades på. En undersökning av hur en chattbot skulle påverka Hedvigs adoption rate genomfördes också, huvudsakligen genom att granska tidigare studier om chattbotars effekt på användarupplevelsen. De potentiella effekterna på en innovations fem attribut, relativ fördel, kompatibilitet, komplexitet, prövbarhet and observerbarhet analyserades för att kunna svara på frågeställningen. Resultaten visade att Hedvigs adoption rate kan påverkas positivt, genom att förbättra de två första attributen. Effekterna en chattbot skulle ha på komplexitet, prövbarhet och observerbarhet ansågs dock vara försumbar, om inte negativ.
Verica, Weverton Rodrigo. "Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná." Universidade Estadual do Oeste do Paraná, 2018. http://tede.unioeste.br/handle/tede/3916.
Full textMade available in DSpace on 2018-09-06T19:38:50Z (GMT). No. of bitstreams: 2 Weverton_Verica2018.pdf: 4544186 bytes, checksum: 766200b4dea97433d3d88b08cbe3e548 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-16
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Knowledge of location and quantity of areas for agriculture or either native or planted forests is relevant for public managers to make their decisions based on reliable data. In addition, part of ICMS revenues from the Municipal Participation Fund (FPM) depends on agricultural production data, number of rural properties and the environmental factor. The objective of this research was to design an objective and semiautomatic methodology to map agricultural areas and targets permanent, and later to identify areas of soybean, corn 1st and 2nd crops, winter crops, semi-perennial agriculture, forests and other permanent targets in the state of Paraná for the harvest years (2013/14 to 2016/17), using temporal series of EVI/Modis vegetation indexes. The proposed methodology follows the steps of the Knowledge Discovery Process in Database – KDD, in which the classification task was performed by the Random Forest algorithm. For the validation of the mappings, samples extracted from Landsat-8 images were used, obtaining the global accuracy indices greater than 84.37% and a kappa index ranging from 0.63 to 0.98, hence considered mappings with good or excellent spatial accuracy. The municipal data of the area of soybean, corn 1st crop, corn 2nd crop and winter crops mapped were confronted with the official statistics obtaining coefficients of linear correlation between 0.61 to 0.9, indicating moderate or strong correlation with the data officials. In this way, the proposed semi-automatic methodology was successful in the mapping, as well as the automation of the process of elaboration of the metrics, thus generating a script in the software R in order to facilitate future mappings with low processing time.
O conhecimento da localização e da quantidade de áreas destinadas a agricultura ou a florestas nativas ou plantadas é relevante para que os gestores públicos tomem suas decisões pautadas em dados fidedignos com a realidade. Além disto, parte das receitas de ICMS advindas do Fundo de Participação aos Municípios (FPM) depende de dados de produção agropecuária, número de propriedades rurais e fator ambiental. Diante disso, esta dissertação teve como objetivo elaborar uma metodologia objetiva e semiautomática para mapear áreas agrícolas e alvos permanente e posteriormente identificar áreas de soja, milho 1ª e 2ª safras, culturas de inverno, agricultura semi-perene, florestas e demais alvos permanentes no estado do Paraná para os anos-safra (2013/14 a 2016/17), utilizando séries temporais de índices de vegetação EVI/Modis. A metodologia proposta segue os passos do Processo de descoberta de conhecimento em base de dados – KDD, sendo que para isso foram elaboradas métricas extraídas do perfil espectro temporal de cada pixel e foi empregada a tarefa de classificação, realizada pelo algoritmo Random Forest. Para a validação dos mapeamentos utilizaram-se amostras extraídas de imagens Landsat-8, obtendo-se os índices de exatidão global maior que 84,37% e um índice kappa variando entre 0,63 e 0,98, sendo, portanto, considerados mapeamentos com boa ou excelente acurácia espacial. Os dados municipais da área de soja, milho 1ª safra, milho 2ª safra e culturas de inverno mapeada foram confrontados com as estatísticas oficiais obtendo-se coeficientes de correlação linear entre 0,61 a 0,9, indicando moderada ou forte correlação com os dados oficiais. Desse modo, a metodologia semiautomática proposta obteve êxito na realização do mapeamento, bem como a automatização do processo de elaboração das métricas, gerando, com isso um script no software R de maneira a facilitar mapeamentos futuros com baixo tempo de processamento.
Sjöqvist, Hugo. "Classifying Forest Cover type with cartographic variables via the Support Vector Machine, Naive Bayes and Random Forest classifiers." Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-58384.
Full textStrobl, Carolin, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. "Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2006. http://epub.wu.ac.at/1274/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Strobl, Carolin, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. "Bias in random forest variable importance measures: Illustrations, sources and a solution." BioMed Central Ltd, 2007. http://dx.doi.org/10.1186/1471-2105-8-25.
