To see the other types of publications on this topic, follow the link: Rangelands – Alberta, Southern – Remote sensing.

Journal articles on the topic 'Rangelands – Alberta, Southern – Remote sensing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 journal articles for your research on the topic 'Rangelands – Alberta, Southern – Remote sensing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

MAJOR, D. J., S. SMOLIAK, G. ASRAR, and E. T. KANEMASU. "ANALYSIS OF SPECTRAL DATA FOR COMPARING RANGELAND AND CULTURAL PRACTICES IN SOUTHERN ALBERTA." Canadian Journal of Plant Science 68, no. 4 (1988): 1017–23. http://dx.doi.org/10.4141/cjps88-123.

Full text
Abstract:
Spectral reflectance characteristics of rangeland provide quantitative and qualitative information which can be useful for assessing range condition and phytomass. The data set in this study consisted of phytomass estimates and ground-based reflectance measurements in four wave bands between 0.5 and 1.1 μm taken from eight range improvement treatments near Lethbridge, Alberta from April through July in 1983 and 1984. The treatments consisted of subjecting native range to reseeding with grasses or legumes and fertilizer and herbicide additions. Spectral reflectance was highly correlated (R2 = 0.82 – 0.99) with the seasonal trajectory of phytomass production in spite of low amounts of green vegetation and high amounts of senescent vegetation. The data were analyzed by determining the relationship between accumulated phytomass and intercepted photosynthetically active radiation calculated from canopy reflectance. The regression coefficient of this relationship was an estimate of photochemical efficiency. The estimates of photochemical efficiency (1.09 and 0.76 g MJ−1 in 1983 and 1984, respectively) were lower than those reported in the literature (1.4 g MJ−1), presumably due to moisture stress in both years.Key words: Mixed prairie, short-grass, biomass, phytomass, remote sensing
APA, Harvard, Vancouver, ISO, and other styles
2

Major, D. J., H. H. Janzen, S. M. McGinn, and B. M. Olson. "Reflectance characteristics of southern Alberta soils." Canadian Journal of Soil Science 72, no. 4 (1992): 611–15. http://dx.doi.org/10.4141/cjss92-051.

Full text
Abstract:
The reliability of reflectivity measurements for the remote sensing of crop productivity may be compromised by possible confounding effects of variation in soil color. An experiment was conducted to determine the influence of selected soil characteristics on reflectance in a broad range of soils typical of those found in southern Alberta. The reflectance of ground (< 2 mm) subsamples of 36 soils previously relocated to a common field site at Lethbridge Alberta was measured indoors with an artificial light source and a 60° field of view. Reflectance was measured between 400 and 1100 nm at 5-nm intervals. Reflectance of ground soils was strongly correlated to that of measurements in the field (r2 = 0.99), though values from the former were consistently higher. Soil reflectance declined with increasing organic carbon content in a quadratic relationship. Furthermore, there was a positive linear correlation between reflectance and soil carbonate content. Variation in organic C and carbonate accounted for 60% of the variability in reflectance among soils, based on multiple regression analysis. These findings confirm that soil carbon exerts a significant effect on reflectance and that reliable estimates of crop productivity by remote sensing requires correction for variable soil reflectance. Key words: Remote sensing, visible infrared reflectance, organic carbon
APA, Harvard, Vancouver, ISO, and other styles
3

Mohamed, Ahmed H. "Mesquite encroachment impact on southern New Mexico rangelands: remote sensing and geographic information systems approach." Journal of Applied Remote Sensing 5, no. 1 (2011): 053514. http://dx.doi.org/10.1117/1.3571040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Xiaomeng. "Remote Sensing, Crop Yield Estimation and Agricultural Vulnerability Assessment: a Case of Southern Alberta." Open Hydrology Journal 6, no. 1 (2012): 68–77. http://dx.doi.org/10.2174/1874378101206010068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Argentiero, Ilenia, Giovanni Francesco Ricci, Mario Elia, et al. "Combining Methods to Estimate Post-Fire Soil Erosion Using Remote Sensing Data." Forests 12, no. 8 (2021): 1105. http://dx.doi.org/10.3390/f12081105.

