Dissertations / Theses on the topic 'Random walk numerical methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 40 dissertations / theses for your research on the topic 'Random walk numerical methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gjetvaj, Filip. "Experimental characterization and modeling non-Fickian dispersion in aquifers." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS204/document.
Full textHis work aims at modeling hydrodynamic dispersion mechanisms in aquifers. So far both flow field heterogeneity and mobile-immobile mass transfer have been studied separately for explaining the ubiquitously observed non-Fickian behaviors, but we postulate that both mechanisms contribute simultaneously. Our investigations combine laboratory experiments and pore scale numerical modeling. The experimental rig was designed to enable push-pull and flow through tracer tests on glass bead columns and Berea sandstone cores. Modeling consists in solving Stokes flow and solute transport on 3D X-ray microtomography images segmented into three phases: solid, void and microporosity. Transport is modeled using time domain random walk. Statistical analysis of the flow field emphasizes the importance of the mesh resolution and the inclusion of the microporosity. Results from the simulations show that both the flow field heterogeneity and the diffusive transport in the microporous fraction of the rock contribute to the overall non-Fickian transport behavior observed, for instance, on the breakthrough curves (BTC). These results are supported by our experiments. We conclude that, in general, this dual control must be taken into account, even if these different influences can hardly be distinguished from a qualitative appraisal of the BTC shape, specifically for the low values of the Peclet number that occurs in natural conditions. Finally, a 1D up-scaled model is developed in the framework of the continuous time random walk, where the influences of the flow field heterogeneity and mobile-immobile mass transfer are both taken into account using distinct transition time distributions
Wu, Tao. "Higher-order Random Walk Methods for Data Analysis." Thesis, Purdue University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10790747.
Full textMarkov random walk models are powerful analytical tools for multiple areas in machine learning, numerical optimizations and data mining tasks. The key assumption of a first-order Markov chain is memorylessness, which restricts the dependence of the transition distribution to the current state only. However in many applications, this assumption is not appropriate. We propose a set of higher-order random walk techniques and discuss their applications to tensor co-clustering, user trails modeling, and solving linear systems. First, we develop a new random walk model that we call the super-spacey random surfer, which simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor. This algorithm generalizes to tensors with any number of modes. We partition the tensor by minimizing the exit probability between clusters when the super-spacey random walk is at stationary. The second application is user trails modeling, where user trails record sequences of activities when individuals interact with the Internet and the world. We propose the retrospective higher-order Markov process as a two-step process by first choosing a state from the history and then transitioning as a first-order chain conditional on that state. This way the total number of parameters is restricted and thus the model is protected from overfitting. Lastly we propose to use a time-inhomogeneous Markov chain to approximate the solution of a linear system. Multiple simulations of the random walk are conducted to approximate the solution. By allowing the random walk to transition based on multiple matrices, we decrease the variance of the simulations, and thus increase the speed of the solver.
Fakhereddine, Rana. "Méthodes de Monte Carlo stratifiées pour l'intégration numérique et la simulation numériques." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM047/document.
Full textMonte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems from applied sciences and techniques. One estimates a quantity by repeated evaluations using N values ; the error of the method is approximated through the variance of the estimator. In the present work, we analyze variance reduction methods and we test their efficiency for numerical integration and for solving differential or integral equations. First, we present stratified MC methods and Latin Hypercube Sampling (LHS) technique. Among stratification strategies, we focus on the simple approach (MCS) : the unit hypercube Is := [0; 1)s is divided into N subcubes having the same measure, and one random point is chosen in each subcube. We analyze the variance of the method for the problem of numerical quadrature. The case of the evaluation of the measure of a subset of Is is particularly detailed. The variance of the MCS method may be bounded by O(1=N1+1=s). The results of numerical experiments in dimensions 2,3, and 4 show that the upper bounds are tight. We next propose an hybrid method between MCS and LHS, that has properties of both approaches, with one random point in each subcube and such that the projections of the points on each coordinate axis are also evenly distributed : one projection in each of the N subintervals that uniformly divide the unit interval I := [0; 1). We call this technique Sudoku Sampling (SS). Conducting the same analysis as before, we show that the variance of the SS method is bounded by O(1=N1+1=s) ; the order of the bound is validated through the results of numerical experiments in dimensions 2,3, and 4. Next, we present an approach of the random walk method using the variance reduction techniques previously analyzed. We propose an algorithm for solving the diffusion equation with a constant or spatially-varying diffusion coefficient. One uses particles, that are sampled from the initial distribution ; they are subject to a Gaussian move in each time step. The particles are renumbered according to their positions in every step and the random numbers which give the displacements are replaced by the stratified points used above. The improvement brought by this technique is evaluated in numerical experiments. An analogous approach is finally used for numerically solving the coagulation equation ; this equation models the evolution of the sizes of particles that may agglomerate. The particles are first sampled from the initial size distribution. A time step is fixed and, in every step and for each particle, a coalescence partner is chosen and a random number decides if coalescence occurs. If the particles are ordered in every time step by increasing sizes an if the random numbers are replaced by statified points, a variance reduction is observed, when compared to the results of usual MC algorithm
Yu, Wei, and 余韡. "Reverse Top-k search using random walk with restart." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197515.