Full textAlkazaz, Ayham, and Kharouki Marwa Saado. "Evaluation of Adaptive random forest algorithm for classification of evolving data stream." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283114.
Full textI big data tiden har online-maskininlärningsalgoritmer fått mer och mer dragkraft från både akademin och industrin. I flera scenarier måste beslut och predektioner göras i nära realtid när data observeras från dataströmmar som kontinuerligt utvecklas. Offline-inlärningsalgoritmer brister på olika sätt när det gäller att hantera sådana problem. Bortsett från kostnaderna och svårigheterna med att lagra dessa dataströmmar i en lagringskluster och den beräkningsmässiga svårigheterna förknippade med att träna modellen på nytt varje gång ny data observeras för att hålla modellen uppdaterad. Dessa metoder har inte heller inbyggda mekanismer för att hantera säsongsbetonade och icke-stationära dataströmmar. I sådana strömmar kan datadistributionen förändras över tid i det som kallas konceptdrift. Anpassningsbara slumpmässiga skogar (Adaptive random forests) är väl studerade och effektiva modeller för online-inlärning och hantering av icke-stationära dataströmmar. Genom att använda mekanismer för att upptäcka konceptdrift och bagging syftar adaptiva slumpmässiga skogar att förbättra noggrannheten och prestandan hos traditionella slumpmässiga skogar för onlineinlärning. I denna studie analyserar vi den prediktiva klassificeringsnoggrannheten för adaptiva slumpmässiga skogar när de används i samband med olika dataströmmar och konceptdrift. Dataströmmarna som används för att utvärdera prestandan är SEA och Agrawal. Varje dataström testas i 3 olika konceptdriftkonfigurationer; gradvis, plötslig och återkommande. Resultaten som erhållits från de utförda experiment visar att anpassningsbara slumpmässiga skogar har bättre noggrannhet än Agrawal, vilket kan tolkas av antal dimensioner och strukturen av inmatningsattributen. Adaptiva slumpmässiga skogar visade dock ingen tydlig skillnad i noggrannhet mellan gradvisa och plötsliga konceptdrift. Emellertid hade återkommande konceptdrift lägre noggrannhet i riktmärken än både de plötsliga och gradvisa motstycken. Detta kan vara ett resultat av den högre frekvensen av konceptdrift inom samma tidsperiod (antal observerade prover).
Tramontin, Davide <1992>. "Random forest implementation for classification analysis: default predictions applied to Italian companies." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/17720.
Full textAuret, Lidia. "Process monitoring and fault diagnosis using random forests." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5360.
Full textDissertation presented for the Degree of DOCTOR OF PHILOSOPHY (Extractive Metallurgical Engineering) in the Department of Process Engineering at the University of Stellenbosch
ENGLISH ABSTRACT: Fault diagnosis is an important component of process monitoring, relevant in the greater context of developing safer, cleaner and more cost efficient processes. Data-driven unsupervised (or feature extractive) approaches to fault diagnosis exploit the many measurements available on modern plants. Certain current unsupervised approaches are hampered by their linearity assumptions, motivating the investigation of nonlinear methods. The diversity of data structures also motivates the investigation of novel feature extraction methodologies in process monitoring. Random forests are recently proposed statistical inference tools, deriving their predictive accuracy from the nonlinear nature of their constituent decision tree members and the power of ensembles. Random forest committees provide more than just predictions; model information on data proximities can be exploited to provide random forest features. Variable importance measures show which variables are closely associated with a chosen response variable, while partial dependencies indicate the relation of important variables to said response variable. The purpose of this study was therefore to investigate the feasibility of a new unsupervised method based on random forests as a potentially viable contender in the process monitoring statistical tool family. The hypothesis investigated was that unsupervised process monitoring and fault diagnosis can be improved by using features extracted from data with random forests, with further interpretation of fault conditions aided by random forest tools. The experimental results presented in this work support this hypothesis. An initial study was performed to assess the quality of random forest features. Random forest features were shown to be generally difficult to interpret in terms of geometry present in the original variable space. Random forest mapping and demapping models were shown to be very accurate on training data, and to extrapolate weakly to unseen data that do not fall within regions populated by training data. Random forest feature extraction was applied to unsupervised fault diagnosis for process data, and compared to linear and nonlinear methods. Random forest results were comparable to existing techniques, with the majority of random forest detections due to variable reconstruction errors. Further investigation revealed that the residual detection success of random forests originates from the constrained responses and poor generalization artifacts of decision trees. Random forest variable importance measures and partial dependencies were incorporated in a visualization tool to allow for the interpretation of fault conditions. A dynamic change point detection application with random forests proved more successful than an existing principal component analysis-based approach, with the success of the random forest method again residing in reconstruction errors. The addition of random forest fault diagnosis and change point detection algorithms to a suite of abnormal event detection techniques is recommended. The distance-to-model diagnostic based on random forest mapping and demapping proved successful in this work, and the theoretical understanding gained supports the application of this method to further data sets.