Full text
Abstract:
The increasing number of wildfires in southern Europe is making our ecosystem more vulnerable to water erosion; i.e., the loss of vegetation and subsequent runoff increase cause a shift in large quantities of sediment. Fire severity has been recognized as one of the most important parameters controlling the magnitude of post-fire soil erosion. In this paper, we adopted a combination of methods to easily assess post-fire erosion and prevent potential risk in subsequent rain events. The model presented is structured into three modules that were implemented in a GIS environment. The first module estimates fire severity with the Monitoring Trends in Burn Severity (MTBS) method; the second estimates runoff with rainfall depth–duration curves and the Soil Conservation Service Curve Number (SCS-CN) method; and the third estimates pre- and post-fire soil erosion. In addition, two post-fire scenarios were analyzed to assess the influence of fire severity on soil erosion: the former based on the Normalized Difference Vegetation Index (NDVI) and the latter on the Relative differenced Normalized Burn Index (RdNBR). The results obtained in both scenarios are quite similar and demonstrate that transitional areas, such as rangelands and rangelands with bush, are the most vulnerable because they show a significant increase in erosion following a fire event. The study findings are of secondary importance to the combined approach devised because the focal point of the study is to create the basis for a future tool to facilitate decision making in landscape management.
APA, Harvard, Vancouver, ISO, and other styles
6

Everitt, James H., Mario A. Alaniz, David E. Escobar, and Michael R. Davis. "Using Remote Sensing to Distinguish Common (Isocoma coronopifolia) and Drummond Goldenweed (Isocoma drummondii)." Weed Science 40, no. 4 (1992): 621–28. http://dx.doi.org/10.1017/s0043174500058215.

Full text
Abstract:
Common and Drummond goldenweed are troublesome subshrubs that often invade rangelands in southern Texas. Both species produce a profusion of conspicuous golden-yellow flowers in the fall. Common goldenweed flowers from late September to mid-October, whereas Drummond goldenweed flowers from mid-November to early December. Plant canopy reflectance measurements made on both species showed that they had higher visible (0.63- to 0.69-μm waveband) reflectance than did associated plant species and bare soil during flowering. Flowering common and Drummond goldenweed plants had a yellow image on conventional color (0.40- to 0.70-μm) aerial photographs that made them distinguishable from associated plants and soil. Computer analyses of the conventional color film transparencies showed that common and Drummond goldenweed infestations could be quantified from associated vegetation and soil. Flowering common goldenweed plants could also be detected on conventional color aerial video imagery.
APA, Harvard, Vancouver, ISO, and other styles
7

Hassan, Quazi K., Ifeanyi R. Ejiagha, M. Razu Ahmed, Anil Gupta, Elena Rangelova, and Ashraf Dewan. "Remote Sensing of Local Warming Trend in Alberta, Canada during 2001–2020, and Its Relationship with Large-Scale Atmospheric Circulations." Remote Sensing 13, no. 17 (2021): 3441. http://dx.doi.org/10.3390/rs13173441.

Full text
Abstract:
Here, the objective was to study the local warming trend and its driving factors in the natural subregions of Alberta using a remote-sensing approach. We applied the Mann–Kendall test and Sen’s slope estimator on the day and nighttime MODIS LST time-series images to map and quantify the extent and magnitude of monthly and annual warming trends in the 21 natural subregions of Alberta. We also performed a correlation analysis of LST anomalies (both day and nighttime) of the subregions with the anomalies of the teleconnection patterns, i.e., Pacific North American (PNA), Pacific decadal oscillation (PDO), Arctic oscillation (AO), and sea surface temperature (SST, Niño 3.4 region) indices, to identify the relationship. May was the month that showed the most significant warming trends for both day and night during 2001–2020 in most of the subregions in the Rocky Mountains and Boreal Forest. Subregions of Grassland and Parkland in southern and southeastern parts of Alberta showed trends of cooling during daytime in July and August and a small magnitude of warming in June and August at night. We also found a significant cooling trend in November for both day and night. We identified from the correlation analysis that the PNA pattern had the most influence in the subregions during February to April and October to December for 2001–2020; however, none of the atmospheric oscillations showed any significant relationship with the significant warming/cooling months.
APA, Harvard, Vancouver, ISO, and other styles
8