Full textpublished_or_final_version
Computer Science
Master
Master of Philosophy
Costaouec, Ronan, and Ronan Costaouec. "Numerical methods for homogenization : applications to random media." Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00674957.
Full textCostaouec, Ronan. "Numerical methods for homogenization : applications to random media." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1012/document.
Full textIn this thesis we investigate numerical methods for the homogenization of materials the structures of which, at fine scales, are characterized by random heterogenities. Under appropriate hypotheses, the effective properties of such materials are given by closed formulas. However, in practice the computation of these properties is a difficult task because it involves solving partial differential equations with stochastic coefficients that are additionally posed on the whole space. In this work, we address this difficulty in two different ways. The standard discretization techniques lead to random approximate effective properties. In Part I, we aim at reducing their variance, using a well-known variance reduction technique that has already been used successfully in other domains. The works of Part II focus on the case when the material can be seen as a small random perturbation of a periodic material. We then show both numerically and theoretically that, in this case, computing the effective properties is much less costly than in the general case
Van, Vleck Erik S. "Random and numerical aspects of the shadowing lemma." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/29357.
Full textCoskun, Mustafa Coskun. "ALGEBRAIC METHODS FOR LINK PREDICTIONIN VERY LARGE NETWORKS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1499436242956926.
Full textKolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Full textMatteuzzi, Tommaso. "Network diffusion methods for omics big bio data analytics and interpretation with application to cancer datasets." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13660/.
Full textHeiderich, Anne. "Diffusion multiple en milieu non linéaire ou anisotrope." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10200.
Full textHoel, Håkon. "Complexity and Error Analysis of Numerical Methods for Wireless Channels, SDE, Random Variables and Quantum Mechanics." Doctoral thesis, KTH, Numerisk analys, NA (stängd 2012-06-30), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-94150.
Full textQC 20120508
Alves, Paladim Daniel. "Multiscale numerical methods for the simulation of diffusion processes in random heterogeneous media with guaranteed accuracy." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/100344/.
Full textSprungk, Björn. "Numerical Methods for Bayesian Inference in Hilbert Spaces." Doctoral thesis, Universitätsbibliothek Chemnitz, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-226748.
Full textBayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert
Sprungk, Björn. "Numerical Methods for Bayesian Inference in Hilbert Spaces." Doctoral thesis, Technische Universität Chemnitz, 2017. https://monarch.qucosa.de/id/qucosa%3A20754.
Full textBayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
Huschto, Tony [Verfasser], and Sebastian [Akademischer Betreuer] Sager. "Numerical Methods for Random Parameter Optimal Control and the Optimal Control of Stochastic Differential Equations / Tony Huschto ; Betreuer: Sebastian Sager." Heidelberg : Universitätsbibliothek Heidelberg, 2014. http://d-nb.info/118030067X/34.
Full textRobertson, Blair Lennon. "Direct Search Methods for Nonsmooth Problems using Global Optimization Techniques." Thesis, University of Canterbury. Mathematics and Statistics, 2010. http://hdl.handle.net/10092/5060.
Full textAsai, Yusuke [Verfasser], Peter E. [Akademischer Betreuer] Kloeden, and Andreas [Akademischer Betreuer] Neuenkirch. "Numerical methods for random ordinary differential equations and their applications in biology and medicine / Yusuke Asai. Gutachter: Peter E. Kloeden ; Andreas Neuenkirch." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2016. http://d-nb.info/1100523782/34.
