To see the other types of publications on this topic, follow the link: Random operators.

Journal articles on the topic 'Random operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Random operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pankov, Alexander A. "Fredholm random operators and random subspaces in Banach spaces." Czechoslovak Mathematical Journal 36, no. 3 (1986): 427–33. http://dx.doi.org/10.21136/cmj.1986.102103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saadati, Reza. "Random compact operators." Filomat 30, no. 3 (2016): 515–23. http://dx.doi.org/10.2298/fil1603515s.

Full text
Abstract:
Random compact operators are useful to study random differentiation and random integral equations. In this paper, we define the random norm of R-bounded operators and study random norms of differentiation operators and integral operators. The definition of random norm of R-bounded operators led us to study the random operator theory.
APA, Harvard, Vancouver, ISO, and other styles
3

Kirsch, Werner, Bernd Metzger, and Peter Müller. "Random Block Operators." Journal of Statistical Physics 143, no. 6 (June 2011): 1035–54. http://dx.doi.org/10.1007/s10955-011-0230-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Astashkin, S. V., D. V. Zanin, E. M. Semenov, and F. A. Sukochev. "Kruglov operator and operators defined by random permutations." Functional Analysis and Its Applications 43, no. 2 (June 2009): 83–95. http://dx.doi.org/10.1007/s10688-009-0013-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gutierrez-Pavón, Jonathan, and Carlos G. Pacheco. "Inverting weak random operators." Random Operators and Stochastic Equations 27, no. 1 (March 1, 2019): 53–63. http://dx.doi.org/10.1515/rose-2019-2003.

Full text
Abstract:
Abstract We analyze two weak random operators, initially motivated from processes in random environment. At first glance, these operators are ill-defined, but using bilinear forms, one can deal with them in a rigorous way. This point of view can be found, for instance, in [A. V. Skorohod, Random Linear Operators, Math. Appl. (Sov. Ser.), D. Reidel Publishing, Dordrecht, 1984], and it remarkably helps to carry out specific calculations. In this paper, we find explicitly the inverse of such weak operators by providing the closed forms of the so-called Green kernel. We show how this approach helps to analyze the spectra of the operators. In addition, we provide the existence of strong operators associated to our bilinear forms. Important tools that we use are the Sturm–Liouville theory and the stochastic calculus.
APA, Harvard, Vancouver, ISO, and other styles
6

del Rio, Rafael. "Random Sturm–Liouville operators." Applied Mathematics Letters 24, no. 2 (February 2011): 179–83. http://dx.doi.org/10.1016/j.aml.2010.08.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thang, Dang Hung, and Pham The Anh. "Random fixed points of completely random operators." Random Operators and Stochastic Equations 21, no. 1 (January 1, 2013): 1–20. http://dx.doi.org/10.1515/rose-2013-0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khan, Abdul Rahim, and Nawab Hussain. "Random fixed points for ∗-nonexpansive random operators." Journal of Applied Mathematics and Stochastic Analysis 14, no. 4 (January 1, 2001): 341–49. http://dx.doi.org/10.1155/s1048953301000302.

Full text
Abstract:
The notion of a ∗-nonexpansive multivalued map is different from that of a continuous map. In this paper we prove some fixed point theorems for ∗-nonexpansive multivalued random operators in the setup of Banach spaces and Fréchet spaces. Our work generalizes, refines and improves the earlier results of a number of authors.
APA, Harvard, Vancouver, ISO, and other styles
9

Yin, Jiandong, and Zhongdong Liu. "Random Fixed Point Theorems of Random Comparable Operators and an Application." Discrete Dynamics in Nature and Society 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/426568.

Full text
Abstract:
We introduce the new concept of random comparable operators as a generalization of random monotone operators and prove several random fixed point theorems for such a class of operators in partially ordered Banach spaces. Part of the presented results generalize and extend some known results of random monotone operators. Finally, as an application, we consider the existence of the solution of a random Hammerstein integral equation.
APA, Harvard, Vancouver, ISO, and other styles
10

Hála, Martin. "Asymptotic normality of eigenvalues of random ordinary differential operators." Applications of Mathematics 36, no. 4 (1991): 264–76. http://dx.doi.org/10.21136/am.1991.104465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Beg, Ismat, and Mujahid Abbas. "Common random fixed points of compatible random operators." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–15. http://dx.doi.org/10.1155/ijmms/2006/23486.