AFRIKAANSE OPSOMMING: Foutdiagnose is ’n belangrike komponent van prosesmonitering, en is relevant binne die groter konteks van die ontwikkeling van veiliger, skoner en meer koste-effektiewe prosesse. Data-gedrewe toesigvrye of kenmerkekstraksie-benaderings tot foutdiagnose benut die vele metings wat op moderne prosesaanlegte beskikbaar is. Party van die huidige toesigvrye benaderings word deur aannames rakende liniariteit belemmer, wat as motivering dien om nie-liniêre metodes te ondersoek. Die diversiteit van datastrukture is ook verdere motivering vir ondersoek na nuwe kenmerkekstraksiemetodes in prosesmonitering. Lukrake-woude is ’n nuwe statistiese inferensie-tegniek, waarvan die akkuraatheid toegeskryf kan word aan die nie-liniêre aard van besluitnemingsboomlede en die bekwaamheid van ensembles. Lukrake-woudkomitees verskaf meer as net voorspellings; modelinligting oor datapuntnabyheid kan benut word om lukrakewoudkenmerke te verskaf. Metingbelangrikheidsaanduiers wys watter metings in ’n noue verhouding met ’n gekose uitsetveranderlike verkeer, terwyl parsiële afhanklikhede aandui wat die verhouding van ’n belangrike meting tot die gekose uitsetveranderlike is. Die doel van hierdie studie was dus om die uitvoerbaarheid van ’n nuwe toesigvrye metode vir prosesmonitering gebaseer op lukrake-woude te ondersoek. Die ondersoekte hipotese lui: toesigvrye prosesmonitering en foutdiagnose kan verbeter word deur kenmerke te gebruik wat met lukrake-woude geëkstraheer is, waar die verdere interpretasie van foutkondisies deur addisionele lukrake-woude-tegnieke bygestaan word. Eksperimentele resultate wat in hierdie werkstuk voorgelê is, ondersteun hierdie hipotese. ’n Intreestudie is gedoen om die gehalte van lukrake-woudkenmerke te assesseer. Daar is bevind dat dit moeilik is om lukrake-woudkenmerke in terme van die geometrie van die oorspronklike metingspasie te interpreteer. Verder is daar bevind dat lukrake-woudkartering en -dekartering baie akkuraat is vir opleidingsdata, maar dat dit swak ekstrapolasie-eienskappe toon vir ongesiene data wat in gebiede buite dié van die opleidingsdata val. Lukrake-woudkenmerkekstraksie is in toesigvrye-foutdiagnose vir gestadigde-toestandprosesse toegepas, en is met liniêre en nie-liniêre metodes vergelyk. Resultate met lukrake-woude is vergelykbaar met dié van bestaande metodes, en die meerderheid lukrake-woudopsporings is aan metingrekonstruksiefoute toe te skryf. Verdere ondersoek het getoon dat die sukses van res-opsporing op die beperkte uitsetwaardes en swak veralgemenende eienskappe van besluitnemingsbome berus. Lukrake-woude-metingbelangrikheidsaanduiers en parsiële afhanklikhede is ingelyf in ’n visualiseringstegniek wat vir die interpretasie van foutkondisies voorsiening maak. ’n Dinamiese aanwending van veranderingspuntopsporing met lukrake-woude is as meer suksesvol bewys as ’n bestaande metode gebaseer op hoofkomponentanalise. Die sukses van die lukrake-woudmetode is weereens aan rekonstruksie-reswaardes toe te skryf. ’n Voorstel wat na aanleiding van hierde studie gemaak is, is dat die lukrake-woudveranderingspunt- en foutopsporingsmetodes by ’n soortgelyke stel metodes gevoeg kan word. Daar is in hierdie werk bevind dat die afstand-vanaf-modeldiagnostiek gebaseer op lukrake-woudkartering en -dekartering suksesvol is vir foutopsporing. Die teoretiese begrippe wat ontsluier is, ondersteun die toepassing van hierdie metodes op verdere datastelle.
Almer, Oscar Erik Gabriel. "Automated application-specific optimisation of interconnects in multi-core systems." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7622.
Full textRörbrink, Malin. "Improving detection of promising unrefined protein docking complexes." Thesis, Linköpings universitet, Bioinformatik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133633.
Full textValbi, Eleonora. "Analysis and forecasting of the structure of marine phytoplankton assemblages using innovative molecular techniques of NGS (Next Generation Sequencing) and Machine Learning." Doctoral thesis, Urbino, 2020. http://hdl.handle.net/11576/2673494.
Full textElghazel, Wiem. "Wireless sensor networks for Industrial health assessment based on a random forest approach." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2055/document.
Full textAn efficient predictive maintenance is based on the reliability of the monitoring data. In some cases, themonitoring activity cannot be ensured with individual or wired sensors. Wireless sensor networks (WSN) arethen an alternative. Considering the wireless communication, data loss becomes highly probable. Therefore,we study certain aspects of WSN reliability. We propose a distributed algorithm for network resiliency and datasurvival while optimizing energy consumption. This fault tolerant algorithm reduces the risks of data loss andensures the continuity of data transfer. We also simulated different network topologies in order to evaluate theirimpact on data completeness at the sink level. Thereafter, we propose an approach to evaluate the system’sstate of health using the random forests algorithm. In an offline phase, the random forest algorithm selects theparameters holding more information about the system’s health state. These parameters are used to constructthe decision trees that make the forest. By injecting the random aspect in the training set, the algorithm (thetrees) will have different starting points. In an online phase, the algorithm evaluates the current health stateusing the sensor data. Each tree will provide a decision, and the final class is the result of the majority voteof all trees. When sensors start to break down, the data describing a health indicator becomes incompleteor unavailable. Considering that the trees have different starting points, the absence of some data will notnecessarily result in the interruption of the prediction process
Dyer, Ross. "Predicting residential demand: applying random forest to predict housing demand in Cape Town." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29602.
Full textMussumeci, Elisa. "A machine learning approach to dengue forecasting: comparing LSTM, Random Forest and Lasso." reponame:Repositório Institucional do FGV, 2018. http://hdl.handle.net/10438/24093.
Full textApproved for entry into archive by ÁUREA CORRÊA DA FONSECA CORRÊA DA FONSECA (aurea.fonseca@fgv.br) on 2018-05-29T19:15:35Z (GMT) No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5)
Made available in DSpace on 2018-06-14T19:45:29Z (GMT). No. of bitstreams: 1 machine-learning-aproach (4).pdf: 11272802 bytes, checksum: 52b25abf2711fdd6d1a338316c15c154 (MD5) Previous issue date: 2018-04-12
We used the Infodengue database of incidence and weather time-series, to train predictive models for the weekly number of cases of dengue in 790 cities of Brazil. To overcome a limitation in the length of time-series available to train the model, we proposed using the time series of epidemiologically similar cities as predictors for the incidence of each city. As Machine Learning-based forecasting models have been used in recent years with reasonable success, in this work we compare three machine learning models: Random Forest, lasso and Long-short term memory neural network in their forecasting performance for all cities monitored by the Infodengue Project.
Williams, Paige T. "Mapping Smallholder Forest Plantations in Andhra Pradesh, India using Multitemporal Harmonized Landsat Sentinel-2 S10 Data." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/104234.
Full textThe objective of this study was to develop a method by which smallholder forest plantations can be mapped accurately in Andhra Pradesh, India using multitemporal (intra- and inter-annual) visible (red, green, blue) and near-infrared (VNIR) bands from the European Space Agency satellite Sentinel-2. Dependency on and scarcity of wood products have driven the deforestation and degradation of natural forests in Southeast Asia. At the same time, forest plantations have been established both within and outside of forests, with the latter (as contiguous blocks) being the focus of this study. The ecosystem services provided by natural forests are different from those of plantations. As such, being able to separate natural forests from plantations is important. Unfortunately, there are constraints to accurately mapping planted forests in Andhra Pradesh (and other similar landscapes in South and Southeast Asia) using remotely sensed data due to the plantations' small size (average 2 hectares), short rotation ages (often 4-7 years for timber species), and spectral (reflectance from satellite imagery) similarities to croplands and natural forests. The East and West Godavari districts of Andhra Pradesh were selected as the area for a case study. Cloud-free Harmonized Landsat Sentinel-2 (HLS) S10 images were acquired over six dates, from different seasons, as follows: December 28, 2015; November 22, 2016; November 2, 2017; December 22, 2017; March 1, 2018; and June 15, 2018. Cloud-free satellite data are not available during the monsoon season (July to September) in this coastal region. In situ data on forest plantations, provided by collaborators, was supplemented with additional training data points (X and Y locations with land cover class) representing other land cover subclasses in the region: agriculture, water, aquaculture, mangrove, palm, forest plantation, ground, natural forest, shrub/scrub, sand, and urban, with a total of 2,230 training points. These high-quality samples were then aggregated into three land use classes: non-forest, natural forest, and forest plantations. Image classification used random forests within the Julia DecisionTree package on a thirty-band stack that was comprised of the VNIR bands and NDVI (calculation related to greenness, i.e. higher value = more vegetation) images for all dates. The median classification accuracy from the 5-fold cross validation was 94.3%. Our results, predicated on high quality training data, demonstrate that (mostly smallholder) forest plantations can be separated from natural forests even using only the Sentinel 2 VNIR bands when multitemporal data (across both years and seasons) are used.
Abd, El Meguid Mostafa. "Unconstrained facial expression recognition in still images and video sequences using Random Forest classifiers." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107692.
Full textL'objectif de ce projet est de construire et mettre en œuvre un cadre complète de détection de l'expression du visage par l'utilisation d'un détecteur de visage exclusif (PittPatt) et un nouveau classificateur composé d'un ensemble de 'Random Forests' a accompagné d'un étiqueteur 'support vector machine' ou 'k-nearest neighbour'. Le système doit effectuer au temps réel, dans des conditions sans contrainte, sans aucune intervention humaine intermédiaires. La base de données d'images fixes 'Binghamton University 3D Facial Expressions' était utilisé à des fins de formation. Un nombre de bases de données d'expression d'images fixes et de vidéo ont été utilisés pour l'évaluation. Des données quantitatives pour l'analyse qualitative, et parfois intuitive, les sujets liés à l'expression faciale constituaient la contribution principale et théorique sur le terrain.
Arnroth, Lukas, and Dennis Jonni Fiddler. "Supervised Learning Techniques : A comparison of the Random Forest and the Support Vector Machine." Thesis, Uppsala universitet, Statistiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-274768.
Full textOliveira, Matheus Felipe. "Mapeamento digital de solos da quadrícula de Ribeirão Preto - SP pelo método Random Forest /." Jaboticabal, 2015. http://hdl.handle.net/11449/154733.
Full textBanca: Célia Regina Paes Bueno
Banca: Waldir de Carvalho Junior
Banca: Antonio Sérgio Ferraudo
Resumo: O presente estudo buscou desenvolver um modelo capaz de compreender as relações solo-paisagem para a predição de classes de solo das folhas do IBGE de Ribeirão Preto, Serrana, Cravinhos e Bonfim Paulista, que constituem a quadrícula de Ribeirão Preto. Para isto, foram utilizadas informações contidas em um mapa pedológico convencional semidetalhado na escala 1:100.000, um Modelo Digital de Elevação (MDE) com resolução espacial de 30 metros, além do mapa geológico na escala 1:50.000. Do mapa geológico foi obtida a litologia e do MDE, foram obtidas as variáveis geomorfométricas por meio de técnicas de geoprocessamento. Todas essas informações foram relacionadas em uma matriz, de onde foram selecionadas três amostragens estratificadas de acordo com a área das classes, extraindo-se dados para treino e teste, que foram utilizados para aplicação em modelos do método Random Forest e avaliação da acurácia. Foram testados diferentes ajustes, com aplicação dos modelos nas classes no segundo e terceiro nível categórico. Com uma amostragem que compreende apenas 0,43% do total da área, o modelo para o segundo nível categórico apresentou uma exatidão global de 62,5%, com o mapa digital de solos apresentando uma persistência de 70,63% das classes do mapa original, valores maiores do que os apresentados para o terceiro nível categórico, com exatidão global de 57,1% e persistência de 44,24%. As variáveis mais importantes na compreensão das relações solo-paisagem foram Litologia, Elevação, Declividade e Distância da rede de drenagem. O estudo mostrou que a metodologia empregada é capaz de contribuir para criação de mapas de solo, com a possibilidade de ser empregado em áreas onde não há informações de solos pré-existentes, de maneira rápida e menos onerosa, auxiliando o trabalho dos pedólogos
Abstract: This study aimed to develop a model to understand the soil-landscape relationships to predict soil classes of topographic sheets of IBGE from Ribeirão Preto, Serrana, Cravinhos and Bonfim Paulista, constituting the grid Ribeirão Preto. For this, we used information included in a conventional semi-detailed soil map at 1:100,000 scale, a Digital Elevation Model (DEM) with a spatial resolution of 30 meters, in addition to the geological map at 1: 50,000 scale. From geological map was obtained lithology and from MDE were obtained the geomorphometric variables through geoprocessing techniques. All this information was linked in a matrix, from which they were selected three stratified sampling according to the area of classes, extracting data for training and testing, which were used for use in models of Random Forest method and evaluation of accuracy. Adjustments were tested with application of models in classes on the second and third categorical level. With a sample comprising only 0.43% of the total area, the model for the second categorical level had an overall accuracy of 62.5%, with the digital soil map showing a persistence of 70.63% of classes from original map, higher values than those presented for the third categorical level, with an overall accuracy of 57.1% and persistence of 44.24%. The most important variables in understanding the soil-landscape relationships were Lithology, Elevation, Slope Distance and drainage network. The study showed that the method is able to contribute to the creation of soil maps, with the possibility of being employed in areas where there is no pre-existing soil information quickly and less costly way, assisting the work of soil scientists
Mestre
Oliveira, Matheus Felipe [UNESP]. "Mapeamento digital de solos da quadrícula de Ribeirão Preto - SP pelo método Random Forest." Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/154733.
Full textO presente estudo buscou desenvolver um modelo capaz de compreender as relações solo-paisagem para a predição de classes de solo das folhas do IBGE de Ribeirão Preto, Serrana, Cravinhos e Bonfim Paulista, que constituem a quadrícula de Ribeirão Preto. Para isto, foram utilizadas informações contidas em um mapa pedológico convencional semidetalhado na escala 1:100.000, um Modelo Digital de Elevação (MDE) com resolução espacial de 30 metros, além do mapa geológico na escala 1:50.000. Do mapa geológico foi obtida a litologia e do MDE, foram obtidas as variáveis geomorfométricas por meio de técnicas de geoprocessamento. Todas essas informações foram relacionadas em uma matriz, de onde foram selecionadas três amostragens estratificadas de acordo com a área das classes, extraindo-se dados para treino e teste, que foram utilizados para aplicação em modelos do método Random Forest e avaliação da acurácia. Foram testados diferentes ajustes, com aplicação dos modelos nas classes no segundo e terceiro nível categórico. Com uma amostragem que compreende apenas 0,43% do total da área, o modelo para o segundo nível categórico apresentou uma exatidão global de 62,5%, com o mapa digital de solos apresentando uma persistência de 70,63% das classes do mapa original, valores maiores do que os apresentados para o terceiro nível categórico, com exatidão global de 57,1% e persistência de 44,24%. As variáveis mais importantes na compreensão das relações solo-paisagem foram Litologia, Elevação, Declividade e Distância da rede de drenagem. O estudo mostrou que a metodologia empregada é capaz de contribuir para criação de mapas de solo, com a possibilidade de ser empregado em áreas onde não há informações de solos pré-existentes, de maneira rápida e menos onerosa, auxiliando o trabalho dos pedólogos
This study aimed to develop a model to understand the soil-landscape relationships to predict soil classes of topographic sheets of IBGE from Ribeirão Preto, Serrana, Cravinhos and Bonfim Paulista, constituting the grid Ribeirão Preto. For this, we used information included in a conventional semi-detailed soil map at 1:100,000 scale, a Digital Elevation Model (DEM) with a spatial resolution of 30 meters, in addition to the geological map at 1: 50,000 scale. From geological map was obtained lithology and from MDE were obtained the geomorphometric variables through geoprocessing techniques. All this information was linked in a matrix, from which they were selected three stratified sampling according to the area of classes, extracting data for training and testing, which were used for use in models of Random Forest method and evaluation of accuracy. Adjustments were tested with application of models in classes on the second and third categorical level. With a sample comprising only 0.43% of the total area, the model for the second categorical level had an overall accuracy of 62.5%, with the digital soil map showing a persistence of 70.63% of classes from original map, higher values than those presented for the third categorical level, with an overall accuracy of 57.1% and persistence of 44.24%. The most important variables in understanding the soil-landscape relationships were Lithology, Elevation, Slope Distance and drainage network. The study showed that the method is able to contribute to the creation of soil maps, with the possibility of being employed in areas where there is no pre-existing soil information quickly and less costly way, assisting the work of soil scientists
Lento, Gabriel Carneiro. "Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde." reponame:Repositório Institucional do FGV, 2017. http://hdl.handle.net/10438/18256.
Full textApproved for entry into archive by Leiliane Silva (leiliane.silva@fgv.br) on 2017-05-04T18:39:57Z (GMT) No. of bitstreams: 1 Dissertação Gabriel Carneiro Lento.pdf: 832965 bytes, checksum: f79e7cb4e5933fd8c3a7c67ed781ddb5 (MD5)
Made available in DSpace on 2017-05-17T12:43:35Z (GMT). No. of bitstreams: 1 Dissertação Gabriel Carneiro Lento.pdf: 832965 bytes, checksum: f79e7cb4e5933fd8c3a7c67ed781ddb5 (MD5) Previous issue date: 2017-03-27
In this work we study churn in health insurance, that is predicting which clients will cancel the product or service within a preset time-frame. Traditionally, the probability whether a client will cancel the service is modeled using logistic regression. Recently, modern machine learning techniques are becoming popular in churn modeling, having been applied in the areas of telecommunications, banking, and car insurance, among others. One of the big challenges in this problem is that only a fraction of all customers cancel the service, meaning that we have to deal with highly imbalanced class probabilities. Under-sampling and over-sampling techniques have been used to overcome this issue. We use random forests, that are ensembles of decision trees, where each of the trees fits a subsample of the data constructed using either under-sampling or over-sampling. We compare the distinct specifications of random forests using various metrics that are robust to imbalanced classes, both in-sample and out-of-sample. We observe that random forests using imbalanced random samples with fewer observations than the original series present a better overall performance. Random forests also present a better performance than the classical logistic regression, often used in health insurance companies to model churn.