Full textKale, Hikmet Emre. "Segmentation Of Human Facial Muscles On Ct And Mri Data Using Level Set And Bayesian Methods." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613352/index.pdf.
Full textTrias, Mansilla Daniel. "Analysis and Simulation of Transverse Random Fracture of Long Fibre Reinforced Composites." Doctoral thesis, Universitat de Girona, 2005. http://hdl.handle.net/10803/7762.
Full textEl primer pas en la metodologia proposada és la definició de la determinació del tamany mínim d'un Element de Volum Representatiu Estadístic (SRVE) . Aquesta determinació es du a terme analitzant el volum de fibra, les propietats elàstiques efectives, la condició de Hill, els estadístics de les components de tensió i defromació, la funció de densitat de probabilitat i les funcions estadístiques de distància entre fibres de models d'elements de la microestructura, de diferent tamany. Un cop s'ha determinat aquest tamany mínim, es comparen un model periòdic i un model aleatori, per constatar la magnitud de les diferències que s'hi observen.
Es defineix, també, una metodologia per a l'anàlisi estadístic de la distribució de la fibra en el compòsit, a partir d'imatges digitals de la secció transversal. Aquest anàlisi s'aplica a quatre materials diferents.
Finalment, es proposa un mètode computacional de dues escales per a simular la fallada transversal de làmines unidireccionals, que permet obtenir funcions de densitat de probabilitat per a les variables mecàniques. Es descriuen algunes aplicacions i possibilitats d'aquest mètode i es comparen els resultats obtinguts de la simulació amb valors experimentals.
This thesis proposes a methodology for the probabilistic simulation of the transverse failure of Carbon Fibre Reinforced Polymers (CFRP) by analyzing the random distribution of the fibres within the composite. First chapters are devoted to the State-of-the-art review on the modelization of random materials, the computation of effective properties and the transverse failure of fibre reinforced polymers.
The first step in the proposed methodology is the definition of a Statistical Representative Volume Element (SRVE). This SRVE has to satisfy criteria based on the analysis of the volume fraction, the effective properties, the Hill Condition, the statistics of the stress and strain components, the probability density function of the stress and strain components and the inter-fibre distance statistical distributions. Once this SRVE has been achieved, a comparison between a periodic model and a random model is performed to quantitatively analyze the differences between the results they provide.
Also a methodology for the statistical analysis of the distribution of the fibre within the composite from digital images of the transverse section. This analysis is performed for four different materials.
Finally, a two-scale computational method for the transverse failure of unidirectional laminae is proposed. This method is able to provide probability density functions of the mechanical variables in the composite. Some applications and possibilities of the method are given and the simulation results are compared with experimental tests.
Oumouni, Mestapha. "Analyse numérique de méthodes performantes pour les EDP stochastiques modélisant l'écoulement et le transport en milieux poreux." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00904512.
Full textOukili, Hamza. "Flow and transport in complex porous media : particle methods." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0056.
Full textParticle methods have been extensively used for modeling transport problems in porous soils, aquifers, and reservoirs. They reduce or avoid some of the problems of Eulerian methods, e.g. instabilities, excessive artificial diffusion, mass balance, and/or oscillations that could lead to negative concentrations. This thesis develops a new class of gridless Lagrangian particle methods for modeling flow and transport phenomena in complex porous media with heterogeneities and discontinuities. Firstly, stochastic processes are reviewed, in relation to particle positions X(t) and to the corresponding macroscopic Advection-Diffusion Equation (ADE). This review leads to the conditions required for the Probability Density Function (PDF) of X(t) to satisfy the Fokker-Planck equation (and the ADE). However, one of these conditions is the differentiability of transport coefficients: therefore, discontinuities are difficult to treat, particularly discontinuous diffusion D(x) and porosity q(x). In the literature on particle Random Walks, the methods used to handle discontinuous diffusion required excessively small time steps. These restrictions on the time step lead to inefficient algorithms. In this study, we propose a novel approach without restrictions on time step size. The novel RWPT (Random Walk Particle Tracking) algorithms proposed here are discrete in time and continuous in space (gridless). They are based on an adaptive “Stop&Go” time-stepping, combined with partial reflection/refraction schemes, and extended with three new concepts: negative mass particles; adaptive mass particles; and “homing” particles. To test the new Stop&Go RWPT schemes in infinite domains, we develop analytical and semi-analyticalsolutions for diffusion in the presence of multiple interfaces (discontinuous multi-layered medium) in infinite domains. The results show that the proposed Stop&Go RWPT schemes (with adaptive, negative, or homing particles) fit extremely well the semi-analytical solutions, even for very high contrasts for transport properties even in the neighborhood of the interfaces. The schemes provide a correct diffusive solution in only a few macro-steps (macroscopic time steps), with a precision that depends only on the number of particles, and not on the macro-step. The algorithms are then, extended from infinite to semi-infinite and finite domains. Dirichlet conditions are particularly difficult to implement in particle methods. Thus, in this thesis we propose different methods on how to implement Dirichlet boundary conditions with the “discontinuous” RWPT algorithm. This study proposes an algorithm to solve diffusion equations semi-analytically in heterogeneous semi-infinite and finite domains with Dirichlet boundary conditions. The RWPT Dirichlet methods are then checked analytically and verified for various configurations. Finally, the RWPT method is applied for studying diffusion at different scales in 2D composite media (grain/pore systems). A zero-flux condition is assumed locally at the grain/pore interfaces. At the macro-scale, diffusion occurs in an equivalent effective homogeneous medium with macroscopic parameters (porosity and effective diffusion coefficients) obtained from the temporal evolution of second order moments. The RWPT algorithm is then applied to more complex geometries of grains and pores. Different configurations or structures at the micro-scale level will be chosen in order to obtain composite isotropic media at the macro-scale level with different porosities. Then, by choosing elongated micro-structures, anisotropy effects emerge at the macroscopic level. Effective macro-scale properties (porosities, effective diffusion tensors, tortuosities) are calculated using the second order moment. The different methods proposed in this thesis can be used for different problems, since each has its drawbacks and advantages. The schemes proposed seem promising with a view to extensions towards more complex 3D geometries
Lemaitre, Sophie. "Modélisation des matériaux composites multiphasiques à microstructures complexes : Etude des propriétés effectives par des méthodes d'homogénéisation." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC217/document.
Full textThis thesis focuses on setting up of fast, reliable and automated approaches to design representative volume elements (RVE) of composite materials with complex microstructures (matrix/inclusions) and the evaluation of their effective properties via a homogenization process. We developed algorithms and efficient tools for the random generation of such materials. Inclusions shapes may be spherical, cylindrical, elliptical or any combinations of them. Inflation, deflation, dislocation, undulation and coating are also available to generate RVE. The aim is to approach realistic materials subjected to be damaged during production. Particular attention has been focused on the periodic RVE generation.The homogenized characteristics or effective properties of materials formed from such periodic RVE may then be determined according to the principle of periodic homogenization, by an iterative scheme using FFT (Fast Fourier Transform) via the integral Lippmann-Schwinger or by a finite elements method.The stochastic generation of RVE and the set of morphological parameters studied: number of inclusions, type and shape, volume fraction, orientation of the inclusions lead to achieve an average process. Moreover, a special study has been led to take into account the behavior of altered inclusions. Furthermore, we studied two particular cases on the apparent thermal conductivity of the composite, the first for coated spherical inclusions in order to determine the influence of the layer thickness and the second for laminated polymer and carbon fiber composite sewn by a copper wire, in order to determine the influence of the sewing contribution according to the carbon fiber used
Willersjö, Nyfelt Emil. "Comparison of the 1st and 2nd order Lee–Carter methods with the robust Hyndman–Ullah method for fitting and forecasting mortality rates." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48383.
Full textPeña, Monferrer Carlos. "Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90493.
Full textEl estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d
L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe
Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
TESIS
Guessasm, Mohamed. "Contribution à la détermination des domaines de résistance de matériaux hétérogènes non périodiques." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10010.
Full textPaditz, Ludwig. "Beiträge zur expliziten Fehlerabschätzung im zentralen Grenzwertsatz." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-115105.
Full textIn the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system. In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions. It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem. The investigations are realized in the Lp metric, 1
Wang, Peng Neng, and 王鵬能. "3-D Random Walk Numerical Model For Natural River Pollutant Transport." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/11173039115016265740.
Full textYen, Jui-Chih, and 顏瑞池. "NORTA Initialization for Random VectorGeneration by Numerical Methods." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/46247187635292900360.