Elias, Michael, Oliver Hensel, Uwe Richter, Christian Hülsebusch, Brigitte Kaufmann, and Oliver Wasonga. "Land Conversion Dynamics in the Borana Rangelands of Southern Ethiopia: An Integrated Assessment Using Remote Sensing Techniques and Field Survey Data." Environments 2, no. 4 (2015): 1–31. http://dx.doi.org/10.3390/environments2010001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Habtamu, Teka, I. Madakadze Casper, O. Botai Joel, Hassen Abubeker, Angassa Ayana, and Mesfin Yared. "Evaluation of land use land cover changes using remote sensing Landsat images and pastoralists perceptions on range cover changes in Borana rangelands, Southern Ethiopia." International Journal of Biodiversity and Conservation 10, no. 1 (2018): 1–11. http://dx.doi.org/10.5897/ijbc2017.1123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rahaman, Khan Rubayet, M. Razu Ahmed, and Quazi K. Hassan. "Using Satellite-Borne Remote Sensing Data in Generating Local Warming Maps with Enhanced Resolution." ISPRS International Journal of Geo-Information 7, no. 10 (2018): 398. http://dx.doi.org/10.3390/ijgi7100398.

Full text
Abstract:
Warming, i.e., increments of temperature, is evident at the global, regional, and local level. However, understanding the dynamics of local warming at high spatial resolution remains challenging. In fact, it is very common to see extremely variable land cover/land use within built-up environments that create micro-climatic conditions. To address this issue, our overall goal was to generate a local warming map for the period 1961–2010 at 15 m spatial resolution over the southern part of the Canadian province of Alberta. Our proposed methods consisted of three distinct steps. These were the: (i) construction of high spatial resolution enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) maps; (ii) conversion of air temperature (Ta) normal (i.e., 30 years average) at higher spatial resolution using vegetation indices (VI); and (iii) generation of a local warming map at 15m spatial resolution. In order to execute this study, we employed MODIS-driven air temperature data, EVI and NDVI data, and Landsat-driven vegetation indices. The study uncovered that around 58% (up to positive 1 °C) of areas in the considered study region were experiencing increased temperature; whereas only about 4% of areas underwent a cooling trend (more than negative 0.25 °C). The remaining 38% did not exhibit significant change in temperature. We concluded that remote sensing technology could be useful to enhance the spatial resolution of local warming maps, which would be useful for decision-makers considering efficient decisions in the face of increments in local temperature.
APA, Harvard, Vancouver, ISO, and other styles
11

Schwarz, Maximilian, Tobias Landmann, Natalie Cornish, Karl-Friedrich Wetzel, Stefan Siebert, and Jonas Franke. "A Spatially Transferable Drought Hazard and Drought Risk Modeling Approach Based on Remote Sensing Data." Remote Sensing 12, no. 2 (2020): 237. http://dx.doi.org/10.3390/rs12020237.

Full text
Abstract:
Drought adversely affects vegetation conditions and agricultural production and consequently the food security and livelihood situation of the often most vulnerable communities. In spite of recent advances in modeling drought risk and impact, coherent and explicit information on drought hazard, vulnerability and risk is still lacking over wider areas. In this study, a spatially explicit drought hazard, vulnerability, and risk modeling framework was investigated for agricultural land, grassland and shrubland areas. The developed drought hazard model operates on a higher spatial resolution than most available drought models while also being scalable to other regions. Initially, a logistic regression model was developed to predict drought hazard for rangelands and croplands in the USA. The drought hazard model was cross-verified for the USA using the United States Drought Monitor (USDM). The comparison of the model with the USDM showed a good spatiotemporal agreement, using visual interpretation. Subsequently, the explicit and accurate USA model was transferred and calibrated for South Africa and Zimbabwe, where drought vulnerability and drought risk were assessed in combination with drought hazard. The drought hazard model used time series crop yields data from the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) and biophysical predictors from satellite remote sensing (SPI, NDVI, NDII, LST, albedo). A McFadden’s Pseudo R² value of 0.17 for the South African model indicated a good model fit. The plausibility of the drought hazard model results in southern Africa was evaluated by using regional climate patterns, published drought reports and a visual comparison to a global drought risk model and food security classification data. Drought risk and vulnerability were assessed for southern Africa and could also be spatially explicit mapped showing, for example, lower drought vulnerability and risk over irrigated areas. The innovative aspect of the presented drought hazard model is that it can be applied to other countries at a global scale, since it only uses globally available data sets and therefore can be easily modified to account for country-specific characteristics. At the same time, it can capture regional drought conditions through a higher resolution than other existing global drought hazard models. This model addressed the gap between global drought models, that cannot spatially and temporally explicitly capture regional drought effects, and sub-regional drought models that may be spatially explicit but not spatially transferable. Since we used globally available and spatially consistent data sets (both as predictors and response variables), the approach of this study can potentially be used globally to enhance existing modelling routines, drought intervention strategies and preparedness measures.
APA, Harvard, Vancouver, ISO, and other styles
12

Ziembicki, Mark, and John C. Z. Woinarski. "Monitoring continental movement patterns of the Australian Bustard Ardeotis australis through community-based surveys and remote sensing." Pacific Conservation Biology 13, no. 2 (2007): 128. http://dx.doi.org/10.1071/pc070128.

Full text
Abstract:
Many birds of Australia's arid and monsoonal regions are characterized by dispersive or nomadic movements and large population fluctuations in response to variable climatic conditions. These characteristics, compounded by our generally limited knowledge of bird movements and population dynamics (in part due to limited research effort in these sparsely-populated rangelands), complicate population monitoring and conservation for such species. Here we employ mail surveys of landholders across continental Australia to assess the distribution and movement patterns of the Australian Bustard Ardeotis australis. We combine data from these simple mail surveys with more sophisticated techniques that allow for tracking the flux in rainfall patterns and vegetation greenness over broad spatial and temporal scales, to identify and describe the responses of bustards to seasonai and climatic variability. Our results demonstrate that residency patterns of bustards vary widely across Australia. The seasonality of bustard occurrence is generally more pronounced in regions characterized by predictable seasonal conditions. Seasonal patterns are also evident in more climatically unpredictable regions, although here they may be increasingly overlaid by more idiosyncratic movements as a result of longer term variation in rainfall and associated patterns of primary productivity. We found limited evidence that bustards respond to inter-regional irregularities in rainfall events, suggesting that nomadic movements are generally not continental, but rather intra-regional. However, longer term data sets that cover several more, or more extreme, climatic fluctuations than that considered here, are needed to assess these relationships adequately. To a lesser degree and differently between regions, respondents reported that bustards are also associated with fire, grasshopper outbreaks, crop agriculture and drought. They are most abundant across the savannahs of northern Australia extending to parts of the Pilbara and recently cleared regions of the Brigalow Belt in eastern Queensland. In southern Australia, bustards are perceived as shor-term, irregular visitors whereas more permanent populations persist in northern and northeastern regions. While there are inherent limitations to such data, the study illustrates the utility of incorporating rangeland users into the types of large-scale monitoring programmes required to assess the distribution and movement patterns of highly mobile birds or species characterized by large population fluctuations.
APA, Harvard, Vancouver, ISO, and other styles
13

Mirzaei, Mojgan, Stefania Bertazzon, and Isabelle Couloigner. "Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models." Atmosphere 9, no. 9 (2018): 335. http://dx.doi.org/10.3390/atmos9090335.

Full text
Abstract:
To understand the health effects of wildfire smoke, it is important to accurately assess smoke exposure over space and time. Particulate matter (PM) is a predominant pollutant in wildfire smoke. In this study, we develop land-use regression (LUR) models to investigate the impact that a cluster of wildfires in the northwest USA had on the level of PM in southern Alberta (Canada), in the summer of 2015. Univariate aerosol optical depth (AOD) and multivariate AOD-LUR models were used to estimate the level of PM2.5 in urban and rural areas. For epidemiological studies, it is also important to distinguish between wildfire-related PM2.5 and PM2.5 originating from other sources. We therefore subdivided the study period into three sub-periods: (1) Pre-fire, (2) during-fire, and (3) post-fire. We then developed separate models for each sub-period. With this approach, we were able to identify different predictors significantly associated with smoke-related PM2.5 verses PM2.5 of different origin. Leave-one-out cross-validation (LOOCV) was used to evaluate the models’ performance. Our results indicate that model predictors and model performance are highly related to the level of PM2.5, and the pollution source. The predictive ability of both uni- and multi-variate models were higher in the during-fire period than in the pre- and post-fire periods.
APA, Harvard, Vancouver, ISO, and other styles
14

Oumar, Z., J. O. Botha, E. Adam, and C. Adjorlolo. "MODELLING CARRYING CAPACITY FOR THE THANDA PRIVATE GAME RESERVE, SOUTH AFRICA USING LANDSAT 8 MULTISPECTRAL DATA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W2 (November 16, 2017): 157–62. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w2-157-2017.

Full text
Abstract:
Rangelands which consist of grasslands, shrublands and savannahs are used by wildlife for habitat and are the main source of forage for livestock. The assessment and monitoring of rangeland condition is one of the most important factors for rangeland scientists in order to calculate the carrying capacity of livestock with consideration for coexisting wildlife. This study assessed the potential of Landsat 8 multispectral bands and broadband vegetation indices to model woody vegetation parameters such as tree equivalents (TE) and total leaf mass (LMASS) for the Thanda Private Game Reserve using partial least squares regression (PLSR). The PLSR model predicted TE with an R<sup>2</sup> value of 0.76 and a root mean square error (RMSE) of 1411 TE/ha using an independent test dataset. LMASS was predicted with an R<sup>2</sup> value of 0.67 and a RMSE of 853 kg/ha on an independent test dataset. The predictive models were then inverted to map TE and LMASS over the study area. The modelled TE and LMASS layers were integrated with conventional grazing and browse capacity models to map carrying capacity for the Game Reserve. The study indicates the potential of Landsat 8 multispectral data in carrying capacity modelling. The result is significant for rangeland monitoring in Southern Africa using remote sensing technologies.
APA, Harvard, Vancouver, ISO, and other styles
15

Elias, Michael, Oliver Hensel, Uwe Richter, Christian Hülsebusch, Brigitte Kaufmann, and Oliver Wasonga. "Correction: Elias, M.; et al. 2015. Land Conversion Dynamics in the Borana Rangelands of Southern Ethiopia: An Integrated Assessment Using Remote Sensing Techniques and Field Survey Data. Environments 2015, 2, 1–31." Environments 2, no. 4 (2015): 385–87. http://dx.doi.org/10.3390/environments2030385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Akinyemi, Felicia O. "Vegetation Trends, Drought Severity and Land Use-Land Cover Change during the Growing Season in Semi-Arid Contexts." Remote Sensing 13, no. 5 (2021): 836. http://dx.doi.org/10.3390/rs13050836.