Full text
Abstract:
We construct a random iteration scheme and study necessary conditions for its convergence to a common random fixed point of two pairs of compatible random operators satisfying Meir-Keeler type conditions in Polish spaces. Some random fixed point theorems for weakly compatible random operators under generalized contractive conditions in the framework of symmetric spaces are also proved.
APA, Harvard, Vancouver, ISO, and other styles
12

Breuer, Jonathan, Peter J. Forrester, and Uzy Smilansky. "Random discrete Schrödinger operators from random matrix theory." Journal of Physics A: Mathematical and Theoretical 40, no. 5 (January 17, 2007): F161—F168. http://dx.doi.org/10.1088/1751-8113/40/5/f03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khan, A. R., and A. A. Domlo. "Random fixed points of multivalued inward random operators." Journal of Applied Mathematics and Stochastic Analysis 2006 (November 9, 2006): 1–8. http://dx.doi.org/10.1155/jamsa/2006/19428.

Full text
Abstract:
The purpose of this paper is to provide a substantial improvement and random analogues of several results due to Benavides and Ramírez (2004). Our work sets random versions of the results of Shahzad and Lone (2005) and improves the work of Plubtieng and Kumam (2006).
APA, Harvard, Vancouver, ISO, and other styles
14

Shahzad, Naseer. "Random fixed points of pseudo-contractive random operators." Journal of Mathematical Analysis and Applications 296, no. 1 (August 2004): 302–8. http://dx.doi.org/10.1016/j.jmaa.2004.04.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kapica, Rafał. "Random iteration and Markov operators." Journal of Difference Equations and Applications 22, no. 2 (September 14, 2015): 295–305. http://dx.doi.org/10.1080/10236198.2015.1083017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Heinrich, Stefan. "Invertibility of random fredholm operators." Stochastic Analysis and Applications 8, no. 1 (January 1990): 1–59. http://dx.doi.org/10.1080/07362999008809197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Heller, Michael, Leszek Pysiak, and Wiesłw Sasin. "Noncommutative Dynamics of Random Operators." International Journal of Theoretical Physics 44, no. 6 (June 2005): 619–28. http://dx.doi.org/10.1007/s10773-005-3992-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Knill, Oliver. "Renormalization of random Jacobi operators." Communications in Mathematical Physics 164, no. 1 (July 1994): 195–215. http://dx.doi.org/10.1007/bf02108812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hamza, Eman, Alain Joye, and Günter Stolz. "Localization for Random Unitary Operators." Letters in Mathematical Physics 75, no. 3 (January 14, 2006): 255–72. http://dx.doi.org/10.1007/s11005-005-0044-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kozlov, S. M. "Spectral asymptotics of random operators." Mathematical Notes of the Academy of Sciences of the USSR 43, no. 3 (March 1988): 234–43. http://dx.doi.org/10.1007/bf01138848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lan, Heng-you. "Approximation solvability of nonlinear random (A,η)-resolvent operator equations with random relaxed cocoercive operators." Computers & Mathematics with Applications 57, no. 4 (February 2009): 624–32. http://dx.doi.org/10.1016/j.camwa.2008.09.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lenczewski, Romuald. "Matricial circular systems and random matrices." Random Matrices: Theory and Applications 05, no. 04 (October 2016): 1650012. http://dx.doi.org/10.1142/s201032631650012x.

Full text
Abstract:
We introduce and study matricial circular systems of operators which play the role of matricial counterparts of circular operators. They describe the asymptotic joint *-distributions of blocks of independent block-identically distributed Gaussian random matrices with respect to partial traces. Using these operators, we introduce circular free Meixner distributions as the non-Hermitian counterparts of free Meixner distributions and construct for them a random matrix model. Our approach is based on the concept of matricial freeness applied to operators on Hilbert spaces. It is closely related to freeness with amalgamation over the algebra [Formula: see text] of [Formula: see text] diagonal matrices applied to operators on Hilbert [Formula: see text]-bimodules.
APA, Harvard, Vancouver, ISO, and other styles
23