Full text中原大學
工業工程研究所
90
ABSTRACT NORTA Initialization for Random Vector Generation by Numerical Methods Jui-Chih Yen We propose a numerical method for generating observations of a n-dimensional random vector with arbitrarily specified marginal distributions and correlation matrix. Our random vector generation (RVG) method uses the NORTA (NORmal To Any- thing) approach. NORTA generates a random vector by first generating a standard normal random vector. Then, transform it into a random vector with specified marginal distributions. During initialization for NORTA, n(n-1)/2 nonlinear equations need to be solved to assure that the generated random vector has the specified correlation structure. The root-finding function is a two-dimensional integral. For NORTA initialization, there are three approaches: analytical, numerical, and simulation. The analytical approach is exact but applicable only for special cases, such as normal random vectors. Chen (2001) uses the simulation approach to solve the n(n-1)/2 equations by treating it as a stochastic root-finding problem, solving equa- tions using only the estimates of the function values. The disadvantage is that the computation time is usually longer than the numerical approach. We use the numerical approach to solves these equations. Since the root-finding function is a two-dimensional integral, our numerical method includes two parts: integration and root-finding. For integration, when the specified correlation is close to 1 or-1, the bivariate normal density function in the integrand is steep; the density is high along the 45 or 135 degree line and almost zero everywhere else. In this situation, the numerical integration error could be large. Therefore, we divide the integration area to five parts. The efficient Gaussian-quadrature integration method is used for each part. For rootfinding, the combination of the bisection and Newton’s methods is used to guarantee convergence. Simulation experiments are conducted to evaluate the accuracy of the numerical integration and root-finding methods. The results show that the numerical integration method is quite accurate when the skewness of the specified marginal distribution is small. When the skewness is high, the integration method may have large errors. The simulation results also show that our numerical RVG method is more accurate and efficient than Chen’s simulation method when the skewness is small. When the skew- ness is high, the numerical method is still faster but less accurate. In this case, the simulation method is a better choice. Keywords: multivariate random vector generation, NORTA, stochastic root finding, numerical analysis, Gaussian quadrature, Newton’s method
"Insulator Flashover Probability Investigation Based on Numerical Electric Field Calculation and Random Walk Theory." Doctoral diss., 2016. http://hdl.handle.net/2286/R.I.39438.
Full textDissertation/Thesis
Doctoral Dissertation Engineering 2016
CHEN, CHIA-HUNG, and 陳佳鴻. "2-D Random Walk Numerical Model for Riverine Pollutant Transport of Continuous Point Source." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/pmzng3.
Full text逢甲大學
土木及水利工程所
90
Abstract The midstream and downstream of major and minor rivers in Taiwan have been polluted seriously. The pollution is much caused by various continuous pollutants. This study uses Random Walk Method to set up a numerical model to simulate the riverine pollutant transport of continuous point source. The random walk method considers the released mass at each time step as being made up of thousands of particles. The particles released not only advect with the flow, but also walk randomly due to diffusion (or dispersion) effect. At desirable time the concentration at one position may be obtain by dividing the total mass in the concerned volume by the volume. The position of every particle is memorized by the computer at every time step. For saving the memories of the computer, the memories of a particle flows out of the flow field are replaced by that of a new released particle. In this study, model structure is discussed, and calculated results are compared with the data of laboratory experiment to analyze the mechanism of the dispersion in meandering channel.
Bloem-Reddy, Benjamin Michael. "Random Walk Models, Preferential Attachment, and Sequential Monte Carlo Methods for Analysis of Network Data." Thesis, 2017. https://doi.org/10.7916/D8348R5Q.
Full textMehta, Kurang Jvalant. "Numerical methods to implement time reversal of waves propagating in complex random media." 2003. http://www.lib.ncsu.edu/theses/available/etd-05192003-160819/unrestricted/etd.pdf.
Full textRajani, Vishaal. "Quantitative analysis of single particle tracking experiments: applying ecological methods in cellular biology." Master's thesis, 2010. http://hdl.handle.net/10048/1316.
Full textApplied Mathematics
Choudhary, Shalu. "Numerical Methods For Solving The Eigenvalue Problem Involved In The Karhunen-Loeve Decomposition." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2308.
Full textScheuerer, Michael. "A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis." Doctoral thesis, 2009. http://hdl.handle.net/11858/00-1735-0000-0006-B3D5-1.
Full textGaspar, Ana Pimentel Torres. "Contribution to control uncertainties in numerical modelling of dam performances: an application to an RCC dam." Doctoral thesis, 2014. http://hdl.handle.net/1822/35837.