Full text
Abstract:
Drought severity and impact assessments are necessary to effectively monitor droughts in semi-arid contexts. However, little is known about the influence land use-land cover (LULC) has—in terms of the differences in annual sizes and configurations—on drought effects. Coupling remote sensing and Geographic Information System techniques, drought evolution was assessed and mapped. During the growing season, drought severity and the effects on LULC were examined and whether these differed between areas of land change and persistence. This study used areas of economic importance to Botswana as case studies. Vegetation Condition Index, derived from Normalised Difference Vegetation Index time series for the growing seasons (2000–2018 in comparison to 2020–2021), was used to assess droughts for 17 constituencies (Botswana’s fourth administrative level) in the Central District of Botswana. Further analyses by LULC types and land change highlighted the vulnerability of both human and natural systems to drought. Identified drought periods in the time series correspond to declared drought years by the Botswana government. Drought severity (extreme, severe, moderate and mild) and the percentage of land areas affected varied in both space and time. The growing seasons of 2002–2003, 2003–2004 and 2015–2016 were the most drought-stricken in the entire time series, coinciding with the El Niño southern oscillation (ENSO). The lower-than-normal vegetation productivity during these growing seasons was evident from the analysis. With the above-normal vegetation productivity in the ongoing season (2020–2021), the results suggest the reversal of the negative vegetation trends observed in the preceding growing seasons. However, the extent of this reversal cannot be confidently ascertained with the season still ongoing. Relating drought severity and intensities to LULC and change in selected drought years revealed that most lands affected by extreme and severe drought (in descending order) were in tree-covered areas (forests and woodlands), grassland/rangelands and croplands. These LULC types were the most affected as extreme drought intersected vegetation productivity decline. The most impacted constituencies according to drought severity and the number of drought events were Mahalapye west (eight), Mahalapye east (seven) and Boteti west (seven). Other constituencies experienced between six and two drought events of varying durations throughout the time series. Since not all constituencies were affected similarly during declared droughts, studies such as this contribute to devising appropriate context-specific responses aimed at minimising drought impacts on social-ecological systems. The methodology utilised can apply to other drylands where climatic and socioeconomic contexts are similar to those of Botswana.
APA, Harvard, Vancouver, ISO, and other styles
17

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, et al. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
18

Fenetahun, Yeneayehu, Wang Yong-dong, Yuan You, and Xu Xinwen. "Dynamics of forage and land cover changes in Teltele district of Borana rangelands, southern Ethiopia: using geospatial and field survey data." BMC Ecology 20, no. 1 (2020). http://dx.doi.org/10.1186/s12898-020-00320-8.

Full text
Abstract:
Abstract Background The gradual conversion of rangelands into other land use types is one of the main challenges affecting the sustainable management of rangelands in Teltele. This study aimed to examine the changes, drivers, trends in land use and land cover (LULC), to determine the link between the Normalized Difference Vegetation Index (NDVI) and forage biomass and the associated impacts of forage biomass production dynamics on the Teltele rangelands in Southern Ethiopia. A Combination of remote sensing data, field interviews, discussion and observations data were used to examine the dynamics of LULC between 1992 and 2019 and forage biomass production. Results The result indicate that there is a marked increase in farm land (35.3%), bare land (13.8%) and shrub land (4.8%), while the reduction found in grass land (54.5%), wet land (69.3%) and forest land (10.5%). The larger change in land observed in both grassland and wetland part was observed during the period from 1995–2000 and 2015–2019, this is due to climate change impact (El-Niño) happened in Teltele rangeland during the year 1999 and 2016 respectively. The quantity of forage in different land use/cover types, grass land had the highest average amount of forage biomass of 2092.3 kg/ha, followed by wetland with 1231 kg/ha, forest land with 1191.3 kg/ha, shrub land with 180 kg/ha, agricultural land with 139.5 kg/ha and bare land with 58.1 kg/ha. Conclusions The significant linkage observed between NDVI and LULC change types (when a high NDVI value, the LULC changes also shows positive value or an increasing trend). In addition, NDVI value directly related to the greenness status of vegetation occurred on each LULC change types and its value directly linkage forage biomass production pattern with grassland land use types. 64.8% (grass land), 43.3% (agricultural land), 75.1% (forest land), 50.6% (shrub land), 80.5% (bare land) and 75.5% (wet land) more or higher dry biomass production in the wet season compared to the dry season.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!