Academic literature on the topic 'Random Graph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Random Graph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Random Graph"
Shi, Haizhong, and Yue Shi. "Random graph languages." Discrete Mathematics, Algorithms and Applications 09, no. 02 (April 2017): 1750020. http://dx.doi.org/10.1142/s1793830917500203.
Full textKim, J. H., and V. H. Vu. "Sandwiching random graphs: universality between random graph models." Advances in Mathematics 188, no. 2 (November 2004): 444–69. http://dx.doi.org/10.1016/j.aim.2003.10.007.
Full textFÜRER, MARTIN, and SHIVA PRASAD KASIVISWANATHAN. "Approximately Counting Embeddings into Random Graphs." Combinatorics, Probability and Computing 23, no. 6 (July 9, 2014): 1028–56. http://dx.doi.org/10.1017/s0963548314000339.
Full textChen, Lin, Li Zeng, Jin Peng, Junren Ming, and Xianghui Zhu. "Regularity Index of Uncertain Random Graph." Symmetry 15, no. 1 (January 3, 2023): 137. http://dx.doi.org/10.3390/sym15010137.
Full textJanson, Svante. "Quasi-random graphs and graph limits." European Journal of Combinatorics 32, no. 7 (October 2011): 1054–83. http://dx.doi.org/10.1016/j.ejc.2011.03.011.
Full textIsufi, Elvin, Andreas Loukas, Andrea Simonetto, and Geert Leus. "Filtering Random Graph Processes Over Random Time-Varying Graphs." IEEE Transactions on Signal Processing 65, no. 16 (August 15, 2017): 4406–21. http://dx.doi.org/10.1109/tsp.2017.2706186.
Full textJOHANNSEN, DANIEL, MICHAEL KRIVELEVICH, and WOJCIECH SAMOTIJ. "Expanders Are Universal for the Class of All Spanning Trees." Combinatorics, Probability and Computing 22, no. 2 (January 3, 2013): 253–81. http://dx.doi.org/10.1017/s0963548312000533.
Full textBorbély, József, and András Sárközy. "Quasi-Random Graphs, Pseudo-Random Graphs and Pseudorandom Binary Sequences, I. (Quasi-Random Graphs)." Uniform distribution theory 14, no. 2 (December 1, 2019): 103–26. http://dx.doi.org/10.2478/udt-2019-0017.
Full textMeyfroyt, Thomas M. M. "Degree-dependent threshold-based random sequential adsorption on random trees." Advances in Applied Probability 50, no. 01 (March 2018): 302–26. http://dx.doi.org/10.1017/apr.2018.14.
Full textTang, Y., and Q. L. Li. "Zero-One Law for Connectivity in Superposition of Random Key Graphs on Random Geometric Graphs." Discrete Dynamics in Nature and Society 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/982094.
Full textDissertations / Theses on the topic "Random Graph"
Ramos, Garrido Lander. "Graph enumeration and random graphs." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405943.
Full textEn aquesta tesi utilitzem l'analítica combinatòria per treballar amb dos problemes relacionats: enumeració de grafs i grafs aleatoris de classes de grafs amb restriccions. En particular ens interessa esbossar un dibuix general de determinades famílies de grafs determinant, en primer lloc, quants grafs hi ha de cada mida possible (enumeració de grafs), i, en segon lloc, quin és el comportament típic d'un element de mida fixa triat a l'atzar uniformement, quan aquesta mida tendeix a infinit (grafs aleatoris). Els problemes en què treballem tracten amb grafs que satisfan condicions globals, com ara ésser planars, o bé tenir restriccions en el grau dels vèrtexs. En el Capítol 2 analitzem grafs planar aleatoris amb grau mínim dos i tres. Mitjançant tècniques de combinatòria analítica i els conceptes de nucli i kernel d'un graf, obtenim estimacions asimptòtiques precises i analitzem paràmetres rellevants de grafs aleatoris, com ara el nombre d'arestes o la mida del nucli, on obtenim lleis límit gaussianes. També treballem amb un paràmetre que suposa un repte més important: el paràmetre extremal que es correspon amb la mida de l'arbre més gran que penja del nucli. En aquest cas obtenim una estimació logarítmica per al seu valor esperat, juntament amb un resultat sobre la seva concentració. En el Capítol 3 estudiem el nombre de subgrafs isomorfs a un graf fix en classes de grafs subcrítiques. Quan el graf fix és biconnex, obtenim lleis límit gaussianes amb esperança i variància lineals. L'eina principal és l'anàlisi de sistemes infinits d'equacions donada per Drmota, Gittenberger i Morgenbesser, que utilitza la teoria d'operadors compactes. El càlcul de les constants exactes de la primera estimació dels moments en general es troba fora del nostre abast. Per a la classe de grafs sèrie-paral·lels podem calcular les constants en alguns casos particulars interessants. En el Capítol 4 enumerem grafs (arbitraris) el grau de cada vèrtex dels quals pertany a un subconjunt fix dels nombres naturals. En aquest cas les funcions generatrius associades són divergents i la nostra anàlisi utilitza l'anomenat model de configuració. El nostre resultat consisteix a obtenir estimacions asimptòtiques precises per al nombre de grafs amb un nombre de vèrtexs i arestes donat, amb la restricció dels graus. Aquest resultat generalitza àmpliament casos particulars existents, com ara grafs d-regulars, o grafs amb grau mínim com a mínim d.
Seierstad, Taral Guldahl. "The phase transition in random graphs and random graph processes." Doctoral thesis, [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985760044.
Full textMakai, Tamas. "Random graph processes." Thesis, Royal Holloway, University of London, 2012. http://repository.royalholloway.ac.uk/items/b24b89af-3fc1-4d2f-a673-64483a3bc2f2/8/.
Full textKang, Mihyun. "Random planar structures and random graph processes." Doctoral thesis, [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985516585.
Full textRoberts, Ekaterina Sergeevna. "Tailored random graph ensembles." Thesis, King's College London (University of London), 2014. https://kclpure.kcl.ac.uk/portal/en/theses/tailored-random-graph-ensembles(daefc925-24a3-4f7f-8c79-21b9136c636b).html.
Full textWarnke, Lutz. "Random graph processes with dependencies." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:71b48e5f-a192-4684-a864-ea9059a25d74.
Full textRoss, Christopher Jon. "Properties of Random Threshold and Bipartite Graphs." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306296991.
Full textWeinstein, Lee. "Empirical study of graph properties with particular interest towards random graphs." Diss., Connect to the thesis, 2005. http://hdl.handle.net/10066/1485.
Full textRiordan, Oliver Maxim. "Subgraphs of the discrete torus, random graphs and general graph invariants." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624757.
Full textCooper, Jeffrey R. "Product Dimension of a Random Graph." Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1272038833.
Full textBooks on the topic "Random Graph"
Evstigneev, V. A. Teorii͡a︡ grafov: Algoritmy obrabotki beskonturnykh grafov. Novosibirsk: "Nauka," Sibirskoe predprii͡a︡tie RAN, 1998.
Find full textO'Connell, Neil. Some large deviation results for sparse random graphs. Bristol [England]: Hewlett Packard, 1996.
Find full textOrthogonal decompositions and functional limit theorems for random graph statistics. Providence, RI: American Mathematical Society, 1994.
Find full text1949-, Rödl Vojtěch, Ruciński Andrzej, and Tetali Prasad, eds. A Sharp threshold for random graphs with a monochromatic triangle in every edge coloring. Providence, R.I: American Mathematical Society, 2006.
Find full textTransfiniteness for graphs, electrical networks, and random walks. Boston: Birkhäuser, 1996.
Find full textBook chapters on the topic "Random Graph"
Diestel, Reinhard. "Random Graphs." In Graph Theory, 323–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53622-3_11.
Full textDiestel, Reinhard. "Random Graphs." In Graph Theory, 309–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-642-14279-6_11.
Full textLi, Yusheng, and Qizhong Lin. "Random Graph." In Applied Mathematical Sciences, 75–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12762-5_4.
Full textBollobás, Béla. "Random Graphs." In Modern Graph Theory, 215–52. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0619-4_7.
Full textZhang, Li-Chun. "Targeted random walk sampling." In Graph Sampling, 93–112. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003203490-6.
Full textHurd, T. R. "Random Graph Models." In SpringerBriefs in Quantitative Finance, 45–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33930-6_3.
Full textCameron, Peter J. "The Random Graph." In The Mathematics of Paul Erdős II, 353–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7254-4_22.
Full textKamiński, Bogumił, Paweł Prałat, and François Théberge. "Random Graph Models." In Mining Complex Networks, 27–56. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003218869-2.
Full textCameron, Peter J. "The Random Graph." In Algorithms and Combinatorics, 333–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60406-5_32.
Full textRaj P. M., Krishna, Ankith Mohan, and K. G. Srinivasa. "Random Graph Models." In Computer Communications and Networks, 45–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96746-2_3.
Full textConference papers on the topic "Random Graph"
Jin, Di, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. "RAW-GNN: RAndom Walk Aggregation based Graph Neural Network." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/293.
Full textZhao, Xiangyu, Hanzhou Wu, and Xinpeng Zhang. "Watermarking Graph Neural Networks by Random Graphs." In 2021 9th International Symposium on Digital Forensics and Security (ISDFS). IEEE, 2021. http://dx.doi.org/10.1109/isdfs52919.2021.9486352.
Full textAiello, William, Fan Chung, and Linyuan Lu. "A random graph model for massive graphs." In the thirty-second annual ACM symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/335305.335326.
Full textFeng, Lijin, and Jackson Barr. "Complete Graphs and Bipartite Graphs in a Random Graph." In 2021 5th International Conference on Vision, Image and Signal Processing (ICVISP). IEEE, 2021. http://dx.doi.org/10.1109/icvisp54630.2021.00054.
Full textStanton, Isabelle. "Streaming Balanced Graph Partitioning Algorithms for Random Graphs." In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973402.95.
Full textNobari, Sadegh, Xuesong Lu, Panagiotis Karras, and Stéphane Bressan. "Fast random graph generation." In the 14th International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1951365.1951406.
Full textGama, Fernando, Elvin Isufi, Geert Leus, and Alejandro Ribeiro. "Control of Graph Signals Over Random Time-Varying Graphs." In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462381.
Full textSaad, Leila Ben, Elvin Isufi, and Baltasar Beferull-Lozano. "Graph Filtering with Quantization over Random Time-varying Graphs." In 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2019. http://dx.doi.org/10.1109/globalsip45357.2019.8969270.
Full textKarunaratne, Thashmee, and Henrik Boström. "Graph Propositionalization for Random Forests." In 2009 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2009. http://dx.doi.org/10.1109/icmla.2009.113.
Full textKang, U., Hanghang Tong, and Jimeng Sun. "Fast Random Walk Graph Kernel." In Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012. http://dx.doi.org/10.1137/1.9781611972825.71.
Full textReports on the topic "Random Graph"
Chandrasekhar, Arun, and Matthew Jackson. Tractable and Consistent Random Graph Models. Cambridge, MA: National Bureau of Economic Research, July 2014. http://dx.doi.org/10.3386/w20276.
Full textCarley, Kathleen M., and Eunice J. Kim. Random Graph Standard Network Metrics Distributions in ORA. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada487516.
Full textMesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada567125.
Full textMcCulloh, Ian, Joshua Lospinoso, and Kathleen M. Carley. The Link Probability Model: A Network Simulation Alternative to the Exponential Random Graph Model. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada537329.
Full textDoerschuk, Peter C. University LDRD student progress report on descriptions and comparisons of brain microvasculature via random graph models. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1055646.
Full textNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 18. Hilbert Press, 2018. http://dx.doi.org/10.56441/hilbertpress.1818.9585.
Full textNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 20. Hilbert Press, 2020. http://dx.doi.org/10.56441/hilbertpress.2048.3738.
Full textNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 19. Hilbert Press, 2019. http://dx.doi.org/10.56441/hilbertpress.1927.9364.
Full textSchulz, Jan, Daniel Mayerhoffer, and Anna Gebhard. A Network-Based Explanation of Perceived Inequality. Otto-Friedrich-Universität, 2021. http://dx.doi.org/10.20378/irb-49393.
Full textPawagi, Shaunak, and I. V. Ramakrishnan. Updating Properties of Directed Acyclic Graphs on a Parallel Random Access Machine. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada162954.
Full text