Full textThe use of fully probabilistic approaches to account for uncertainties within dam engineering is a recently emerging field on which studies have been mostly done concerning the safety evaluation of dams under service. This thesis arises within this framework as a contribution on moving the process of risk analysis of dams beyond empirical knowledge, applying probabilistic tools on the numerical modelling of a roller compacted concrete (RCC) dam during its construction phase. The work developed here aims to propose a methodology so as to account for risks related to cracking during construction which may compromise the dam’s functional and structural behaviour. In order to do so, emphasis is given to uncertainties related to the material itself (i.e. strength, water-to-cement ratio, among others) as well as to ambient conditions during the construction phase of RCC dams. A thermo-chemo-mechanical model is used to describe the RCC behaviour. Concerning the probabilistic model, two aspects are studied: how the uncertainties related to the input variables are propagated through the model, and what is the influence of their dispersion on the dispersion of the output, assessed by performing a global sensitivity analysis by means of the RBD-FAST method. Also, spatial variability of some input parameters is accounted for through bi-dimensional random fields. Furthermore, a coupling between reliability methods and finite element methods is performed in order to evaluate the cracking potential of each casted RCC layer during construction by means of a cracking density concept. As an important outcome of this applied research, probability curves for cracking density within each casted layer as functions of both age and boundary conditions are predicted, which is believed to be an original contribution of this thesis. The proposed methodology may therefore be seen as a contribution to help engineers understand how uncertainties will affect the dam behaviour during construction and rely on it in the future to improve and support the design phase of the dam project.
A aplicação de métodos probabilísticos para o estudo de incertezas no ramo da engenharia de barragens é um campo em crescente ascensão no qual a grande maioria dos estudos realizados se concentra na avaliação da segurança de barragens durante o período de serviço. Este trabalho de tese situa-se neste contexto, pretendendo contribuir para a abordagem de análise de risco em barragens em betão compactado com cilindros (BCC) durante a fase de construção. Assim, é proposta uma metodologia na qual são tidos em conta riscos relacionados com a fissuração do BCC durante a sua construção, o que poderá comprometer o comportamento funcional e estrutural da barragem. As incertezas consideradas integram algumas propriedades do material (i.e. resistência, rácio água-cimento, entre outras) bem como as condições climatéricas que se observam durante a fase de de construção de barragens em BCC. Para descrever o comportamento do BCC é utilizado um modelo termo-químico-mecânico. O modelo probabilístico considera, por um lado, a propagação das incertezas relacionadas com as variáveis de entrada e, por outro, permite avaliar qual a influência que têm na dispersão da resposta do modelo. Essa influência é avaliada através de uma análise de sensibilidade global, recorrendo ao método RBD-FAST. A variabilidade espacial de alguns parâmetros de entrada é também tida em conta através de campos aleatórios bi-dimensionais. O acoplamento entre métodos de fiabilidade e elementos finitos permite avaliar o potencial de fissuração de cada camada de BCC durante a construção da barragem. Para tal é introduzido o conceito de densidade de fissuração. Esta abordagem constitui uma contribuição original, com a obtenção de curvas de probabilidade para a densidade de fissuração, avaliadas ao nível de cada camada e em função da idade e condições de fronteira. A metodologia desenvolvida constitui uma contribuição para a compreensão da influência de determinadas incertezas no comportamento da barragem durante a sua construção, podendo servir no futuro como um importante suporte à fase de projecto de barragens.
Contribution pour le controle des incertitudes dans la modelisation numerique de la performance de barrages. Application a un barrage en BCR. L’application des approches probabilistes pour tenir compte des incertitudes dans le domaine des barrages est un sujet en developpement. Cependant, la plupart des etudes ont ete realisees sur l’evaluation de la securite des barrages pendant leur service. Ce travail de these vise a appliquer ce type d’approches et a faire une contribution a l’analyse de risque des barrages en beton compacte au rouleau (BCR) des sa construction, a l’aide d’une simulation numerique. Les travaux presentes dans ce manuscrit proposent l’application d’une methodologie qui vise a quantifier la vulnerabilite vis-a-vis de l’apparition de la fissuration pendant la construction du barrage, ce qui peut aflecter a long-terme la permeabilite et par consequent, compromettre son comportement structurel. Pour ce faire, l’accent est mis sur les incertitudes liees a quelques caracteristiques des materi- aux (e.g., resistance, rapport eau-ciment, entre autres) et aux conditions environnementales pendant la phase de construction. Un modele thermo-chemo-mecanique est utilise pour decrire le comportement du BCR. En ce qui concerne le modele probabiliste, deux aspects sont etudies: i) comment les incertitudes liees aux variables d’entree sont propagees dans le modele, et ii) quelle est l’influence de leur dispersion par rapport a la dispersion totale de la sortie. Ce dernier est evalue par l’intermediaire d’une analyse de sensibilite globale eflectuee avec la meth- ode RBD-FAST. En outre, la variabilite spatiale des parametres d’entree est aussi prise en compte a travers des champs aleatoires bidimensionnels. Par ailleurs, un couplage entre des methodes de fiabilite et la methode d’elements finis est eflectue de facon a evaluer le potentiel de fissuration dans chaque couche de BCR lors de sa construction en utilisant un concept de densite’ dc fissumtion. Comme resultat important issu de ce travail de recherche, des courbes de probabilite pour la densite de fissuration sont obtenues au niveau de chaque couche en fonction de leur age et des conditions aux limites, ce qui est considérée comme étant une contribution originale de cette these. La méthodologie proposée peut etre utilise pour aider a comprendre comment les incerti- tudes vont affecter le comportement du barrage pendant sa construction et servir d’appui dans le futur pour améliorer et soutenir la phase de conception du projet de barrage. Mots-clés: Barrages BCR, Comportement thern1o-chemo-nqécanique, Incertitudes, Meth- odes de fiabilité, Analyse de sensibilité, RBD-FAST, Champs aléatoires.
The financial support by the Portuguese Foundation for Science and Technology (FCT) PhD grant (SFRH/BD/63939/2009, QREN POPH - Tipologia 4.1).
Han, Baoguang. "Statistical analysis of clinical trial data using Monte Carlo methods." Thesis, 2014. http://hdl.handle.net/1805/4650.
Full textIn medical research, data analysis often requires complex statistical methods where no closed-form solutions are available. Under such circumstances, Monte Carlo (MC) methods have found many applications. In this dissertation, we proposed several novel statistical models where MC methods are utilized. For the first part, we focused on semicompeting risks data in which a non-terminal event was subject to dependent censoring by a terminal event. Based on an illness-death multistate survival model, we proposed flexible random effects models. Further, we extended our model to the setting of joint modeling where both semicompeting risks data and repeated marker data are simultaneously analyzed. Since the proposed methods involve high-dimensional integrations, Bayesian Monte Carlo Markov Chain (MCMC) methods were utilized for estimation. The use of Bayesian methods also facilitates the prediction of individual patient outcomes. The proposed methods were demonstrated in both simulation and case studies. For the second part, we focused on re-randomization test, which is a nonparametric method that makes inferences solely based on the randomization procedure used in clinical trials. With this type of inference, Monte Carlo method is often used for generating null distributions on the treatment difference. However, an issue was recently discovered when subjects in a clinical trial were randomized with unbalanced treatment allocation to two treatments according to the minimization algorithm, a randomization procedure frequently used in practice. The null distribution of the re-randomization test statistics was found not to be centered at zero, which comprised power of the test. In this dissertation, we investigated the property of the re-randomization test and proposed a weighted re-randomization method to overcome this issue. The proposed method was demonstrated through extensive simulation studies.
Gagnon, Philippe. "Sélection de modèles robuste : régression linéaire et algorithme à sauts réversibles." Thèse, 2017. http://hdl.handle.net/1866/20583.
Full textPaditz, Ludwig. "Beiträge zur expliziten Fehlerabschätzung im zentralen Grenzwertsatz." Doctoral thesis, 1988. https://tud.qucosa.de/id/qucosa%3A26930.
Full textIn the work the asymptotic behavior of suitably centered and normalized sums of random variables is investigated, which are either independent or occur in the case of dependence as a sequence of martingale differences or a strongly multiplicative system. In addition to the classical theory of summation limiting processes are considered with an infinite summation matrix or an adapted sequence of weighting functions. It will be further developed the method of characteristic functions, and especially the direct method of the conjugate distribution functions to prove quantitative statements about uniform and non-uniform error estimates of the remainder term in central limit theorem. The investigations are realized in the Lp metric, 1