Beg, Ismat, and Mujahid Abbas. "Random fixed point theorems for Caristi type random operators." Journal of Applied Mathematics and Computing 25, no. 1-2 (September 2007): 425–34. http://dx.doi.org/10.1007/bf02832367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jarosz, A., and M. A. Nowak. "Random Hermitian versus random non-Hermitian operators—unexpected links." Journal of Physics A: Mathematical and General 39, no. 32 (July 26, 2006): 10107–22. http://dx.doi.org/10.1088/0305-4470/39/32/s12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Anh, Pham The. "Random Coincidence Points of Expansive Type Completely Random Operators." Bulletin of the Malaysian Mathematical Sciences Society 38, no. 4 (December 17, 2014): 1609–25. http://dx.doi.org/10.1007/s40840-014-0094-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Guozhen, and Huagui Duan. "On random fixed point theorems of random monotone operators." Applied Mathematics Letters 18, no. 9 (September 2005): 1019–26. http://dx.doi.org/10.1016/j.aml.2004.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Beg, Ismat, and Mujahid Abbas. "Convergence of iterative algorithms to common random fixed points of random operators." Journal of Applied Mathematics and Stochastic Analysis 2006 (September 19, 2006): 1–16. http://dx.doi.org/10.1155/jamsa/2006/89213.

Full text
Abstract:
We prove the existence of a common random fixed point of two asymptotically nonexpansive random operators through strong and weak convergences of an iterative process. The necessary and sufficient condition for the convergence of sequence of measurable functions to a random fixed point of asymptotically quasi-nonexpansive random operators in uniformly convex Banach spaces is also established.
APA, Harvard, Vancouver, ISO, and other styles
28

Krutikov, Denis. "Schrödinger Operators with Random Sparse Potentials. Existence of Wave Operators." Letters in Mathematical Physics 67, no. 2 (February 2004): 133–39. http://dx.doi.org/10.1023/b:math.0000032704.88514.9c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Beg, Ismat, and Naseer Shahzad. "Random fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces." Journal of Applied Mathematics and Stochastic Analysis 7, no. 4 (January 1, 1994): 569–80. http://dx.doi.org/10.1155/s1048953394000444.

Full text
Abstract:
The existence of random fixed points. for nonexpansive and pseudocontractive random multivalued operators defined on unbounded subsets of a Banach space is proved. A random coincidence point theorem for a pair of compatible random multivalued operators is established.
APA, Harvard, Vancouver, ISO, and other styles
30

THANG, Dang Hung, and Nguyen THINH. "RANDOM BOUNDED OPERATORS AND THEIR EXTENSION." Kyushu Journal of Mathematics 58, no. 2 (2004): 257–76. http://dx.doi.org/10.2206/kyushujm.58.257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lindner, Marko, and Steffen Roch. "Finite Sections of Random Jacobi Operators." SIAM Journal on Numerical Analysis 50, no. 1 (January 2012): 287–306. http://dx.doi.org/10.1137/100813877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Orlov, Yu N., V. Zh Sakbaev, and O. G. Smolyanov. "Unbounded random operators and Feynman formulae." Izvestiya: Mathematics 80, no. 6 (December 31, 2016): 1131–58. http://dx.doi.org/10.1070/im8402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Edelman, Alan, and Brian D. Sutton. "From Random Matrices to Stochastic Operators." Journal of Statistical Physics 127, no. 6 (April 18, 2007): 1121–65. http://dx.doi.org/10.1007/s10955-006-9226-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kudlaev, E. M. "Characteristic Operators and Conditioned Random Elements*." Journal of Mathematical Sciences 200, no. 4 (June 28, 2014): 449–51. http://dx.doi.org/10.1007/s10958-014-1927-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kravvaritis, Dimitrios, and Nicolaos Stavrakakis. "Perturbations of maximal monotone random operators." Linear Algebra and its Applications 84 (December 1986): 301–10. http://dx.doi.org/10.1016/0024-3795(86)90322-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bharucha-Reid, A. T. "Random Linear Operators (A. V. Skorohod)." SIAM Review 27, no. 3 (September 1985): 463–64. http://dx.doi.org/10.1137/1027126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ueki, Naomasa. "Stochastic analysis and random Schrödinger operators." Sugaku Expositions 31, no. 1 (March 20, 2018): 93–115. http://dx.doi.org/10.1090/suga/430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Najar, Hatem. "Lifshitz tails for random acoustic operators." Journal of Mathematical Physics 44, no. 4 (April 2003): 1842–67. http://dx.doi.org/10.1063/1.1558902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Knill, Oliver. "Isospectral deformations of random Jacobi operators." Communications in Mathematical Physics 151, no. 2 (January 1993): 403–26. http://dx.doi.org/10.1007/bf02096774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Semenov, Mikhail E., Olesia I. Kanishcheva, Peter A. Meleshenko, Olga O. Reshetova, Roman E. Pervezentzev, and Alexander V. Budanov. "On the hysteretic operators with random parameters." MATEC Web of Conferences 241 (2018): 01020. http://dx.doi.org/10.1051/matecconf/201824101020.