Neste trabalho estudamos o problema de churn em seguro saúde, isto é, a previsão se o cliente irá cancelar o produto ou serviço em até um período de tempo pré-estipulado. Tradicionalmente, regressão logística é utilizada para modelar a probabilidade de cancelamento do serviço. Atualmente, técnicas modernas de machine learning vêm se tornando cada vez mais populares para esse tipo de problema, com exemplos nas áreas de telecomunicação, bancos, e seguros de carro, dentre outras. Uma das grandes dificuldades nesta modelagem é que apenas uma pequena fração dos clientes de fato cancela o serviço, o que significa que a base de dados tratada é altamente desbalanceada. Técnicas de under-sampling e over-sampling são utilizadas para contornar esse problema. Neste trabalho, aplicamos random forests, que são combinações de árvores de decisão ajustadas em subamostras dos dados, construídas utilizando under-sampling e over-sampling. Ao fim do trabalho comparamos métricas de ajustes obtidas nas diversas especificações dos modelos testados e avaliamos seus resultados dentro e fora da amostra. Observamos que técnicas de random forest utilizando sub-amostras não balanceadas com o tamanho menor do que a amostra original apresenta a melhor performance dentre as random forests utilizadas e uma melhora com relação ao praticado no mercado de seguro saúde.
Wålinder, Andreas. "Evaluation of logistic regression and random forest classification based on prediction accuracy and metadata analysis." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35126.
Full textOshiro, Thais Mayumi. "Uma abordagem para a construção de uma única árvore a partir de uma Random Forest para classificação de bases de expressão gênica." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/95/95131/tde-15102013-183234/.
Full textRandom Forest is a computationally ecient technique which can operate quickly over large datasets. It has been used in many research projects and recent real-world applications in several elds, including bioinformatics since Random Forest can handle datasets having many attributes, and few examples. However, it is dicult for human experts to understand it. The research reported here aims to create a symbolic model, i.e. a single tree from a Random Forest for the classication of gene expression datasets. Thus, we hope to increase the understanding by human experts on the process that classies the examples in the real world trying to keep a good performance. Initial results obtained from the proposed algorithm are promising since it presents in some cases performance better than other widely used algorithm (J48) and a slightly lower than a Random Forest. Furthermore, the induced tree presents, in general, a smaller size than the tree built by the algorithm J48.
Halmann, Marju. "Email Mining Classifier : The empirical study on combining the topic modelling with Random Forest classification." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-14710.
Full textLindroth, Leonard. "Parallelization of Online Random Forest." Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21098.
Full textPan, Pin-Zhong, and 潘品忠. "Human Action Recognition using Random Forest." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/88721662507029523371.
Full textChen, Shi-zhong, and 陳時仲. "Evaluating the Effectiveness of Random Forest Model." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/46358970356692465998.
Full text國立交通大學
統計學研究所
103
Random Forest is a popular machine learning algorithms. It is a decision tree model consists of multiple trees. First, we generate a specified number of tree (ex: 100), then we predict the final result by taking average of all the results (for continuous response) or by majority voting of the results (for categorical response). Random forests in R software package “randomForest” is very easy to use. As long as we choose the number of the decision tree (ntry) and the number of variables to be selected for node branching (mtry), then we can analyze the data by this model. Its analysis results of the real data (Chapter 3) are better than some of the statistical model. What’s more, our model also has the ability for finding important variables. Therefore, it is a very complete and convenient model.
Antonella, Mensi. "Advanced random forest approaches for outlier detection." Doctoral thesis, 2022. http://hdl.handle.net/11562/1067504.
Full textDehury, Jitendra Pratap. "Random Forest-Based Intrusion Detection System (IDS)." Thesis, 2018. http://ethesis.nitrkl.ac.in/9737/1/2018_MT_216CS2154_JPDehury_Random.pdf.
Full textBrence, John R. "Analysis of robust measures for random forest regression /." 2004. http://wwwlib.umi.com/dissertations/fullcit/3131453.
Full textLin, Pa-Hsun, and 林伯勳. "Fire and Smoke Detection Using Random Forest Algorithm." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/56813956821976269774.
Full text國立暨南國際大學
資訊工程學系
101
Along with the progress of computer computation capabilities, sophisticated image processing/understanding methods have been developed and the functions of intelligent video surveillance systems have been greatly extended. In this thesis, we develop a video-based fire and smoke detection system based on the random forest algorithm. We use the distinct color and image variation properties of fire/smoke to select candidate regions. Then, image features of texture and motion patterns of the candidate regions are analyzed to determine any fire/smoke region. We propose to extract the features of both the texture and motion patterns of the fire/smoke with the local binary pattern (LBP) method. The random forest method is augmented to use the LBP features for fire/smoke detection to reduce false positive and enhance the fire and smoke detection rate.
Chien, Chia-Chih, and 簡嘉志. "License plate recognition using the random forest algorithm." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/21636450711897378754.
Full text國立暨南國際大學
資訊工程學系
101
In this thesis, we study the car license plate recognition (LPR) problem which consists of a license plate localization sub-problem and a license character recognition sub-problem. We develop a heuristic method to detect license plate candidates by using mathematical morphology operations to filter edge detection results. Character recognition is accomplished by using the random forest algorithm which is trained with a huge number of synthesized character images. Since the random forest algorithm is very efficient, we use an exhaustive search strategy to detect characters with a search window. The search window is swept over the candidate license plate area to recognize every character. Therefore, we do not need to segment the license plate characters and the recognition error induced by incorrect character segmentation can be avoided. For comparison, we also implement a license plate recognition method which uses the support vector machine. Experimental results show that random forest LPR outperformed the implemented support vector machine algorithm.
Liu, Meng-Hsin, and 劉孟鑫. "3D fingertip detection based on random decision forest." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/78861501850356031498.
Full text中原大學
資訊工程研究所
103
Hand gesture is one of the most intuitive ways to interact with machine. However, traditional 2D hand gesture recognition is very sensitive to occlusions and changes in viewpoint. The 3D localization of fingertips and palm can be helpful for hand gesture recognition under different viewpoints. In this study, we propose a new fingertip detection algorithm using two-stage random decision forest (RDF). In the first stage, local depth difference pattern (LDDP) and 3D geodesic shortest path (GSP) are adopted for training a finger pixel classifier. Two spatial and temporal features are then added into RDF to further distinguish fingertip pixels from finger pixels in the second stage. Finally, we utilize K-means clustering to re-identify fingertip candidates and limit the number of candidates to five. Our experimental result demonstrates that the proposed fingertip detection method is effective in complex gesture.
Wu, Feng-Jen, and 吳豐仁. "Optimal Operation Strategy of Chillers Using Random Forest." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/pe54fw.
Full text國立臺北科技大學
能源與冷凍空調工程系
106
According to the Energy Bureau of the Ministry of Economic Affairs, air-conditioning energy consumption accounts for more than 40% of the energy consumption of the entire building, and the energy consumption of chiller plant accounts for about 50 to 60% of the energy consumption of air-conditioning systems. Therefore, how to reduce the need for chiller plant is unnecessary. The energy consumption has made the effective use of energy a very important and urgent research topic. For a long time, the operating personnel of the central air-conditioning system have determined the start-up combination of the chiller and the previous operating experience. However, in addition to the large summer load during the daytime, all chiller need to be turned on, and during the night and other seasons, the load is low. It is up to the operator to judge the start-up combination and whether it has achieved the best operating efficiency. There is no real reliable data to interpret and analyze. In this study, R software was used in conjunction with the Random Forests package to simulate the actual operating data of the chiller in a central air-conditioning system in a northern building. After the model and performance evaluation were established, the wet-bulb temperature range and approach temperature were set. Analyze the optimal start-up combination and evaluate the follow-up operation strategy of the ice-water master. Calculate the wet-bulb temperature range according to the different loading 200~400 RT and 2000~2200 RT. The energy-saving rate can reach 3.40(2000~2200 RT)~20.62%(200~400 RT). The results prove the importance of chiller start-up operation strategies. If this technology can be deeply rooted, besides providing real operational strategies for operating personnel, it can also truly reduce the use of domestic energy sources.
HUNG, CHENG-WEI, and 洪政緯. "Forecasting New Products Selling Level by Random Forest." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/4rxq85.
Full text國立交通大學
工業工程與管理系所
107
The most common problem in the clothing industry is that the products must be manufactured in advance and transferred to the sales shop for sales. The underwear industry does not produce all the products at one time, but after a period of trial sales, it is handed over to the company. Subjectively determine whether to continue to produce the product, and the wrong decision to turn the order will lead to high inventory of goods, causing damage to the company's overall operating interests. This study describes the purpose and motivation of the research from the introduction, and explores the decision tree and random forest model to establish an objective classification model to help the case company to forcast whether the new product is hot after the one-month trial sale period. It can be based on the case, and after the case study, the feasibility of the model is verified and finally used by the case company.
Joshi, Ajjen Das. "A random forest approach to segmenting and classifying gestures." Thesis, 2014. https://hdl.handle.net/2144/15405.
Full text