Full text
Abstract:
In this work we introduce the novel class of hysteretic operators with random parameters. We consider the definition of these operators in terms of the “input-output” relations, namely: for all permissible continuous inputs corresponds the output in the form of stochastic Markovian process. The properties of such operators are also considered and discussed on the example of a non-ideal relay with random parameters. Application of hysteretic operators with stochastic parameters is demonstrated on the example of simple oscillating system and the results of numerical simulations are presented.
APA, Harvard, Vancouver, ISO, and other styles
41

Patriche, Monica. "Random fixed point theorems for lower semicontinuous condensing random operators." Fixed Point Theory 19, no. 1 (February 1, 2018): 369–78. http://dx.doi.org/10.24193/fpt-ro.2018.1.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vishwakarma, Dr Neetu. "Common Random Fixed Point theorem for compatible random multivalued operators." IOSR Journal of Mathematics 3, no. 3 (2012): 39–43. http://dx.doi.org/10.9790/5728-0333943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Irfan, S. Shakaib, M. Firdosh Khan, Zeid I. Al-Muhiameed, and Carlo Cattani. "On random variational-like inclusion involving relaxed monotone random operators." Cogent Mathematics 4, no. 1 (January 1, 2017): 1305639. http://dx.doi.org/10.1080/23311835.2017.1305639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Beg, Ismat, and Naseer Shahzad. "Random fixed points of random multivalued operators on polish spaces." Nonlinear Analysis: Theory, Methods & Applications 20, no. 7 (April 1993): 835–47. http://dx.doi.org/10.1016/0362-546x(93)90072-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dhage, Bapurao C. "Multi-valued codensing random operators and functional random integral inclusions." Opuscula Mathematica 31, no. 1 (2011): 27. http://dx.doi.org/10.7494/opmath.2011.31.1.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Agarwal, Ravi P., Donal O'Regan, and M. Sambandham. "RANDOM FIXED POINT THEORY FOR MULTIVALUED COUNTABLY CONDENSING RANDOM OPERATORS." Stochastic Analysis and Applications 20, no. 6 (December 31, 2002): 1157–68. http://dx.doi.org/10.1081/sap-120015827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Thang, Dang Hung, and Pham The Anh. "Some Results on Random Fixed Points of Completely Random Operators." Vietnam Journal of Mathematics 42, no. 2 (October 5, 2013): 133–40. http://dx.doi.org/10.1007/s10013-013-0037-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Thang, Dang Hung, and Pham The Anh. "Some results on random coincidence points of completely random operators." Acta Mathematica Vietnamica 39, no. 2 (March 13, 2014): 163–84. http://dx.doi.org/10.1007/s40306-014-0051-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Guo, T. X. "Extension Theorems of Continuous Random Linear Operators on Random Domains." Journal of Mathematical Analysis and Applications 193, no. 1 (July 1995): 15–27. http://dx.doi.org/10.1006/jmaa.1995.1221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Beg, Ismat. "Random fixed points of non-self maps and random approximations." Journal of Applied Mathematics and Stochastic Analysis 10, no. 2 (January 1, 1997): 127–30. http://dx.doi.org/10.1155/s1048953397000154.

Full text
Abstract:
In this paper we prove random fixed point theorems in reflexive Banach spaces for nonexpansive random operators satisfying inward or Leray-Schauder condition and establish a random approximation theorem.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography